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Abstract In this paper the differential cross section for
Bhabha scattering in the very special relativity (VSR) frame-
work is calculated. The main characteristic of the VSR is to
modify the gauge invariance. This leads to different types of
interactions appearing in a non-local form. In addition, using
the Thermo Field Dynamics formalism, thermal corrections
for the differential cross section of Bhabha scattering in VSR
framework are obtained.

1 Introduction

Symmetry underlies all theories that describe nature. The
fundamental laws of nature are invariant under the Poincaré
group, that is the set of Lorentz transformations plus space-
time translations. Although Lorentz symmetry has been
tested experimentally to a high degree of precision, possible
tiny violations of Lorentz symmetry may emerge in theories
that attempt to unify all known forces. Opportunities to detect
experimentally these violations will likely arise at the Planck
scale,∼ 1019 GeV. Minimal modifications of standard model
or alternative models have been proposed in order to attempt
to understand possible Lorentz violation. One attempt is the
standard model extension (SME) [1,2] which contains the
standard model, general relativity and all possible operators
that break Lorentz symmetry. Another interesting way is the
so called very special relativity (VSR) [3,4].

The main characteristic of VSR is that the laws of nature
are not invariant under the whole Lorentz group but instead
are invariant under subgroups of the Lorentz group that still
preserves the basic elements of special relativity like the con-
stancy of the velocity of light. In the VSR framework a mod-
ified gauge symmetry is present, then a variety of new gauge
invariant interactions are permitted. The most interesting of
these subgroups of VSR are the SI M(2) and HOM(2). The
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so-called Homothety group HOM(2) has three parameters
and is generated by T1 = Kx+Jy , T2 = Ky−Jx and Kz , wiht
J and K being the generators of rotations and boosts, respec-
tively. The SI M(2), called the Similitude group consists of
HOM(2) group plus the Jz generator. These subgroups do
not have invariant tensor fields. These subgroups preserve the
direction of a light-like four-vector nμ. Then, theories that
are invariant under these subgroups have a preferred direc-
tion in Minkowski space-time. In addition, all local operators
preserving HOM(2) or SI M(2) also preserve Lorentz sym-
metry. However, non-local terms that violate Lorentz sym-
metry can be constructed as ratios of contractions of nμ with
other kinematic vectors. These non-local terms that violate
Lorentz symmetry are invariant under HOM(2) or SI M(2).

Several applications in the VSR framework have been con-
sidered. For example, implications for neutrino physics of
VSR are explored. The generation of a neutrino mass with-
out lepton number violation nor sterile neutrinos has been
admitted. In the ultra-relativistic limit, VSR and conventional
neutrino masses are indistinguishable. However, VSR effects
are significant near the beta decay endpoint where neutri-
nos are not ultra-relativistic [4]. A supersymmetric field the-
ory that is translation and SI M(2) invariant, but not Lorentz
invariant has been formulated. In this theory the number of
supersymmetries are half that required of a standard Lorentz
invariant theory. This leads to a modified SUSY algebra [5].
The SI M(2) superspace formulation of the supersymmetric
Yang-Mills gauge theory minimally coupled to chiral super-
fields has been discussed. Then the super-Poincare invariant
supersymmetric Yang-Mills theory to SI M(2) superspace
formalism has been formulated [6]. Noncommutative impli-
cations of VSR are investigated. It has been established that
the light-like Moyal noncommutative space provides a con-
sistent framework for T (2) group of VSR. The other VSR
subgroups are discarded, if the origin of Lorentz violation
is in the noncommutative structure of space-time, since the
corresponding noncommutative spaces are not translation-
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ally invariant [7]. A deformation of the subgroup SI M(2),
known as DSI M(2), has been introduced. A novel non-
commutative spacetime structure, underlying the DSI M(2)

has been presented. It allows us to construct explicitly the
generators of the group [8]. Non-abelian fields in VSR have
been analyzed. A covariant derivative and modified gauge
transformations are defined. Actions for matter fields cou-
pled to the VSR gauge fields have been constructed. The
BRST formalism is used to obtain the propagators and ver-
tices of pure VSR Yang-Mills theory. In addition, the non-
abelian theory in VSR is renormalizable and asymptotically
free [9]. A VSR inspired modification of Maxwell–Chern–
Simons electrodynamics has been constructed. The classi-
cal dynamics for this model is analyzed. The solution for
the electric field and static energy for this configuration is
obtained. The interaction energy between opposite charges
and a finite expression for the static potential is derived [10].
The thermodynamical properties of the quantum electrody-
namics in the VSR framework have been studied. The thermal
effects are introduced using the Matsubara imaginary-time
formalism. To explore new interactions of VSR, the effective
Lagrangian at one- and two-loop order in VSR are calculated
[11]. Consequences of a gauge invariant photon mass in VSR
are discussed. In this context, the Maxwell-VSR equations
and the modified Feynman rules are available. The Coulomb
scattering and radiative corrections have been computed [12].
One loop quantum corrections to the photon self energy, elec-
tron self energy and vertex in the electrodynamics sector of
VSR are calculated. An appropriate regulator, based on the
calculation of integrals using the Mandelstam–Leibbrandt
prescription has been introduced [13]. The differential cross
section for Bhabha and Compton scattering for the quantum
electrodynamics defined in the framework of SIM(2) of VSR
have been calculated [14]. Although there are many investi-
gations in the presence of VSR non-local terms, corrections
due to finite temperature are still missing. The main objective
of this paper is to calculate the differential cross section for
Bhabha scattering in VSR at finite temperature. This scatter-
ing process involves electrons and positrons with a photon as
an intermediate particle. The Thermo Field Dynamics (TFD)
formalism is used to introduce finite temperature.

TFD is an approach to introduce temperature effects in
quantum field theory [15–21]. It is known as real time for-
malism. Its basic elements are: (i) the doubling of the original
Hilbert space, which consists of Hilbert space composed of
the original, S and a tilde space S̃ (dual space). These two
spaces are mapped by the tilde (or dual) conjugation rule. (ii)
The Bogoliubov transformation, that is a rotation involving
these two spaces. As a consequence the propagator is writ-
ten in two parts: T = 0 and T �= 0 components. Another
important feature of the TFD formalism is that it preserves
the time-evolution once the temperature is identified with a
rotation in a duplicated Hilbert space.

This paper is organized as follows. In Sect. 2, QED in Very
Special Relativity is presented. Some attention to the new
interaction between fermions and photon is given. In Sect.
3, the TFD formalism is introduced. The photon propagator
at finite temperature is discussed. In Sect. 4, the differential
cross section for Bhabha scattering in VSR at finite temper-
ature is calculated. In Sect. 5, some concluding remarks are
presented.

2 QED in very special relativity

In this section the QED Lagrangian in VSR is presented. This
Lagrangian describes the interaction between fermions and
photon. The SI M(2) VSR-invariant Lagrangian is given as

L = −1

4
F̃μν F̃

μν + ψ̄
(
iγ μ∇μ − me

)
ψ, (1)

where me is the electron mass. Here, the field strength is
defined in terms of the wiggled derivative as

F̃μν = ∂̃μAν − ∂̃ν Aμ (2)

with

∂̃μ = ∂μ + m2

2

nμ

n · ∂
(3)

being the wiggle derivative. The m parameter sets the scale
for the VSR effects, and nμ is a light-like four-vector that rep-
resents the preferred null direction given as nμ = (1, 0, 0, 1).
It is important to note that, using the wiggle derivative in the
field strength the VSR Maxwell equation ∂̃μ F̃μν = 0 shows
that each component of the gauge field satisfies a Klein-
Gordon equation, then a massive gauge field is developed
[9,22]. In this new gauge structure the minimal coupling
among fermions and photons is determined by a new covari-
ant derivative given by

∇μψ = Dμψ + 1

2

m2

n · Dnμψ, (4)

where the usual covariant derivative is defined as Dμ =
∂μ − ieAμ. It is important to note that, due to the non-local
character of term 1/(n · D) in the covariant derivative, there
is an infinite number of interactions in the coupling e. The
Feynman rules for these interactions are constructed using
the Wilson lines approach. For details see [23]. Then part
of the Lagrangian that describes just the interaction between
fermions and photons is

LI = −eψ̄γ μψ Aμ − eψ̄
m2

2

/nnμ

(n · p1)(n · p2)
ψ Aμ. (5)

The first term describes the usual QED interaction and the
second term is a new interaction, due to the VSR character-
istics that leads to violation of the Lorentz symmetries. The
main objective is to determine VSR modifications for Bhabha
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scattering at the tree level. Then it is sufficient to obtain the
Feynman rules only for the vertex

〈
ψ̄ψ A

〉
[23]. This vertex

has the form

Vμ(p1, p2) = −ie

[
γ μ + m2

2

/n nμ

(n · p1)(n · p2)

]
. (6)

The photon propagator is given as

i Dμν( p̃) = ημν

p̃2 , (7)

where the gauge propagator has a massive pole p̃2 = p2 −
m2. The main objective is to calculate the differential cross
section for a scattering process of VSR-QED at finite temper-
ature, in the next section the TFD formalism is introduced.

3 Introduction to TFD formalism

TFD is a thermal formalism whose main characteristic is to
show that the thermal average of any operator D is equal
to its temperature dependent vacuum expectation value, i.e.,
〈D〉 = 〈0(β)|D|0(β)〉. Here |0(β)〉 is a thermal vacuum,
where β ∝ 1

T , with T begin the temperature. In order to
satisfy this requirement the doubling of the Hilbert space is
considered and the temperature effects are introduced by the
Bogoliubov transformation. The doubling of Hilbert space
is given by the tilde (∼) conjugation rules, such that the
expanded space is ST = S ⊗ S̃, with S being the standard
Hilbert space and S̃ the dual (tilde) space. In this formalism
each operator in S is associated with two operators in ST .
For example, if o is an operator in S, then in ST we have two
operators associated to o, i.e., O = o ⊗ 1 and Õ = 1 ⊗ o.

The Bogoliubov transformation consists in a rotation in
the tilde and nontilde variables. For fermions with c†

p and
cp being creation and annihilation operators respectively,
Bogoliubov transformations are

cp = u(β)cp(β) + v(β)c̃†
p(β), (8)

c†
p = u(β)c†

p(β) + v(β)c̃p(β), (9)

c̃p = u(β)c̃p(β) − v(β)c†
p(β), (10)

c̃†
p = u(β)c̃†

p(β) − v(β)cp(β), (11)

where u(β) = cos θ(β) and v(β) = sin θ(β). The anti-
commutation relations for creation and annihilation opera-
tors are similar to those at zero temperature

{
c(k, β), c†(p, β)

}
= δ3(k − p),

{
c̃(k, β), c̃†(p, β)

}
= δ3(k − p), (12)

and other anti-commutation relations are null.

For bosons with a†
p and ap being creation and annihilation

operators respectively, the Bogoliubov transformations are

ap = u′(β)ap(β) + v′(β)ã†
p(β), (13)

a†
p = u′(β)a†

p(β) + v′(β)ãp(β), (14)

ãp = u′(β)ãp(β) + v′(β)a†
p(β), (15)

ã†
p = u′(β)ã†

p(β) + v′(β)ap(β), (16)

where u′(β) = cosh θ(β) and v′(β) = sinh θ(β). Algebraic
rules for thermal operators are
[
a(k, β), a†(p, β)

]
= δ3(k − p),

[
ã(k, β), ã†(p, β)

]
= δ3(k − p), (17)

and other commutation relations are null.
It is important to note that, in this formalism the propaga-

tor of any particle is written in two parts: one describes the
flat space-time contribution and the other displays the ther-
mal and/or the topological effect. As an example, let’s write
the photon propagator at finite temperature which is used to
calculate the transition amplitude of the Bhabha scattering.

The photon propagator is defined as

i Dμν(x − y) = 〈0(β)|TAμ(x)Aν(y)|0(β)〉
= θ(tx − ty)〈0(β)|Aμ(x)Aν(y)|0(β)〉

+ θ(ty − tx )〈0(β)|Aν(y)Aμ(x)|0(β)〉,
where T is the time ordering operator, θ(tx − ty) is the step
function and Aμ(x), the free field solution, is given by

Aμ(x) =
∫

d3 p
√

2ωp(2π)3

∑

λ

εμ(p, λ)
(
ap,λe

−i pρ xρ + a†
p,λe

ipρ xρ
)

,

(18)

with εμ(p, λ) being the polarization vector and ωp =√
p2 + m2 is the photon dispersion relation.
The two point function in TFD is a thermal doublet, and

has 2 × 2 matrix structure
(
A1

μ

A2
μ

)
=

(
Aμ

Ã†
μ

)
. (19)

Then the photon propagator becomes

i Dab
μν(x − y) = θ(tx − ty)〈0(β)|Aa

μ(x)Ab
ν(y)|0(β)〉

+ θ(ty − tx )〈0(β)|Ab
ν(y)A

a
μ(x)|0(β)〉, (20)

where a, b = 1, 2 and μ, ν are tensor indices. Using that∑
λ εμ(p, λ)εν(p, λ) = ημν and after some calculations, the

photon propagator at finite temperature is

Dμν( p̃, β) = D(0)
μν ( p̃) + D(β)

μν ( p̃), (21)

123



703 Page 4 of 8 Eur. Phys. J. C (2020) 80 :703

Fig. 1 Feynman diagrams to Bhabha scattering

where D(0)
μν ( p̃) and D(β)

μν ( p̃) are zero and finite temperature
parts respectively. Explicitly

D(0)
μν ( p̃) = ημν

p̃2 τ,

D(β)
μν ( p̃) = −2π iδ( p̃2)

eβ p̃0 − 1

(
1 eβ p̃0/2

eβ p̃0/2 1

)
ημν, (22)

where τ =
(

1 0
0 −1

)
. More details about the propagator at

finite temperature are found in [24].
In the next section, the TFD formalism is used to calculate

the differential cross section at finite temperature for Bhabha
scattering in VSR.

4 Differential cross section for Bhabha scattering in
VSR at finite temperature

In this section, the differential cross section for the Bhabha
scattering in VSR at finite temperature is calculated. This
scattering process corresponds to e−(p1)e+(p2) → e−(q1)

e+(q2). The Feynman diagrams, that describe this scattering
process are given in Fig. 1.

To calculate the differential cross section of Bhabha scat-
tering in VSR, first the transition amplitude at finite temper-
ature is determined. It is defined as

M(β) = 〈 f, β|Ŝ(2)|i, β〉, (23)

with Ŝ(2) being the second order term of the Ŝ-matrix that is
given as

Ŝ =
∞∑

n=0

(−i)n

n!
∫

dx1dx2 . . . dxnT
[
ĤI (x1)ĤI (x2) . . . ĤI (xn)

]
,

(24)

where T is the time ordering operator and ĤI (x) = HI (x)−
H̃I (x) describes the interaction. The thermal states are

|i, β〉 = b†
p1

(β)d†
p2

(β)|0(β)〉,
〈 f, β| = 〈0(β)|b†

q1
(β)d†

q2
(β), (25)

with b†
p j (β) and d†

p j (β) being creation operators.
Considering only the physical part, which is the non-tilde

part, the transition amplitude becomes

M(β) = −1

2

∫
d4x d4y 〈 f, β|ψ̄(x)Vμψ(x)ψ̄(y)Vνψ(y)

Aμ(x)Aν(y)|i, β〉, (26)

where Vμ is the vertex given in Eq. (6).
Using the free field solution for the fermions field,

ψ(x) =
∑

r

∫
d3 p

(2π)3/2

√
me

Ep

[
br (p)ur (p)e

−i px

+ d†
r (p)vr (p)e

ipx
]

(27)

with ur (p) and vr (p) being Dirac spinors, the transition
amplitude for the t-channel and s-channel diagrams are cal-
culated.

The transition amplitude corresponding to the t-channel
diagram is

M(β)t = −Np
∑

r

∫
d3 p

(2π)3/2

∫
d4x d4y (u2 − v2)2

× ūr (p2)Vμ(p1, p2)ur (p1)v̄r (q1)Vν(q1, q2)vr (q2)

× ei(p2−p1)x e−i(q1−q2)y〈0(β)|T[Aμ(x)Aν(y)]|0(β)〉,
(28)

where

Np ≡
√

me

Ep1

√
me

Ep2

√
me

Eq1

√
me

Eq2

, (29)

∫
d3 p

(2π)3/2 ≡
∫

d3 p1

(2π)3/2

∫
d3 p2

(2π)3/2

∫
d3q1

(2π)3/2

∫
d3q2

(2π)3/2

(30)

and the Bogoliubov transformations, Eqs. (8) and (9), have
been used. Using that u(β) = cos θ(β) and v(β) = sin θ(β)

leads to (u2 − v2)2 = tanh2(
β|q0|

2 ). Then

M(β)t = −Np

∑

r

∫
d3 p

(2π)3/2

∫
d4x d4y tanh2

(
β|q0|

2

)

× ei(p2−p1)x e−i(q1−q2)y ūr (p2)Vμ(p1, p2)ur (p1)v̄r (q1)

×Vν(q1, q2)vr (q2)〈0(β)|T[Aμ(x)Aν(y)]|0(β)〉. (31)

Considering that the photon propagator at finite temperature
is defined as

〈0(β)|T[Aμ(x)Aν(y)]|0(β)〉 = i
∫

d4q

(2π)4 e
−iq(x−y)Dμν(q, β),

(32)

where Dμν(q, β) is given in Eq. (21), the transition amplitude
becomes
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M(β)t = −i Np

∑

r

∫
d3 p

(2π)3/2

∫
d4x d4y

∫
d4q

(2π)4

× e−iq(x−y)ei(p2−p1)x e−i(q1−q2)y tanh2
(

β|q0|
2

)

× ūr (p2)Vμ(p1, p2)ur (p1)Dμν(q, β)v̄r (q1)Vν(q1, q2)vr (q2).

(33)

Using the definition of the four-dimensional delta function,∫
d4x d4y e−i x(p1−p2+q)e−iy(q1−q2−q) = δ4(p1 − p2 + q)

δ4(q1 − q2 − q),

(34)

and carrying out the q integral leads to

M(β)t = −i Np
∑

r

∫
d3 p

(2π)3/2 δ4(p1 + q1 − p2 − q2)

× tanh2
(

β|(p1 − p2)0|
2

)
ūr (p2)Vμ(p1, p2)ur (p1)

× Dμν(p1 − p2, β)v̄r (q1)Vν(q1, q2)vr (q2), (35)

where |(p1 − p2)0| = |q0| = ω is the energy. The remain-
ing delta function and the p integral express overall four-
momentum conservation. By convention, the final result is
written as
M(β)t = −i Np

∑

r

ūr (p2)Vμ(p1, p2)ur (p1)

× Dμν(p1 − p2, β)v̄r (q1)Vν(q1, q2)vr (q2)

× tanh2
(

β|(p1 − p2)0|
2

)
. (36)

The transition amplitude for the s-channel diagram is given
as
M(β)s = i Np

∑

r

ūr (p2)Vμ(p1,−q1)vr (q2)

× Dμν(p1 + q1, β)v̄r (q1)Vν(−p2, q2)ur (p1)

× tanh2
(

β|(p1 + q1)0|
2

)
. (37)

In order to calculate the differential cross section, the main
quantity to be obtained is |iM(β)|2. Let’s compute it by
averaging over the spin of incoming and outgoing particles,
then
1

4

∑

spin

|iM(β)|2 = 1

4

∑

spin

|M(β)t |2 + 1

4

∑

spin

|M(β)s |2

+ 1

4

∑

spin

M(β)∗t M(β)s + 1

4

∑

spin

M(β)∗sM(β)t .

(38)

Using the completeness relations:
∑

r

ur (p1)ūr (p1) = /̃p1 + m,

∑

r

vr (p1)v̄r (p1) = /̃p1 − m, (39)

where the wiggle momentum is p̃μ = pμ − m2nμ

2(n·p) , and the
relation

v̄(p2)γαu(p1)ū(p1)γ
αv(p2) = tr

[
γαu(p1)ū(p1)γ

αv(p2)v̄(p2)
]
.

(40)

In addition the center of mass (CM) frame is considered. The
coordinates of CM are

p1 = (E,p), p2 = (E,−p),

q1 = (E,q) and q2 = (E,−q), (41)

where |p|2 = |q|2 = E2, p · q = E2 cos θ and s = (2E)2 =
E2
CM , we get |(p1 − p2)0| = |(p1 + q1)0| = ECM . Thus,

assuming that scattering process is calculated at the high
energy limit, that corresponds to take m2

e = 0, the squared
transition amplitudes become

∑

spin

|M(β)t |2 = e4N 2
p

16m4
e

tanh4
(

βECM

2

)
tr

[Vμ(q1, q2)γ

× q̃2Vα(q1, q2)γ · q̃1]tr[Vμ(p1, p2)γ · p̃1

×Vα(p1, p2)γ · p̃2
] [

1

( p̃1 − p̃2)4

+�(β)δ2( p̃1 − p̃2)

]
, (42)

∑

spin

|M(β)s |2 = e4N2
p

16m4
e

tanh4
(

βECM

2

)
tr[Vμ(−p2, q2)γ

× q̃2Vα(−p2, q2)(−γ · p̃2)]tr[Vμ(p1, −q1)γ

× p̃1Vα(p1, −q1)(−γ · q̃1)]
[

1

( p̃1 + q̃1)4

+�(β)δ2( p̃1 + q̃1)

]
, (43)

∑

spin

M(β)∗sM(β)t = −e4N 2
p

16m4
e

tr[Vμ(p1,−q1)γ · p̃2

×Vα(p1, p2)γ · p̃1Vμ(−p2, q2)γ

× q̃1Vα(q1, q2)γ · q̃2]
×

[ 1

( p̃1 + q̃1)2( p̃1 − p̃2)2

+ �1/2(β)iδ( p̃1 + q̃1)

( p̃1 − p̃2)2

− �1/2(β)iδ( p̃1 − p̃2)

( p̃1 + q̃1)2

+�(β)δ( p̃1 + q̃1)δ( p̃1 − p̃2)
]

× tanh4
(

βECM

2

)
(44)

and

∑

spin

M(β)∗t M(β)s = − e4N2
p

16m4
e

tr[Vμ(p1, p2)(−γ · q̃1)Vα
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× (p1, −q1)γ · p̃1Vμ(q1, q2)(−γ · p̃2)

×Vα(−p2, q2)γ · q̃2]
[ 1

( p̃1 − p̃2)2( p̃1 + q̃1)2

+ �1/2(β)iδ( p̃1 − p̃2)

( p̃1 + q̃1)2

− �1/2(β)iδ( p̃1 + q̃1)

( p̃1 − p̃2)2

+�(β)δ( p̃1 − p̃2)δ( p̃1 + q̃1)
]

× tanh4
(

βECM

2

)
, (45)

where

�(β) ≡ 4π2

(eβECM − 1)2

(
1 eβECM/2

eβECM/2 1

)2

. (46)

Then the total square transition amplitude becomes

1

4

∑

spin

|iM(β)|2 = e4

64E4 tanh4
(

βECM

2

) [ J1

( p̃1 − p̃2)4

+ J2

( p̃1 + q̃1)4 − J3

( p̃1 − p̃2)2( p̃1 + q̃1)2

+�(β)
(
J1δ2( p̃1 − p̃2) + J2δ2( p̃1 + q̃1)

−J3δ( p̃1 + q̃1)δ( p̃1 − p̃2))

]
, (47)

with

J1 = tr[Vμ(q1, q2)γ · q̃2Vα(q1, q2)γ · q̃1]
tr[Vμ(p1, p2)γ · p̃1Vα(p1, p2)γ · p̃2], (48)

J2 = tr[Vμ(−p2, q2)γ · q̃2Vα(−p2, q2)(−γ · p̃2)]
tr[Vμ(p1, −q1)γ · p̃1Vα(p1, −q1)(−γ · q̃1)], (49)

J3 = tr[Vμ(p1,−q1)γ · p̃2Vα(p1, p2)γ · p̃1Vμ(−p2, q2)γ

·q̃1Vα(q1, q2)γ · q̃2] + tr[Vμ(p1, p2)(−γ · q̃1)Vα

(p1, −q1)γ · p̃1Vμ(q1, q2)(−γ · p̃2)Vα(−p2, q2)γ · q̃2].
(50)

Performing the trace that involve the product of up to eight
gamma matrices, we get

J1 = 32(q̃2 · p̃2)(q̃1 · p̃1) + 32( p̃1 · q̃2)(q̃1 · p̃2)

+16m2Q1

[
(q̃2 · p̃2)(n · q̃1)(n · p̃1)

+(q̃2 · p̃1)(n · q̃1)(n · p̃2) − 2( p̃2 · p̃1)(n · q̃2)(n · q̃1)

+(q̃1 · p̃2)(n · q̃2)(n · p̃1) + (q̃1 · p̃1)(n · q̃2)(n · p̃2)

−2(q̃2 · q̃1)(n · p̃1)(n · p̃2)
]
, (51)

J2 = 32(q̃2 · q̃1)( p̃2 · p̃1) + 32( p̃1 · q̃2)(q̃1 · p̃2)

−16m2Q2

[
(q̃2 · q̃1)(n · p̃2)(n · p̃1)

+(q̃2 · p̃1)(n · q̃1)(n · p̃2) − 2(q̃1 · p̃1)(n · q̃2)(n · p̃2)

+(q̃1 · p̃2)(n · q̃2)(n · p̃1) + ( p̃2 · p̃1)(n · q̃2)(n · q̃1)

−2(q̃2 · p̃2)(n · q̃1)(n · p̃1)
]

(52)

and

J3 = −64(q̃1 · p̃2)(q̃2 · p̃1)

+16m2(Q1 + Q2)
[
−(n · p̃2)(n · q̃2)(q̃1 · p̃1)

+(n · p̃1)(n · p̃2)(q̃1 · q̃2) − (n · q̃1)(n · p̃1)(q̃2 · p̃2)

+(n · q̃1)(n · q̃2)( p̃2 · p̃1)
]
, (53)

with

Q1 = 1

(n · p̃1)(n · p̃2)
+ 1

(n · q̃1)(n · q̃2)
(54)

Q2 = 1

(n · p̃1)(n · q̃1)
+ 1

(n · p̃2)(n · q̃2)
. (55)

Note that corrections due to the VSR non-local effects have
been considered up to m2 order.

Using these results and the CM coordinates, the differ-
ential cross section for Bhabha scattering in VSR at finite
temperature, which is defined as
(
dσ

d�

)

β

= E2

16π2

1

4

∑

spins

|iM(β)|2, (56)

becomes,

(
dσ

d�

)

β

= tanh4
(

βECM

2

)[
e4(cos(2θ) + 7)2

256π2E2
CM (cos θ − 1)2

+χ2 e
4 (642 cos θ − 80 cos 2θ + 125 cos 3θ − 4 cos 4θ + cos 5θ − 172)

8192π2E2(1 − cos θ)3

]

+ 32E4�(β) tanh4
(

βECM

2

){[
cos(2θ) + 3 − 8χ2

]
δ2( p̃1 − p̃2)

+
[
(cos θ + 1)2 + 4 − 8χ2(cos θ + 1)

]
δ2( p̃1 + q̃1)

− 4 cos2 (θ/2)
(

cos θ + 1 + 4χ2
)

δ( p̃1 + q̃1)δ( p̃1 − p̃2)
}

(57)
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where χ = m
E is the parameter that controls the VSR

effects. It is important to note that the photon propagator
at finite temperature introduces product of delta functions
with identical arguments [25–28]. This problem is avoided
by working with the regularized form of delta-functions and
their derivatives [29]:

2π iδ(n)(x) =
(

− 1

x + iε

)n+1

−
(

− 1

x − iε

)n+1

. (58)

Results in Eq. (57), show that the cross section of Bhabha
scattering has contributions due to VSR effects and due to
finite temperature. In addition, the finite temperature effect
modifies both results, that is, the standard QED result and the
VSR results. Furthermore, these results at finite temperatures
are very important since the Lorentz violation is expected to
appear at very high energy and very high temperature.

An important note, in the limit T → 0 and m2 → 0, we
get
(
dσ

d�

)

QED
= e4(cos(2θ) + 7)2

256π2E2
CM (cos θ − 1)2

. (59)

It is the usual QED cross section of the Bhabha scattering.
In addition, it is interesting to observe that, the Bhabha

scattering is widely used to measure the luminosity. Concept
of luminosity can be considered for colliding beams, for fixed
targets and for Gaussian beams colliding head-on. In particle
physics experiments the energy available for the production
of new effects is the most important parameter. Large amount
of energy can only be provided with colliding beams where
little or no energy is lost in the center of mass motion. This is
specially important for rare events where little or very little
energy is lost. A study of rare events with a small production
cross section. Number of interactions lead to luminosity and
thus provides number of events per second depends on the
cross section and the luminosity.

The overall luminosity depends also on the factors
like crossing angle, collision offset, hourglass effect, non-
gaussian beam particles, non-zero dispersion at collision
point and integrated luminosity. In addition it depends on
optimization of integrated luminosity and space and time
structure of luminosity. There additional effects that play a
role in absolute measurement of profile measurement and
beam displacement.

For collision of two particles with mass m1 and m2, the
total center of mass energy may be expressed as (p1+ p2)

2 =
(E1 + E2)

2 − (p1 + p2)
2. This leads to different center of

mass energy that will be for energy as collider or for a fixed
target. This suggests that for colliding beams it is necessary
to have high center of mass energy.

Similarly the fixed target and colliding beam luminosity
are quite distinct. In this case the role of beams with distinct
luminosity the overall impact is quite different. It is important
to mention that there are additional complications for real

machines like crossing angle, hourglass effect and crossing
angles.

All this and other factors like integrated luminosity, space
and time structure of luminosity lead to the overall impact on
the over structure of the system. These factors play an impor-
tant role in the study of the Bhabha scattering in very spe-
cial relativity at finite temperature. These ideas are important
to fully understand the Lorentz-violating operators at finite
temperature on the cross section. Furthermore, for very small
scattering angles (θ � 1), the cross section of Bhabha scat-
tering is very big making this scattering a well suited pro-
cess for luminosity measurements. Therefore, constraints on
Lorentz-violating parameter can be obtained if the precision
of the measurements of luminosity for very small angle will
improve significantly. Although the study developed here
is completely theoretical, our results show that temperature
effects and experimental data for very small angle may con-
tribute to a new class of constraints on VSR parameter.

5 Conclusion

The Very Special Relativity has been considered. In this
theory laws of physics are not invariant under the whole
Poincaré group but rather under subgroups of the Poincaré
group. In this context a modified gauge symmetry is present
admitting a variety of new gauge invariant interactions. The
Poincaré subgroup is locally invariant under the symmetries
SI M(2) or HOM(2) and Lorentz. However, non-local terms
are constructed. Then these non-local terms are SI M(2) or
HOM(2) invariant, but break the Lorentz symmetry. Our
main objective is to study the Bhabha scattering in VSR
framework. The corrections due to VSR are obtained. In addi-
tion, corrections due to finite temperature in Bhabha scatter-
ing are calculated. The TFD formalism is used to introduce
finite temperature. Our results show that the usual differential
cross section of QED is changed due to VSR and tempera-
ture effects. Although the high energy experiments at low
temperatures, it is very interesting to investigate scattering
process at very high temperatures. This gives us a good esti-
mate of the importance of the Lorentz-violating operators at
finite temperature on the cross section.
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