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Abstract In this paper we consider a third quantized cos-
mological model with varying speed of light ¢ and varying
gravitational constant G both represented by non-minimally
coupled scalar fields. The third quantization of such a model
leads to a scenario of the doubleverse with the two com-
ponents being quantum mechanically entangled. We calcu-
late the two parameters describing the entanglement, namely:
the energy and the entropy of entanglement where the latter
appears to be a proper measure of the entanglement. We con-
sider a possibility that the entanglement can manifests itself
as an effective perfect fluid characterized by the time depen-
dent barotropic index wery, which for some specific case
corresponds to the fluid of cosmic strings. It seems that such
an entanglement induced effective perfect fluid may generate
significant backreaction effect at early times.

1 Introduction

The idea of multiverse assumes that our universe is a part
of a larger whole - a multiverse being a collection of many
universes. The four different types of the relation between
our universe and the rest of the multiverse were defined [1].
The most obvious type of the relation assumes that the rest
of multiverse is the space outside the observationally acces-
sible region (level I multiverse). The one more elaborated
defines our universe as one of the causally disconnected
post-inflationary bubbles with possibly different values of the
physical constants (level II multiverse). The other two types
involve the idea of Everett’s many-worlds interpretation of
quantum mechanics (level III multiverse) or treating large
well defined purely mathematical structures as the existing
elements of the multiverse (level IV multiverse). An interest-
ing case (level IT and IIT) defining the paradigm of interacting
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universes describes the interaction between the universes as
occurring in the minisuperspace via quadratic terms [2—4].
The causal disconnection present in level Il multiverse in such
models can be maintained. Another approach realising the
level I multiverse investigates the effects of the entanglement
between different possibly causally disconnected patches of
the universe [5,6]. An extraordinary approach to the concept
of multiverse defined in [7,8] is based on the so-called third
quantization procedure which exploits the formal analogy
between the Wheeler—DeWitt and the Klein—Gordon equa-
tions. In this approach the Klein—Gordon field is substituted
by the wave function which is promoted in the course of
the third quantization to be an operator acting on the Hilbert
space spanned by the orthonormal set of vectors represent-
ing occupation with universes characterized by appropriate
quantum numbers. A great advantage of this approach is that
it naturally introduces quantum entanglement between uni-
verses and provides tools to describe an interuniversal entan-
glement in terms of the thermodynamical quantities [7—10].
However, the connection between the ordinary thermody-
namics and the thermodynamics of quantum entanglement
is still not well understood.

Many different cosmological scenarios have been consid-
ered so far in the context of the third quantization. We men-
tion here an embedding of Brans—Dicke gravity in the third
quantization scheme which interestingly leads to scenarios
in which whole multiverse is created out of vacuum [11],
an application of third quantization procedure to the varying
constants model [12] with non-minimally coupled dynamical
scalar fields representing the speed of light and the gravita-
tional constant [13] which results in similar scenario of the
multiverse creation or eventually the third quantization of
the varying gravitational constant cyclic scenarios [14] in
which the naturally arisen interuniversal entanglement leads
to interesting behavior of the thermodynamical quantities [9].
The third quantization procedure was also used to discuss the
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transition from expanding to contracting cosmological phase
(and vice-versa) in [15,16].

Our paper is organized as follows. In Sect. 2 we intro-
duce the non-minimally coupled varying speed of light ¢ and
varying gravitational constant G theory defined in [13] and
describe the procedure of the third quantization of such a
theory. In Sect. 3 we discuss based on the theory described
in Sec. 2 a scenario which results in the emergence of the
entanglement in a pair of universes which initially were dis-
entangled. We also calculate the reduced density matrix of
a single universe as well as its eigenvalues. In Sect. 4 we
calculate the energy and the entropy of entanglement where
the latter appears to be a proper measure of entanglement. In
Sect. 5 we relate the previously calculated energy of entan-
glement with the classical energy-momentum content of the
universe and argue that the entanglement can effectively sim-
ulate a perfect fluid with time dependent barotropic index. In
Sect. 6 we give our conclusions.

2 Third quantized non-minimally coupled varying
constants cosmological model

Our considerations are based on the model defined in [12,13]
which describes the variation of the speed of light and the
variation of the gravitational constant with both quantities
represented by the two non-minimally coupled scalar fields.
Such a model was originally inspired by the covariant and
locally Lorentz-invariant varying speed of light theories [17]
and is given by the following action:

o®
S:/\/—_g<e—w> [R+ A+ w00 e

+3, 3 y)] dx, 1)

where ¢ and ¢ are some non-minimally coupled scalar fields,
R is the Ricci scalar, A plays the role of the cosmological
constant and w is some parameter of the model. The action (1)
was obtained by replacing the speed of light ¢ and the grav-
itational constant G in the original Einstein—Hilbert action
with certain functions of the scalar degrees of freedom ¢ and
Y. The specific form of the relationship between the scalar
fields ¢ and ¢ and the fundamental constants ¢ and G is
given by the following formulas:

c ¢ (2
G=¢". (3)

This way the evolution of ¢ and ¥ by definition determine the

variability of ¢ and G. By application of the field redefinition
given by
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_i l
¢ = _2w+21n5, )
o= —/3 —11 ) 5)
V2o 2 e,

the action (1) can be rewritten in the form of the Brans—Dicke
action which reads:

n
S=/¢Tg[8(R+A)+wa“88 °

2

+ 88,”‘}8”,3} d*x.
(6)

The dependence of ¢ on space-time coordinates breaks the
general covariance of the theory and entails specification of
a coordinate system in which the theory of varying c and G
is described by the action given by (1) or (6). In other words
our model needs to be formulated in a preferred reference
frame. In fact this is a generic feature of the large class of
the theories which deal with the problem of varying speed of
light [17]. Following the suggestions given in [17] we will
associate the preffered frame to formulate our model with
the cosmological frame defined by flat FLRW metric given
by:

ds? = —N2(dx")? + &> (dr? + r2d2%), ™

where N is the lapse function while a is the scale factor both
depending on coordinate x. The action (6) in the cosmo-
logical frame defined by the metric (7) takes the following
form:

3V, 2 b
§=220 [ a0 (—L s — Laa? + ASa’N
8 N N
3 ¢n2 3
wa’d a
______ (S 2 , 8
2N § N p ) ®
where () = % In the gauge given by
N =a’s, )
the solution of the model defined by action (6) is [13]:
1
a= ; , (10)
D2(eF**)” sinh™ | /(A2 — 9) AxO|
D6(eFxO)6
§ = ; (11)
sinh |/(42 — 9) Ax0|
where A = 1 M = 3-42 W = 247 and D and F

V12w’ 9-A2> 9-A2 .
are some integration constants. Due to the particular choice

of the gauge (9) the variable x° cannot be interpreted as the
cosmic time and the relationship between the two variables
can be retrieved be first finding the relation between x° and
the rescaled cosmic time x° defined by

dx® = Ndx® = a3sdx°, (12)
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Fig. 1 Qualitative behavior of the scale factor a (black), the speed of
light ¢ (red) and the gravitational constant G (blue) before (3% < 0)and
after (x > 0) the curvature singularity plotted with the help of solution
given by (10), (11) and (14)

and then by solving for the proper time encountered by the
comoving observer t (the usual cosmic time) from the fol-
lowing formula:
dt = |dScom| dx?
T = — = —,
c(x9) c(x9)

(13)

where ds;opn, is the line element (7) evaluated on the world
line of the comoving observer. The formula (13) encodes the
typical impact of varying speed of light on classical trajecto-
ries due to explicit dependence of the metric on the speed of
light ¢ (see [17]). Inserting (10) and (11) into (12) and then
integrating (12) leads to the following relation between x°
and the rescaled cosmic time x° [13]:

2 i}
= — " arctanh (eV (Az_g)Axo) . forx? <0,
J(AZZ9)A
2 _
= —Z _ arctanh (e*V (ALQ)AXO) forx? >0,
JAZ—9)A

(14)

where as in [13] we will limit our considerations to the cases
with A2 > 9. The solution given by (10) and (11) together
with (14) describes the pre-big-bang contraction that takes
place for x° < 0 followed by the post-big-bang expansion
which occurs for X% > 0. Both phases are separated by the
curvature singularity which occurs for x° = 0. Formulas
(10) and (11) also include the information on the evolution
of the fundamental constants ¢ and G. It turns out that the
gravitational constant G vanishes while the speed of light ¢
diverges as the universe approaches the curvature singularity
at ¥9 = 0 (see Fig. 1).

We are also interested in the hamiltonian picture of the
presented model. In order to find the corresponding hamilto-

nian we first observe that the action (8) in the new variables
n, x1 and x; defined by the following field transformations:

1
X =1 b)) Y=—1nd 1
n(av's), TR (15)

n=r(AY —3X),x;1 =r(3Y — AX), x2 =2/ Vop,
(16)

where Vo = 38% andr = 2,/ Afgg simplifies to the following
form:

1 -
S = /dxo [Z(n’z —xf —x5) + Ae—zi’] : (17)
where A = VyA. The corresponding hamiltonian reads:

H=n>— ”31 - 7152 — Ae%r, (13)

where 7, = %/ Ty = —% and my, = _2 are the conju-
gated momenta. The form of the hamiltonian (18) suggests
that both my, and m,, are conserved during the evolution.
This means the classical evolution is formally equivalent to
the scattering of a particle on the exponential potential barrier.
The solutions of the set of Hamilton equations corresponding
to the hamiltonian (18) are:

Insinh [v/ (A2 — 9) Ax?|, (19)

T] =
x| = —27rxlx0 + E, (20)
x) = —2m,x" + P, 1)

where E and P are some integration constants. By examining
the solution (19) we see that 5 can define two regimes - the
high-curvature regime (defined by the vanishing scale factor
a — 0) which corresponds to n — oo and the low-curvature
regime (defined by higher values of the scale factor a) which
occurs for n — —oo. On the other hand it can be checked
that the high-curvature regime (for n — 00) is characterized
by the following asymptotic values of the momentum 7,

_fva
Ty = Vi

while in the low-curvature regime (for n — —o0) we have
that:

S «/Ze_'ﬁ‘
"= Vet

In order to obtain the Wheeler—DeWitt equation which
describes the quantum mechanical regime corresponding to
the considered model we apply the Jordan quantization rules
and replace the canonical momenta with the operators: 77, —

A L) A ) A L)
Ty = —igy, Ty = My = —lgy and Ty, = oy = —lig-

collapsing pre-big-bang solution
expanding post-big-bang solution,

collapsing pre-big-bang solution
expanding post-big-bang solution.

@ Springer
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The resulting Wheeler—DeWitt equation reads:

S — AD +ml ()@ =0, (22)

where () = 3%, A= % + % and m? £() = Ae— 17,

The formal analogy between (22) and the Klein—Gordon
equation allows us to perform the so-called third quantiza-
tion procedure by formally applying the Klein—Gordon field
quantization rules. It is assumed that the resulting theory
involves the Fock space associated with the considered model
of the multiverse.

The third quantized action that leads to the Wheeler—
DeWitt equation given by (22) is:

S0 = %/ [q52 — (V&) — mgﬁ(n)qﬂ] d*xdn,  (23)

where V is a two-dimensional gradient operator associated
with the the free degrees of freedom x; and x;. The third
quantized hamiltonian corresponding to the action (23) is:

1
Hiot) = 5 [ [72+ V0P +miyme?| . 4

where the conjugated momentum 7 = @. A crucial step in
the third quantization procedure involves choosing the vac-
uum. Generally the vacuum and the series of excited states
of the wave function @ associated with the choosen vacuum
is determined by a set of particular mode functions v (1)
that are included in the usual expansion formula of the field
operator @ given by [18]:

A 1 [d%k_; ‘
) , - ® P ikex ok A —ik-x At ’
(X 77) ﬁ / 27[ [e Uk (n)ak + e Uk(]”)ak ]
(25)

where kK = (k1. k2), d*k = dkidky and |k| = k =

1/k% + k%. The mode functions vi(n) fulfill the following
mode equation (a condition imposed by (22)):

e + ok (n)*ve(n) =0, (26)
where wi () = ,/k? + mgff(n) and the normalization con-
dition:

W (v (), v (7)) = 2i, 27

where W (-, -) denotes wronskian. The creation and annihila-
tion operators &l:r and a,_ that defines the ladder of the excited
states of the field operator @ fulfill the standard commutation
relations:

@ Springer

[y . a1 = 8(k — k'), (28)
[4y , a1 =0, (29)
lay, a1 =0. (30)

By definition a vacuum state |0) is given by the usual condi-
tion:

al0) =0 31)

for all k. Naturally, the vacuum state |0) is not unique since it
relies on the solution of the mode Eq. (26), which also cannot
be uniquely specified.

3 Emergence of entanglement in pairs of the universes

In this section we will show that the third quantized varying
constants theories described in the previous section naturally
involve scenarios in which the entanglement develops in pre-
viously disentangled pair of universes. A specific scenario
can be implemented by appropriate selection of boundary
conditions determining the initial state of the field operator
@. It also requires selecting the vacuum. Since our model
naturally defines the two asymptotic regions in the minisu-
perspace - the high-curvature one defined by vanishing of
the scale factor @ which occurs for 7 — oo (point X = 0
in Fig. 1) and the low-curvature one defined by higher val-
ues of the scale factor @ which appears for n — —oo - the
selected vacua will be associated with these two asymptotic
regions. Specifically, we will define the high-curvature vac-
uum |(;,)0) (in-vacuum) as determined by the solutions of
the mode Eq. (26) for n — oo region of the minisuper-
space and the low-curvature vacuum |(,,)0) (out-vacuum)
as determined by the solutions of (26) for  — —oo region
of the minisuperspace. We will be also assuming that the
vacuum at any moment of the background evolution given
by particular value of 7 is controlled by the instantaneous
value of the background curvature. In other words, the vac-
uum evolves along with the curvature and changes from the
high-curvature in-vacuum |;,)0) into the low-curvature out-
vacuum |, 0) as the system moves between the two previ-
ously defined asymptotic regions of the minisuperspace (the
high- and the low-curvature regions given by n — oo and
n — —oo, respectively). By inspecting the mode Eq. (26)
we see that its high-curvature (n — 00) set of solutions is
given by the mode functions

up = AJ_jkr (x), (32)

where J_;;, is a Bessel function of the first kind, x =
r~/Ae™"" and A is some normalization constant. Thus
we will assume that the high-curvature vacuum |;,)0) (in-
vacuum) is completely specified by the set of mode functions
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given by (32) and is formally given by the following expres-
sion:

im0 = [T lamOk) ® lim0-k). (33)

keupper

where all | ;)0 ) are annihilated by the annihilation operators
@, associated with the mode functions (32) while the product
goes over all k that ends in the upper half-plane defined by
axes ki and k».

The low-curvature (n — —o0) set of solutions of (26) is
given by the mode functions

Vg = BH(zl)kr (x), (34)

where Hﬁzi)kr is a Hankel function of the second kind and B is
some normalization constant. We will assume then that the
low-curvature vacuum |(,,,)0) (out-vacuum) is completely
specified by the set of mode functions given by (34) and is
formally given by the following expression:

loyOd = [T lounOk) ® loun0—k). (35)

keupper

where all |(,,/)0k) are annihilated by the annihilation oper-
ators @, associated with the mode functions (34) and the
product goes over all k that ends in the upper half-plane
defined by axes k; and k.

We also notice that uy ~ J_jr-(x), asymptotically for
n — oo, are the eigenvectors of 7, to the eigenvalues VA

(parameterized by A with k = VA A). Thus in the high-
curvature limit the modes u, correspond to the collapsing pre-
big-bang universe. We also recognize that vy ~ Hg}{r (x)
and v;: ~ in)kr (x)}* = Hl(k]r) (x), asymptotically for
n — —oo, are the eigenvectors of 7, to the eigenval-
ues vV Ae~ 7 and —vAe 7, respectively. Thus in the low-
curvature limit the modes vy correspond to the collapsing
pre-big-bang universe while the modes v}’ correspond to the
expanding post-big-bang universe.

The following remarks are in order. The hamiltonian given
by (24) explicitly depends on the time variable n and thus
does not possess well-defined ground state. However, it is
still possible to define the so called instantaneous lowest-
energy state of the hamiltonian (24) which is defined as a
ground state of the hamiltonian for a particular value of the
time parameter 7. It can be shown [18] that mode functions
vk (n) that fulfill the following initial conditions:

1
vk (no) = NZODh
v (10) = iw(n0) vk (M0). (36)

for some particular value of the time parameter 7, defines
a vacuum which is identical with the instantaneous lowest-
energy state of the hamiltonian (24) at n = 9. Moreover the
hamiltonian (24) at n = 79 is related to the operators &lf by:

[ o] i+ 3500,
n=mno

(37
which is diagonal in the eigenbasis of the number operator
Ny = &lf @y . Accordingly, the vacuum given by the condi-
tions (36) is sometimes called the vacuum of instantaneous
diagonalization [18]. In our scenario the mode functions vy
given by (34) fulfill the conditions (36) for n = ngp — —oo
which means that the hamiltonian (24) in the low-curvature
limit (at n = ng — —o0) reduces to (37), where the cre-
ation and annihilation operators &f: and @, correspond to
the mode functions (34). We also recognize that the low-
curvature vacuum (35) is identical with the lowest-energy
state of the hamiltonian (24) at times n — —o0.

Let us now specify the boundary conditions related with
the considered problem. We will assume that initially for  —
oo the quantum state of the multiverse |, ¥) is identical
with the high-curvature vacuum |(;,)0) completely specified
by the mode functions (32):

H3Q(’I)‘ =
n=no

lim¥) = lin)0)- (38)

In other words, the multiverse is initially (for n — 00) in
a vacuum state. Since the evolution of our setup is formally
equivalent to the stationary scattering, the state of the uni-
verse does not change and is given by (38) during the whole
process. So:

loun¥) = lim¥), (39)

where |(,ur)¥) represents the final state of the multiverse for
n — —oo. The state of the vacuum, however, does evolve,
since, according to our previously made assumption, it is
controlled by the instantaneous value of the curvature. It
means that the vacuum state transforms during the whole
process form the high-curvature vacuum |;,)0) (in-vacuum
for n — o0) given by (33) into the low-curvature vacuum
l(our)0) (out-vacuum for n — —oo) given by (35). Thus,
finally for n — —oo, the state of the multiverse is not any-
more a vacuum state. For each mode k we have [18]:

lin)Ok) ® l(in)0-k) =

1 o0 ,3* n

_ k

= otz | <_O[_> |(0ut)nk> 02y |(aut)n—k)s (40)
k n=0 k

where

.
|(0ut)nk> = ﬁ(alj)nl(oul)ok>r (41)

@ Springer
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with &lf being the creation operators associated with the
mode functions (34) while «; and B; are the Bogolyubov
coefficients given by:

oy = Wk 1) 42)
2i

B = —W(UZ".’ 2y (43)
l

In the usual picture of the second quantized Klein—Gordon
field, the states given by (41) are assumed to represent n
particles with momentum k. However, since the third quan-
tization of the Wheeler—DeWitt wave function goes beyond
the ordinary scheme of the quantum field theory, sticking to
such a standard interpretation seems to be not the only pos-
sible option. It is formally viable to interpret vectors given
by (41) as referring to the internal degrees of freedom of
some physical setup which exists in the minisuperspace, that
is characterized by the momentum k. To be more precise,
we postulate that the vacuum states such as |(o,s)Ok) refer
to a particle (or equivalently a universe) with momentum k,
whose internal state is given by the ground state (the lowest
energy state). Consequently, the states given by (41) refer to a
particle with momentum Kk, whose internal state is described
by the n-th excited state with respect to the ground state given
by |(our)Ok). Let us also notice that the states | (o)1 —k) corre-
spond to the collapsing pre-big-bang branch of the solution
given by (10), (11) and (14) while the states |(o,s)nKk) cor-
respond to the expanding post-big-bang branch of the men-
tioned solution. The problem of attributing the energy to the
postulated internal states enumerated with the quantum num-
ber n, as well as the problem of its interpretation will be
tackled in the next section of the paper.

From the formula (40) we see that for n — oo, which
corresponds to the high-curvature limit, the multiverse is
composed of pairs of disentangled universes with opposite
momenta —k and k since the quantum state of each such pair
is given by | () 0k) ®|(in)0—k) whichis manifestly a separable
state. On the other hand, as n — —oo, which corresponds to
the low-curvature limit, the multiverse transforms into a set
of pairs of entangled universes with opposite momenta —k
and k since the right-hand side of the formula (40) represents
an entangled state. Thus, the considered scenario results in
the emergence of the entanglement in pairs of the universes
where each such pair consists of the contracting pre-big-bang
and the expanding post-big-bang universe. Following [7-9]
we will call such an entangled pair of universes a double-
verse.

In this paper we will assume the perspective of an observer
associated with the expanding branch for which the contract-
ing branch is inaccessible. From his point of view the the
state of the expanding branch being a subset of the composite
quantum mechanical system made up of both the expanding
and the contracting branches is given by the reduced den-

@ Springer

sity matrix which is a result of tracing away the degrees of
freedom associated with the contracting branch:

o
ok =Y {(ounym k| pliounym —x). (44)
m=0
where
£ = l(in)Ok) ® l(in)0=k) {(in) Ok | & {(in)O—kl- (45)
By performing the trace in (44) we obtain:
LS [B™
— = . 46
Pk = T2 mZ:O ” | ourymx) {(ourymx| (46)

By normalizing the mode functions u; and vy with condition
(27) and then by calculating the wronskians (42) and (43) we
obtain the Bogolyubov coefficients oy and Sy, in the following
form:

1

RV T @7
1

P = o (48)

The eigenvalues of the reduced density matrix pk given by
(46) are:

2n e~ 2mkrn

= 1 — e—27kr” (49)

1
log |2

Bk

A = —
(675

The eigenvalues (49) do not fulfill the normalization condi-
tion since

> 1

2 Ap= ——————. (50)
_ ,—2mwkr\2

s (1—e )

The corrected eigenvalues which fulfill the normalization
condition are then:

Xn = (1 _ e—2ﬂkr)e—2ﬂkrn. (51)

4 The energy and the entropy of the entangled pair of
universes

We will show that with the process of the creation of the pair
of entangled universes there is associated a production of the
entropy and the energy of entanglement. In order to see that
we will first calculate the energy of entanglement (an analog
of the internal energy in thermodynamics) defined as [7-9]:

o
Eent = Tr (okHa) =) _{oun?k| ok Halunnk), — (52)
n=0
where
SOOI |
Hy = wr(n) |ay a + AR (53)
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Fig. 2 Theenergy of entanglement E,,,; against the cosmological con-
stant A. The quantity E,,; is a monotonically growing function of the
cosmological constant A and it vanishes for A = 0

is a hamiltonian of a single universe of the doubleverse. The
explicit form of the energy of entanglement is:

VA _n
Een = 5= (1-x7)e 7, (54)
where x is defined by
2
X = (&) — e—27rkr’ (55)
o

where kr = 2,/ AVZO_Q. The energy of the entanglement E,,;
(see Fig. 2) grows monotonically together with the value
of the cosmological constant A and it reaches zero as the
cosmological constant A vanishes (we set Vo = 1).

The entropy of entanglement is given by the von Neumann

entropy and is defined as [7-9]:

S(pk) = — Zin Ink,. (56)
n=0

By substituting the corrected eigenvalues A, of px given by
(51) into (56) we obtain that:

()

1—x

S(p) =1In (57)

The entropy of entanglement S(pk) (see Fig. 3) mono-
tonically decreases as the cosmological constant grows. It
becomes infinite for the vanishing cosmological constant
while tends to zero as the cosmological constant approaches
infinity. In other words the pairs of the universes charac-
terized by small values of the vacuum energy are initially
much more entangled than those with larger values of the
vacuum energy. In fact if the vacuum energy is very large the
entanglement disappears and the state of the pair of the uni-
verses becomes separable. On the other hand vanishing of the
vacuum energy is accompanied by maximal (infinite) entan-
glement. It seems strange that the energy of entanglement

S(A)

Fig. 3 The entropy of entanglement S(pk) against the cosmological
constant A. The quantity S(pk) is a monotonically decreasing function
of the cosmological constant A and it reaches infinity for A = 0 while
goes to zero as A grows

E¢,; (compare Fig. 2 and Fig. 3) on one hand vanishes as the
entropy of entanglement S(pk) approaches infinity (maxi-
mal entanglement) while on the other hand it goes to infin-
ity as the entropy of entanglement S(pk) approaches zero
value. This means that the energy of entanglement is not a
good measure of the strength of entanglement. Remember,
however, that the quantum number n enumerates the inter-
nal excitation levels of the single universe of the considered
doubleverse and the quantity E,,; defined by (52) gives the
average value of the energy associated with the internal exci-
tation levels. Given the above, it seems sensible to think of
the energy of entanglement as of the quantity which is asso-
ciated with a single universe and whose presence should at
least in principle be detectable. In the next section we will
postulate that the energy of entanglement E,,,; can be noticed
by an observer inside a single universe of the doubleverse as
the energy which supplements the energy associated with the
matter content.

5 Entanglement effective perfect fluid

Assuming that the energy of entanglement can be a part of the
energy-momentum content of the single universe the effect
of quantum entanglement can manifest itself in the from of
the effective prefect fluid which may affect the evolution of
the classical background. We additionally assume that the
effective fluid does not interact with the other perfect fluid
filling the space. In order to derive the form of the associ-
ated barotropic index we start with the ordinary continuity
equation:

da
d,0+37(1 + Wenr)p =0, (58)
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where w,,; is the barotropic index of the effective fluid asso-
ciated with the effect of the entanglement. The energy density
of the effective fluid scales in the following way:

p~ =3 (59)

Taking into account the expression (54) we can easily calcu-
late that:

dl
dE 730
dent = —Lent % s (60)
¢ ax0

where a is the scale factor and I = g By combining (58),
(59) and (60) we obtain the effective barotropic index we;
in the following form:

(61)

Calculating the derivatives in the equation above allows us to
plot the effective barotropic index w.rs against the rescaled
proper time of the comoving observer x° for different values
of the model parameters (see Fig. 4). In each case the effec-
tive barotropic index w,,; suddenly changes it value from
zero to a value between — 0.17 and — 1/3. For higher values
of the cosmological constant the transition occurs earlier and
the slope is steeper. Similarly higher value of the A param-
eter makes that the transition occurs earlier and the slope is
steeper. It also results in more negative value of the effec-
tive barotropic index w,,,; after the transition. The analysis
of the formula (61) shows that for higher value of the kinetic
energy related with the free degrees of freedom (determined
by the value of the constant F') the transition occurs later. On
the other hand for sufficiently small value of F the transi-
tion disappears and the effective barotropic index maintains
aconstant value equal to approximately —1/3 all the time. An
interesting issue here is the effect of an entanglement back-
reaction which according to (54) introduces the following
correction to the value of the cosmological constant:

A= A — x> (62)

By Eq. (55) and Fig. (3) we see that the strong entangle-
ment (for high value of the entropy of entanglement) can
largely suppress the value of cosmological constant. On the
other hand if the entanglement is weak the effect of backre-
action disappears. Interestingly the backreaction on the vac-
uum energy does not affect the classical orbits of the system
in the minisuperspace (Eqgs. 10, 11). However, the backreac-
tion of the entanglement induced effective perfect fluid has
to be taken into account since for the case with w,,; = —1/3
(which corresponds to the cosmic strings) the density of the
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Fig. 4 The effective barotropic index w, s against the rescaled proper
time of the comoving observer x°. Red lines represent models which
differs with A only. Blue lines represent models which differs with A
parameter only. All models with F = 0 are represented by the dashed
black line in the above figure (regardless the value of other parameters)

effective fluid may dominate the vacuum energy at early
times.

6 Conclusions

We have shown that the canonical quantization of the
Wheeler—-DeWitt wave function for non-minimally coupled
varying constants model introduced in [ 13] results in a theory
which comprises a scenario that describes the two quantum
mechanically entangled - one expanding and one contract-
ing - branches. This is different form the scenario devel-
oped in [12] where the third quantization applied to the same
model led to a scenario in which a whole multiverse sub-
jected to Bose-Einstein distribution emerged form nothing.
The discrepancy in these two scenarios follows form differ-
ent interpretations of the representation dependent sets of
vectors spanning the Hilbert space resulting form the third
quantization procedure assumed in both approaches. In sce-
nario given in [12] the orthonormal basis that generates the
Hilbert space of the multiverse is assumed to represent an
occupation with universes in a given state while in the sce-
nario considered in the present paper the basis that spans the
Hilbert space is assumed to represent an excitation levels of
one of the two systems which naturally leads to entangle-
ment in a pair of single universes that form the doubleverse
(compare with approaches introduced in [7-9,19-21]). Such
an approach also facilitates a description of the entangle-
ment in terms of quantities which are formal analogs [10] of
the ordinary thermodynamical quantities such as the entropy,
the internal energy, heat and work. Including these analogs in
the considerations about the multiverse has for the first time
been done in [8], however, their relation with the ordinary
thermodynamical quantities has never been clearly articu-
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lated. This seems to be important since any such relation
could possibly equip our models with traits indicating exis-
tence of interuniversal entanglement. The postulated rela-
tion presented in this paper involves interpreting the energy
of entanglement as a form of non-interacting energy homo-
geneously filling the space. In the framework of our model
such assumption results in appearance of perfect fluid with
the time dependent barotropic index which may influence the
early-time evolution. It should be stressed that our postulate
is of a very speculative nature since it was not derived from
fundamental principles. However, making such additional
assumptions seems to be unavoidable for the interuniversal
entanglement to affect in any way the internal properties of
a single universe and to become this way an observationally
testable phenomenon (compare with the approaches postu-
lating quadratic terms representing an interaction between
the universes in the minisuperspace [2—4]).

Data Availibility Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Data sharing
not applicable to this article as no datasets were generated or analysed
during the current study.]
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