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Abstract The low energy limit of QCD admits (crystals
of) superconducting Baryonic tubes at finite density. We
begin with the Maxwell-gauged Skyrme model in (3 + 1)-
dimensions (which is the low energy limit of QCD in the lead-
ing order of the large N expansion). We construct an ansatz
able to reduce the seven coupled field equations in a sector
of high Baryonic charge to just one linear Schrödinger-like
equation with an effective potential (which can be computed
explicitly) periodic in the two spatial directions orthogonal to
the axis of the tubes. The solutions represent ordered arrays
of Baryonic superconducting tubes as (most of) the Baryonic
charge and total energy is concentrated in the tube-shaped
regions. They carry a persistent current (which vanishes out-
side the tubes) even in the limit of vanishing U(1) gauge field:
such a current cannot be deformed continuously to zero as it
is tied to the topological charge. Then, we discuss the sub-
leading corrections in the ’t Hooft expansion to the Skyrme
model (called usually L6, L8 and so on). Remarkably, the
very same ansatz allows to construct analytically these crys-
tals of superconducting Baryonic tubes at any order in the
’t Hooft expansion. Thus, no matter how many subleading
terms are included, these ordered arrays of gauged solitons
are described by the same ansatz and keep their main prop-
erties manifesting a universal character. On the other hand,
the subleading terms can affect the stability properties of the
configurations setting lower bounds on the allowed Baryon
density.
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1 Introduction

Exact analytic results on the phase diagram of the low energy
limit of QCD at finite density and low temperatures are
extremely rare (it is often implicitly assumed that they are
out of reach of the available techniques). This fact, together
with the non-perturbative nature of low energy QCD, is one
of the main reasons why it is far from easy to have access to
the very complex and interesting structure of the phase dia-
gram (see [1–5], and references therein) with analytic tech-
niques.

One of the most intriguing phenomena that arises in the
QCD phase diagram at very low temperatures and finite
Baryon density, is the appearance of ordered structures like
crystals of solitons (as it happens, for instance, in condensed
matter theory with the Larkin–Ovchinnikov–Fulde–Ferrell
phase [6–8]). From the numerical and phenomenological
point of view, ordered structures are expected to appear
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in the low energy limit of QCD (see, for instance, [9–38],
and references therein). The available analytic results have
been found in (1 + 1)-dimensional toy models and all of
them suggest the appearance of ordered structures1 of soli-
tons.

Even less is known when the electromagnetic interactions
arising within these ordered structures are turned on. Analytic
examples of crystals of gauged solitons with high topolog-
ical charge in (3 + 1)-dimensions in the low energy limit
of QCD would reveal important physical aspects of these
ordered phases. The only available analytical examples2 are
derived either in lower dimensions and/or when some extra
symmetries (such as SUSY) are included (see [41–49], and
references therein).

We search for analytic solutions (despite the fact that these
questions can be addressed numerically, as the previous refer-
ences show) because a systematic tool to construct analytic
crystals of gauged solitons can greatly enlarge our under-
standing of the low energy limit of QCD: the analytic tools
developed here below disclose novel and unexpected phe-
nomena.

The gauged Skyrme model [50–53], which describes the
low energy limit of QCD minimally coupled with Maxwell
theory at the leading order in the ’t Hooft expansion [54–
59] (for two detailed reviews see [60] and [61]), will be
our starting point. Using the methods introduced in [62–
71] and [72] we will construct analytic gauged multi-soliton
solutions at finite Baryon density with crystalline struc-
ture and high topological charge. These crystals describe
ordered arrays of superconducting tubes in which (most of)
the topological charge and total energy are concentrated
within tube-shaped regions.3 They carry a persistent cur-
rent (which vanishes outside the tubes) which cannot be
deformed continuously to zero as it is tied to the topolog-
ical charge.

These regular superconducting tubes can be considered
as explicit analytic examples of the superconducting strings
introduced in [76]. The spectacular observable effects that
such objects could have (see [77–88], and references therein)
together with the fact that these objects can be constructed
using natural ingredients generate a huge interest both theo-

1 The results in [16–22] clearly show that, quite generically in (1+1)-
dimensions, there is a phase transition at a critical temperature from a
massless phase to a broken phase with a non-homogeneous condensate
as it also happens in superconductors [6–8].
2 See [39,40] for the construction of (quasi-)periodic non-trivial solu-
tions in one spatial direction (Skyrme chains) using approximate ana-
lytical methods.
3 In [73,74] and [75], numerical string solutions in the Skyrme model
with mass term have been constructed. However, those configurations
are classically unstable because they have a zero topological density
(then are expected to decay into Pions). The new solutions constructed
in the present paper are topologically protected and therefore can not
decay in those of [73–75].

retically and phenomenologically. However, until now, there
are very few explicit analytic (3 + 1)-dimensional examples
built using only ingredients arising from the standard model.
In fact, the present superconducting tubes appear in the low
energy limit of QCD minimally coupled with Maxwell the-
ory.

Then we move to the subleading correction to the Skyrme
model in the ’t Hooft expansion (see [89–94] and references
therein). Although one could believe that such complicated
corrections could destroy the nice analytic properties of the
crystals of superconductive Baryonic tubes, we will show
that no matter how many subleading terms are included,
these ordered arrays of gauged solitons are described by the
very same ansatz and keep unchanged their main properties
manifesting a clear universal character. On the other hand,
the stability properties of these crystals of superconducting
Baryonic tubes can be affected in a non-trivial way by the
subleading terms in the ’t Hooft expansion.

The paper is organized as follows. In the second section
the general field equations will be derived and the definition
of topological charge will be introduced. In the third section,
the ansatz which allows to solve analytically the field equa-
tions (no matter how many subleading terms are included) in
the ungauged case in a sector with high topological charge
will be discussed. Then, it will be explained how this ansatz
can be generalized to the gauged case with the inclusion of
the minimal coupling with the Maxwell field. The physical
properties of these gauged crystals and their universal char-
acter will be analyzed. We will also study how the subleading
terms can affect the stability properties of the configurations
setting lower bounds on the allowed Baryon density. In the
last sections, some conclusions and perspectives will be pre-
sented.

2 The gauged generalized Skyrme model

The starting point is the action of the U(1) gauged Skyrme
model in four dimensions, which corresponds to the low
energy limit of QCD at leading order in the ’t Hooft expan-
sion:

I =
∫

d4v

4

[
KTr

(
LμLμ + λ

8
GμνG

μν

)

− (2m)2 Tr
(
U +U−1

)
− FμνF

μν + Lcorr

]
, (1)

Lμ = U−1DμU, Gμν = [Lμ, Lν],
Dμ = ∇μ + Aμ [t3, . ] , d4v = d4x

√−g, (2)

U ∈ SU(2), Lμ = L j
μt j , t j = iσ j ,

Fμν = ∂μAν − ∂ν Aμ, (3)
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where K and λ are the Skyrme couplings, d4v is the
four-dimensional volume element, g is the metric deter-
minant, m is the Pions mass, Aμ is the gauge potential,
∇μ is the partial derivative and σi are the Pauli matri-
ces. In Eq. (1), Lcorr represents the possible subleading
corrections to the Skyrme model which can be computed,
in principle, using either Chiral Perturbation Theory (see
[95] and references therein) or the large N expansion [96–
98]. The expected corrections have the following generic
form

L6 = c6

96
Tr

[
Gμ

νGν
ρGρ

μ
]
,

L8 = − c8

256

(
Tr

[
Gμ

νGν
ρGρ

σGσ
μ
]

− Tr
[{Gμ

ν,Gρ
σ }Gν

ρGσ
μ
] )

, (4)

and so on [89–91], where the cp (p ≥ 6) are subleading with
respect to K and λ.

A natural question arises here: inwhich sense these correc-
tion terms are subleading with respect to the original Skyrme
model? First of all, we would like to remark that this question
does not affect directly the present construction since the ana-
lytic method presented here allows to construct exact solu-
tions no matter how many “subleading terms” are included
(as it will be shown in the following sections). However, from
the physical point of view, the above question is very inter-
esting. In principle, as remarked in [92,93] and [94], one
should expect generically higher-derivative terms of the chi-
ral field U in the low-energy limit of QCD. Due to the fact
that each term is larger in canonical dimension, dimensional
constants to the same power minus four must go with each of
them. These constants are expected to be proportional to the
mass scale of the degrees of freedom integrated out of the
underlying theory. Therefore, as long as the energy scales
being probed are much smaller than the lowest mass scale of
a state that was integrated out, the higher-derivative expan-
sion may make sense and thus converge. Another intuitive
argument is due to ‘t Hooft and Witten (in the classic refer-
ences [54,55,96,97] and [98]) which argued that in the large-
N limit, QCD becomes equivalent to an effective field theory
of mesons and which the higher order terms with respect to
the non-linear sigma model (NLSM henceforth) action are
accompanied by inverse power of N (where here N is the
number of colors).

The analysis here below will clarify that no matter how
many further subleading terms are included, the pattern
will never change. In particular, using precisely the same
ansatz discussed in the next section for the SU(2) -valued
Skyrmionic field, the field equations for the generalized
Skyrme model with all the corrections included always

reduce to a first order integrable4 ordinary differential equa-
tion.

Moreover, if the minimal coupling with Maxwell theory
is included, the gauged version of the field equations for the
SU(2)-valued Skyrmionic field remains explicitly integrable
(namely, despite the minimal coupling with the Maxwell
field, the soliton profile can still be determined analytically)
while the four Maxwell equations with the U(1) current aris-
ing from the minimal coupling with the generalized Skyrme
model (with all the subleading terms included) reduce to a
single linear Schrödinger-like equation for the relevant com-
ponent of the Maxwell potential in which the effective poten-
tial can be computed explicitly in terms of the solitons profile.

It is worth to emphasize that this results is quite remark-
able: not only the three non-linear SU(2) coupled field equa-
tions in the ungauged case (including all the subleading cor-
rections to the Skyrme model) can always be reduced to a
single integrable first order ODE in a sector with arbitrary
Baryonic charge in (3 + 1)-dimensions. Moreover, in the
gauged case minimally coupled with the Maxwell theory, the
fully coupled seven non-linear field equations (three from the
generalized Skyrme model plus the four Maxwell equations
with the corresponding current) are reduced to the very same
integrable ODE for the profile plus a linear Schrödinger-like
equation for the relevant component of the Maxwell field in
which the effective potential can be computed explicitly in
terms of the solitons profile itself. Without such a reduction,
even the numerical analysis of the electromagnetic proper-
ties of these (3 + 1)-dimensional crystals of superconducting
tubes would be a really hard task (which up to now, has not
been completed to the best of our knowledge). While, with
the present approach, the numerical task to analyze the elec-
tromagnetic properties of these crystal of superconducting
tubes is reduced to a linear Schrödinger equation with an
explicitly known potential.

2.1 Field equations

The field equations of the model are obtained varying the
action in Eq. (1) w.r.t. the U field and the Maxwell potential
Aμ. To perform this derivation it is useful to keep in mind
the following relations

δU Lμ = [Lμ,U−1δU ] + Dμ(U−1δU ),

δUGμν = Dν[Lμ,U−1δU ] − Dμ[Lν,U
−1δU ],

4 Here “integrable” has the usual meaning: an integrable differential
equation is an equation which can be reduced to a quadrature. This
important property allows to reduce the computation of the total energy
(as well as of other relevant physical properties) to definite integrals of
elementary functions.
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where δU denotes variation w.r.t the U field, and

δ

δAμ

(
Tr(LνL

ν)

)
= 2Tr(ÔLμ),

δ

δAμ

(
Tr(GαβG

αβ)

)
= 4Tr

(
Ô[Lν,Gμν]

)
,

δ

δAμ

(
Tr(Gα

νGν
ρGρ

α)

)
= 3Tr

(
Ô[Lα, [Gμν,Gα

ν]]
)

,

δ

δAμ

(
Tr(Gα

νGν
ρGρ

σGσ
α)

)

= 4Tr

(
Ô[Lα,Gα

νGν
ρGρμ − Gμ

νGν
ρGρα]

)
,

δ

δAμ

(
Tr({Gα

ν,Gρ
σ }Gν

ρGσ
α)

)

= 4Tr

(
Ô[{Gν

ρ, {Gμ
ν,Gρ

σ }}, Lσ ]
)

.

Here we have used

δGβ
α

δAμ
= δμβ [Ô, Lα] + δα

μ[Lβ, Ô],

and we have defined

δLν

δAμ
= δμν Ô, Ô = U−1[t3,U ].

From the above, the field equations of the gauged generalized
Skyrme model turns out to be

K

2

(
DμLμ + λ

4
Dμ[Lν,Gμν]

)
+2m2

(
U −U−1

)

+ 3c6[Lμ, Dν[Gρν,Gρ
μ]]

+ 4c8

[
Lμ, Dν

(
GνρGρσG

σμ + GμρGρσG
νσ

+ {Gρσ , {Gμρ,Gνσ }}
)]

= 0, (5)

together with

∇μF
μν = J ν, (6)

where the current Jμ is given by

Jμ = K

2
Tr

[
Ô

(
Lμ + λ

4
[Lν,Gμν]

)]

+ c6

32
Tr

[
Ô

(
[Lα, [Gμν,Gα

ν]]
)]

− c8

64
Tr

[
Ô

(
[Lα,Gα

νGν
ρGρμ + GρμGν

ρGα
ν

+ {Gνρ, {Gμν,Gρα}}]
)]

. (7)

2.2 Energy–momentum tensor and topological charge

Using the standard definition

Tμν = −2
∂L

∂gμν
+ gμνL, (8)

we can compute the energy-momentum tensor of the theory
under consideration

Tμν = T Sk
μν + Tmass

μν + T (6)
μν + T (8)

μν + TU(1)
μν , (9)

with TU(1)
μν the energy-momentum tensor of the Maxwell field

TU(1)
μν = FμαF

α
ν − 1

4
gμνFαβF

αβ.

According to Eq. (8), a direct computation reveals that

Tmass
μν = −m2gμνTr(U +U−1),

T Sk
μν = −K

2
Tr

(
LμLν − 1

2
gμνLαL

α

+ λ

4
(gαβGμαGνβ − 1

4
gμνGαβG

αβ)

)
,

T (6)
μν = − c6

16
Tr

(
gαγ gβρGμαGνβGγρ − 1

6
gμνGα

βGβ
ρGρ

α

)
,

T (8)
μν = c8

32
Tr

(
gαρgβγ gδλGαμGνβGγ δGλρ

+ 1

2
{Gμα,Gλρ}{Gβν,Gγ δ}gαγ gβρgδλ

− 1

8
gμν(Gα

βGβ
ρGρ

σGσ
α − {Gα

β,Gρ
σ }Gβ

ρGσ
α)

)
.

The topological charge of the gauged Skyrme model is
given by [53,99]:

B = 1

24π2

∫
�

ρB, (10)

ρB = εi jkTr

[(
U−1∂iU

) (
U−1∂ jU

) (
U−1∂kU

)

− ∂i

[
3A j t3

(
U−1∂kU + (∂kU )U−1

)] ]
. (11)

Note that the second term in Eq. (10), the Callan-Witten term,
guarantees both the conservation and the gauge invariance of
the topological charge. When � is space-like, B is the Baryon
charge of the configuration.
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3 Crystals of superconducting Baryonic tubes

In this section we will show that the gauged generalized
Skyrme model admits analytical solutions describing crystals
of superconducting Baryonic tubes at finite density.

3.1 The ansatz

Finite density effects can be accounted for using the flat met-
ric defined below:

ds2 = −dt2 + L2
(
dr2 + dθ2 + dφ2

)
, (12)

where 4π3L3 is the volume of the box in which the gauged
solitons are living. The adimensional coordinates have the
ranges 0 ≤ r ≤ 2π , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π .

For the Skyrme field we use the standard SU(2) parame-
terization

U±1(xμ) = cos (α) 12 ± sin (α) ni ti , nini = 1, (13)

n1 = sin � cos �, n2 = sin � sin �, n3 = cos �. (14)

From Eqs. (13) and (14) the topological charge density reads

ρB = −12(sin2 α sin �)dα ∧ d� ∧ d�,

and therefore, as we want to consider only topologically non-
trivial configurations, we must demand that

dα ∧ d� ∧ d� �= 0. (15)

Now, the problem is to find a good ansatz which respect the
above condition and simplify as much as possible the field
equations. A close look at Eq. ( 5) (see Appendix II for its
explicit form in terms of α, � and �) reveals that a good set
of conditions is

∇μ�∇μα = ∇μα∇μ� = ∇μ�∇μ�

= ∇μ�∇μ� = 0. (16)

A suitable choice that satisfies Eqs. (15) and (16) is the fol-
lowing [70,71]:

α = α (r) , � = qθ, � = p

(
t

L
− φ

)
,

q = 2v + 1, p, v ∈ N, p �= 0. (17)

Additionally some other useful relations are satisfied by the
above ansatz, namely

�� = �� = 0. (18)

3.2 Solving the system analytically

The identities in Eqs. (16) and (18) satisfied by the ansatz
in Eq. (17) greatly simplify the field equations keeping alive
the topological charge. This can be seen as follows.

Firstly, a direct inspection of the field equations reveals
that all the terms which involve sin2 � are always multiplied
by ∇μ�∇μ� so that all such terms disappear.

Secondly, since � is a linear function, in all the terms in
the field equations ∇μ�∇μ� becomes just a constant.

Thirdly, since the gradients of α, � and � are mutually
orthogonal (and, moreover, ∇μ� is a light-like vector), all
the terms in the field equations which involve ∇μ�∇μα,
∇μα∇μ�, ∇μ�∇μ� and ∇μ�∇μ� vanish.

Fourthly, the above three properties together with Eq. (18 )
ensures that two of the three field equations of the generalized
Skyrme model are identically satisfied (see Appendix I and
Appendix II).

It is also worth to emphasize that the four properties listed
here above are true no matter how many subleading terms
(L10, L12 and so on) are included in the generalized Skyrme
action. For the above reasons, the three non-linear coupled
field equations of the generalized Skyrme model in Eq. (5)
with the ansatz in Eq. (17) are reduced to the following single
ODE for the profile5 α:

α′′ − q2

2
sin(2α) + 4m2L2

K
sin(α)

+ λq2

L2 sin(α)[cos(α)α′2 + sin(α)α′′]

− 3c8q4

K L6 sin3(α)[cos(α)α′2 + sin(α)α′′]α′2 = 0. (19)

This is already a quite interesting fact in itself. Moreover,
the above analysis clearly shows that it will remain true even
including further subleading term. What is really remarkable
is that Eq. (19) can always be reduced to a first order ODE:{

Y (α)
(
α′)2 + W (α) + E0

}′ = 0,

Y (α) = 1 + λq2

L2 sin2(α) − 3c8q4

2K L6 sin4(α)α′2,

W (α) = q2

2
cos(2α) − 8m2L2

K
cos(α), (20)

which is explicitly solvable in terms of generalized Elliptic
Integrals [100–102]. Here E0 is a positive integration con-
stant and X ′ = dX

dr . Therefore Eq. (20) implies that, with the
ansatz defined in Eq. (17), the field equations are integrable
and reducible to the following quadrature6:

5 It is interesting to note that the terms in the field equations arising
from L6 in the generalized Skyrme model vanish identically due to the
properties of the ansatz in Eqs. (16), (17) and ( 18). On the other hand,
such a term can affect the stability properties of the solutions, as we
will see below.
6 The identities in Eqs. (16) and (18) satisfied by the ansatz in Eq. (17)
ensures that (even if the subleading corrections L10, L12 and so on are
included) the ansatz in Eq. (17) will always reduce the three coupled
non-linear field equations to a single first order ODE for the profile α.

123



697 Page 6 of 18 Eur. Phys. J. C (2020) 80 :697

dα

χ(α, E0)
= ±dr, (21)

χ(α, E0) = ±

√√√√K L6 csc4 (α)

3c8q4

(
1 + q2λ

L2 sin2 (α) +
√

6c8q4

K L6 (W + E0) sin4 (α) +
(

1 + q2λ

L2 sin2 (α)

)2)
, (22)

with E0 ≥ −W − K L6

3c8q4 sin4(α)
(1+ q2λ

L2 sin2(α))2, for c8 > 0.

It is also worth to emphasize that the integration constant
E0 can be chosen in such a way that, first of all, α′ never
changes sign (which is a necessary condition for stability)
and, secondly, the topological charge is B = np (as we will
show in the following subsection).

Quite surprisingly, these very intriguing properties of the
ansatz are not destroyed by the inclusion of the minimal cou-
pling with Maxwell field. The coupling of the generalized
Skyrme model with the Maxwell theory is introduced replac-
ing the partial derivatives acting on the SU(2)-valued scalar
field U with the following covariant derivative

∇μU → DμU = ∇μU + Aμ[t3,U ]. (23)

A straightforward computation shows that the above replace-
ment in Eq. (23) is completely equivalent to the replacement
here below (in terms of α, � and �)

∇μα → ∇μα, ∇μ� → ∇μ�,

∇μ� → Dμ� = ∇μ� − 2Aμ�. (24)

It is worth to emphasize that Dμ� determines the “direction”
of the electromagnetic current (as it will be discussed below).

Obviously, when the derivative is replaced with the
Maxwell covariant derivative (as defined in Eq. (23) or, equiv-
alently, in Eq. (24)), in the field equations of the gauged gen-
eralized Skyrme model many new terms will appear which
couple the SU(2) degrees of freedom with the U(1) gauge
potential Aμ. Thus, one may ask:

Which is the best choice of the ansatz for the gauge poten-
tial Aμ which keeps asmuch as possible the very nice proper-
ties of the ansatz of the SU(2)-valued scalar field in Eqs. (15),
(16) and (18) which allowed the complete analytic solutions
in the previous case?

In order to achieve this goal, it is enough to demand

∇μAμ = 0, AμA
μ = 0, Aμ∇μ� = 0, (25)

Aμ∇μα = 0, Aμ∇μ� = 0. (26)

The above conditions determine that the Maxwell potential
Aμ must be of the form [70,71]:

Aμ = (u(r, θ), 0, 0,−Lu(r, θ)). (27)

From the expressions of Lμ (see Appendix I) one can see
that, despite the explicit presence of Aμ in the U(1)-covariant
derivative, the three field equations of the gauged generalized
Skyrme model still reduce to the Eq. (19). The reason is that
all the potential terms which, in principle, could couple the
SU(2)-valued scalar field U with Aμ in the field equations
actually vanish due to the identities in Eqs. (16), (18), (25)
and (26) satisfied by the choice of our ansatz (that is why we
have chosen the ansatz in that way). One can verify easily
that the four Maxwell equations are reduced to the following
single PDE:

∂2
r u + ∂2

θ u + 2

L2 sin2(α) sin2(qθ)�(α)
(

2u − p

L

)
= 0,

(28)

where �(α) is given by

�(α) = K L2(L2 + q2λ sin2(α) + λα′2)

+ q2 sin2(α)α′2
[

2c6 + c8

L2 (q2 sin2(α) + α′2)
]
.

(29)

Note also that Eq. (28) can be written as a periodic two-
dimensional Schrödinger equation

�� + V� = 0, � = ∂2
r + ∂2

θ , (30)

� = 2L

p
u − 1, V = 4

L2 sin2(α) sin2(qθ)�(α). (31)

Therefore, with the ansatz defined in Eqs. (12), (17) and
(27) the seven coupled field equations of the gauged gen-
eralized Skyrme model minimally coupled with Maxwell
theory reduce consistently to just one linear Schrödinger-
like equation in which the effective two-dimensional periodic
potential can be computed explicitly. Also, the integrability
of the field equations is not spoiled by any of the sublead-
ing corrections parameterized by the cp. Moreover, due to
the presence of quadratic and higher order terms in Aμ in the
gauged generalized Skyrme model which couple Aμ with the
SU(2)-valued scalar field U (as it happens in the Ginzburg-
Landau description of superconductors), even when Aμ = 0,
the current does not vanish. Such a residual current cannot be
deformed continuously to zero, and the reason is that the only
way to “kill” it would also kill the topological charge but, as
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it is well known, there is no continuous transformation which
can change the topological charge. We will return to this very
important issue when we address the superconducting nature
of the Baryonic tubes.

3.3 Boundary conditions and Baryonic charge

From Eq. (10) we can compute the energy density of the
configurations presented above, which turns out to be

ρtot
B = ρB + ρMaxwell

B ,

ρB = −12pq sin(qθ) sin2(α)∂rα,

ρMaxwell
B = 12L

[(
2q sin(qθ) sin2(α)u − cos(qθ)∂θu

)

∂rα − q sin(α) cos(α) sin(qθ)∂r u

]
.

The above expression can be written conveniently as

ρtot
B = 3q

∂

∂r

×
(
p sin(qθ)

(
sin(2α) − 2α

) − 2L sin(qθ)u sin(2α)
)

− ∂

∂θ

(
12Lα′u cos(qθ)

)
,

and one can check that the topological charge becomes

B = −np − L

π

∫ 2π

0
dr α′((−1)q u(r, π) − u(r, 0)

)
.

Assuming the following boundary condition for u and α

u(r, π) = (−1)q u(r, 0), α (2π) − α (0) = nπ, (32)

and taking into account that q is an odd integer, the topolog-
ical charge becomes

B = −np.

It is worth to stress here that (unlike what happens in the
case of a single Skyrmion in a flat space without boundaries,
when the boundary conditions are just dictated by the condi-
tion to have finite energy) when finite density/volume effects
are taken into account the choice of the boundary conditions
is not unique anymore. A very important requirement that
any reasonable choice of boundary conditions must satisfy is
that the integral of the topological density (which, of course,
by definition is the topological charge itself) over the volume
occupied by the solutions must be an integer. If this condition
is not satisfied, the configurations would not be well defined.
Hence, the boundary conditions should be fixed once and for
all within the class satisfying the requirement described here
above: our choice is the simplest one satisfying it. Now one
can note that, according to Eqs. (21) and (22), the integration

constant E0 is fixed in terms of n through the relation

∫ nπ

0

{
Y (α)

[E0 − W (α)]

}1/2

dα = ±2π. (33)

It is easy to see that the above equation for E0 always has
a real solution as the integrand interpolates from very small
absolute values (when E0 is very large in absolute value) to
very large (when E0 is such that the denominator can have
zeros). Hence, one can always find values of E0 able to satisfy
Eq. (33).

3.4 Baryonic crystals at finite density and its
superconducting nature

From Eq. (9) one can compute the energy density E of the
configurations defined in Eqs. (12), (17) and (27), and this
turns out to be

E = 4m2 cos (α) + K

2L2 T̃
Sk
00 + c6

2q2

L6 T̃ (6)
00

+c8
q2

L8 sin4 (α)T̃ (8)
00 + T̃U(1)

00 , (34)

where

T̃ Sk
00 = α′2 + 2 sin2 (α) sin2(qθ)(p − 2Lu)2 + q2 sin2(α)

+ λ

L2 sin2 (α)

×
[
(q2 + 2 sin2(qθ)(p − 2Lu)2)α′2

+ 2q2 sin2(qθ)(p − 2Lu)2
]

,

T̃ (6)
00 = sin4 (α) sin2(qθ)(p − 2Lu)2α′2,

T̃ (8)
00 = (α′2 + sin2 (α))(p − 2Lu)2 sin2(qθ)α′2 − q2

4
α′4,

T̃U(1)
00 = 1

L2

(
(∂r u)2 + (∂θu)2

)
.

It is interesting to note that, despite the fact that the term
L6 does not contribute to the field equations (as it has
been already emphasized), it does contribute to the energy-
momentum tensor. In order to have a positive definite energy
density a necessary condition is c6 ≥ 0.

On the other hand, the U(1) current in Eq. (7), in the ansatz
defined by Eqs. (12), (17) and (27), is

Jμ = 2

L4 sin2 α sin2(qθ)�(α)(∂μ� − 2Aμ), (35)

with �(α) defined in Eq. (29). From the expression of the
current in Eq. (35) (see Appendix I for the explicit form of
the components of the current) the following observations
are important.
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1. The current does not vanish even when the electromag-
netic potential vanishes (Aμ = 0).

2. Such a “left over”

J (0)
μ = Jμ

∣∣
Aμ=0 = 2

L4 sin2(α) sin2(qθ)�(α)∂μ�,

is maximal where the energy density is maximal and vanishes
rapidly far from the peaks as the plots show (see Figs. 1 and 2).

3. J(0)μ cannot be turned off continuously. One can try
to eliminate J(0)μ either deforming α and/or θ to integer
multiples of π (but this is impossible as such a deformation
would kill the topological charge as well) or deforming � to
a constant (but also this deformation cannot be achieved for
the same reason). Note also that, as it happens in [76], � is
defined modulo 2π (as the SU(2) valued field U depends on
cos � and sin � rather than on � itself). This implies that
J(0)μ defined in Eq. (35) is a superconducting current sup-
ported by the present gauged tubes. Moreover, these prop-
erties are not spoiled by any of the higher order corrections,
parameterized by cp.

The plots of the energy density and the current clarify the
physical interpretation of the present multi-solitonic config-
urations. In Figs. 1 and 2 we have chosen K = 2, λ = 1,
c6 = c8 = 1

5 , m = 0 and q = p = 1. The components of
the electric and magnetic fields can be also computed and are
given by

Er = −∂r u, Eθ = −∂θu, Eφ = 0,

Br = 1

L3 ∂θu, Bθ = − 1

L3 ∂r u, Bφ = 0.

3.5 About the existence of exact crystals and the
universality of the ansatz

In the previous sections we have shown that the low energy
limit of QCD supports the existence of crystals of supercon-
ducting Baryonic tubes. Of course, this result is very techni-
cal in nature and, a priori, it is not clear whether or not one
could have expected the appearance (in the low energy limit
of QCD) of topological defects supporting superconducting
currents. Here we will give an intuitive argument which jus-
tifies why one should have expected the existence of such
defects.

The first necessary (but, in general, not sufficient) condi-
tion that must be satisfied in order to support the existence
of superconductive currents in a relativistic context is the
existence of a massless excitation which can be coupled con-
sistently to a U(1) gauge field (see the pioneering paper [76]).

According to Eqs. (13) and (14) the SU(2) valued Skyrme
field U describes the dynamical evolution of three scalar
degrees of freedom α, � and � which are coupled through the
non-linear kinetic terms typical of Skyrme like models (see
Eq. (50) which is the explicit expression of the Skyrme action

in terms of α, � and �: of course such action is equivalent to
the usual one written implicitly in terms of the SU(2) valued
field U ). This fact hides a little bit which is the “best candi-
date” to carry a superconductive current since our intuition
is built on models where the interactions appear in potential
terms (like in the Higgs model or in the Ginzburg-Landau
model) and not in “generalized kinetic terms” as in the present
case. So, the question is: how can we decide a priori which
whether or not there is an excitation able to carry a persistent
current? In other words, which one of the three degrees of
freedom α, � and � associated to the SU(2) valued scalar
fieldU can be a carrier of a superconductive current? In what
follows we will detail the intuitive arguments that lead us to
consider � as the most natural choice.

To illustrate our argument, let us first consider the simpler
and well known case of two scalar fields � i , with i = 1, 2,
interacting with a quartic potential in a SO(2) invariant way,

L = ∂μ�i∂
μ� i + λ(�i�

i − v2)2. (36)

In order to disclose which degree of freedom is a natural
candidate to carry a chiral current, we can write

�1 = R(xμ) sin(χ(xμ)), �2 = R(xμ) cos(χ(xμ)),

then, Eq. (36) becomes

L = ∂μR∂μR + R2∂μχ∂μχ + λ(R2 − v2)2. (37)

From Eq. (37) it is clear that R can not be chiral field
because of the presence of a non-trivial potential term that
only depends on R and generates a natural mass scale in
the dynamics of R (there should be no characteristic mass
scale in a superconducting current). On the other hand, χ

(which represents a phase and so is defined only modulo 2π )
describes excitations along the valley of the potential, and,
consequently, is a more suitable candidate to carry a super-
conductive current. Of course, all of this is well known in the
analysis of the Higgs and Goldstone modes, but this short
review helps to identify the correct chiral field in our case in
which there is no potential to look at (as the interactions hap-
pen in non-linear kinetic-like terms). Moreover, the above
Lagrangian can also be naturally coupled to a U(1) gauge
field as follows:

LU(1) = ∂μR∂μR + R2 (
∂μχ − eAμ

) (
∂μχ − eAμ

)
+ λ(R2 − v2)2 − FμνF

μν. (38)

It is easy to see that the U(1) current Jμ arising from the
above action is proportional to Jμ ∼ (

∂μχ − eAμ

)
. These

are part of the main ingredients of [76] to build topologi-
cal defects supporting superconducting currents. Hence, the
fingerprints to identify the degree of freedom (call it for con-
venience �∗) suitable to carry the superconducting current
are, firstly, that such a degree of freedom �∗ should only
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Fig. 1 From left to right we can see the energy density E , the magnetic field, the electric field and the current Jμ for a configuration with Baryon
charge B = 1. The electric and magnetic fields vanish at the peaks of the energy density while the current takes its maximum value
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Fig. 2 From left to right, crystals of superconducting strings with
B = 2 and B = 4, respectively. The current is concentrated in the
tube-shaped regions defined where (most of) the E is contained, and

vanishes outside the tubes. The maximum values of E and the current
coincide in the lattice, which is periodic in r , θ and perpendicular to the
φ direction, along which the strings exist

appear with a kinetic term in the full action of the theory
(as χ in Eq. (37) here above) and without any other explicit
non-linear term involving �∗ itself7. Secondly, the coupling
of the theory with a U(1) gauge theory should only affect the
kinetic term of the field �∗ . Clearly, the above requirements
allow to identify χ as the field �∗ candidate to be a carrier
of a superconducting current in the above example.

What happens in the present case? Obviously, in the
Skyrme case there is no interaction potential which is respon-
sible for the interactions term: in all the Skyrme-like models
the non-linear behavior is related with generalized kinetic
terms. Nevertheless, as can be seen in Eq. (50), the α and �

fields have explicit non-linear interaction terms, all of them
proportional to sin2 α and/or sin2 �. Hence (although in the
present case there is no potential which clearly allows to iden-
tify the “proper valleys and Goldstone modes”), it is clear
that neither α nor � can be the analogue of χ in the previous
example. The reason is that if one sets α to a generic con-
stant value � will still have non-linear interaction terms and
viceversa if one sets � to a generic constant value α will still

7 Thus, when one set to constant values all the other degrees of freedom
of the full action (but �∗ itself) then �∗ behaves as a massless field.
Indeed, this is the case for the field χ in the above example.

have non-linear interaction terms8. Consequently, the fields
α and � are rather similar to the field R than to the field χ in
the previous example. The field � on the other hand, has pre-
cisely the same characteristics as the field χ in the previous
example: it is only defined modulo 2π (sinceU depends on �

only through sin � and cos �) and moreover it appears in the
action only with the corresponding kinetic term. Thus, if you
set the other fields α and � to generic constant values, then
the field � can behave as a chiral massless field. Thus, a pri-
ori, one should have expected that also in the (generalized)
Skyrme model superconducting Baryonic tubes should be
present. Moreover, the minimal coupling of the (generalized)
Skyrme model(s) with the Maxwell theory is defined by the
following covariant derivative: ∇μ → Dμ = ∇μ+Aμ[τ3, ·].
From the viewpoint of the α, � and � the minimal coupling
rule is completely equivalent to change in the action only the
derivatives of � as follows ∇μ� → Dμ� = ∇μ�−2Aμ�.
Hence, also from the viewpoint of the interaction with the
Maxwell theory, the field � is the analogue of χ in the pre-
vious example and this is exactly what we need, according
to Witten [53], to have a superconducting current.

8 Here, “generic constant values” mean different from nπ as otherwise
there would be no kinetic term at all in the action (as it happens when
one sets R = 0 in the action in Eq. (37)). Thus such values are not
relevant for the present analysis.
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As a last remark, at a first glance, one could also argue
that the presence of a mass term for the Pions should destroy
superconductivity. In fact, this is not the case since, in terms
of α, � and �, the mass term for the Pions is m2

π (1− cos α),
and it only affects α (in the same way as a mass term in the
previous example would only affect R but would not set a
mass scale for χ ).

These are the intuitive arguments which strongly suggest
a priori that it certainly pay off to look for superconduct-
ing solitons in the generalized Skyrme model(s) and that �

should be the superconducting carrier.
Furthermore, by requiring that ∇μ�∇μ� vanishes (as it is

expected for chiral fields), the field equations are enormously
simplified (see Eqs. (51), (52) and (53) on Appendix II). This
simplification occurs not only on the Skyrme model case, but
even if higher derivative order terms are considered, as we
have already discussed.

3.6 Stability analysis

One of the most intriguing results of the present framework is
that the physical properties of these superconducting Bary-
onic tubes remain the same no matter how many sublead-
ing terms are included in the generalized Skyrme model9. In
other words, these topologically non-trivial configurations
are almost “theory independent”. As it has been already
emphasized, this happens since the ansatz defined in Eq.
(17) works in exactly the same way without any change at
all no matter how many higher order terms are included in
the generalized Skyrme action. In particular, the field equa-
tions will always be reduced to a single integrable ODE for α

and the corresponding configurations will describe supercon-
ducting tubes. Hence, the present topological gauged solitons
are likely to be a universal feature of QCD as they stay the
same at any order in the large N expansion.

To give a flavor of why such a property is so surprising,
let us consider the ’t Hooft-Polyakov monopole [104,105].
The stability of these configurations in the Georgi-Glashow
model is of course very well understood. However, if one
deforms even slightly the theory, the properties of the ’t
Hooft-Polyakov monopole are going to change as well (see,
for instance, [106] and references therein). To give just an
example: in [106] the authors considered a very natural cor-
rection to the Georgi-Glashow model which leads to a non-
spherical deformation of the ’t Hooft-Polyakov monopole
(so that, in particular, the ansatz for the ’t Hooft-Polyakov

9 This construction also works when further corrections from chiral per-
turbation theory are considered [103]. Indeed, even if one includes the
quartic corrections considered in [103] (in which the anti-commutators
between the Maurer-Cartan forms appear), the SU(2) field equations
still reduce to a single integrable first-order ODE. We will not discuss
these terms explicitly since they do not change the qualitative picture
presented here.

monopole must be changed accordingly). Consequently, the
shape of non-Abelian monopoles is also going to change
when these types of deformations of the Yang-Mills the-
ory are included. On the other hand, the superconducting
Baryonic tubes constructed here keep their properties at any
order in the large N expansion. To the best of authors knowl-
edge, these are the first examples of “universal” gauged soli-
tons in the low energy limit of QCD described by an ansatz
able to survive to all the subleading large N corrections.
Indeed, the subleading corrections to the generalized Skyrme
model will only change slightly the plot of α(r) keeping
unchanged the plots and the properties of the superconduct-
ing currents and of the energy density (see Fig. 3). Here below
we write the field equation for α(r) with corrections up to
order L12 together with the plots of the energy density of the
superconducting tubes in the sector with Baryonic charge
B = 1 in Fig. 4. For this we have chosen K = 2, λ = 1,
c6 = c8 = c12 = 1

5 , m = 0 and q = p = 1.
The field equations are given by

α′′ − q2

2
sin(2α) + 4m2L2

K
sin α + λq2

L2 sin(α)

× [cos(α)α′2 + sin(α)α′′]

− 3c8q4

K L6 sin3(α)[cos(α)α′2 + sin(α)α′′]α′2

− 15c12q6

K L6 sin5(α)[cos(α)α′2 + sin(α)α′′]α′4 = 0,

(39)

that can be written again as a first order equation{
X (α)

(
α′)2 + Z (α) + Ẽ0

}′ = 0, (40)

where in this case

X (α) = 1 + λq2

L2 sin2(α) − 3c8q4

2K L6 sin4(α)α′2

− 5c12q6

K L10 sin6 α(α′)4,

Z(α) = q2

2
cos(2α) − 8m2L2

K
cos(α).

Note also that Eq. (40) can be seen as a cubic polynomial
in the variable z = α′2 which allows, once again, to reduce
the complete field equations to a simple quadrature of the
form:
dα

χ̃1/2 = ±dr, χ̃ = χ̃ (α, E0),

where χ̃ (α, E0) is the positive real root of the cubic polyno-
mial in z = α′2 defined in Eq. (40). The integration constant
Ẽ0 always allows such polynomial to have positive real roots.
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Fig. 3 Energy density for different configurations with B = 1. From left to right: energy density only including the non-linear sigma model
contribution, then up to the Skyrme contribution, up to L6, up to L8 and finally up to order L12
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Fig. 4 From left to right: Energy densityE , electric field, magnetic field, current, topological density ρB and radial profile α(r), up to the contribution
L12 for the configuration with B = 1

3.6.1 Perturbations on the profile

A remark on the stability of the above superconductive tubes
is in order. In many situations, when the hedgehog property
holds (so that the field equations reduce to a single equa-
tion for the profile) the most dangerous perturbations10 are
perturbations of the profile which keep the structure of the
hedgehog ansatz (see [77,107] and references therein). In the
present case these are perturbations of the following type:

α → α + εξ (r) , 0 < ε  1, (41)

10 “Dangerous perturbations” in the sense that are the perturbations
which, in the most common situations, are more likely to have some
negative eigenvalues.

which do not change the Isospin degrees of freedom associ-
ated with the functions� and�. A direct computation reveals
that the linearized version of Eq. (19) around a background
solution α0 (r) of Baryonic charge B = np always has the
following zero-mode: ξ (r) = ∇rα0 (r). Due to the fact that
the integration constant E0 (defined in Eqs. (20), (21) and
(22)) can always be chosen in such a way that ∇rα0 (r) never
vanishes, the zero mode ξ (r) has no node so that it must be
the perturbation with lowest energy. Thus, the present solu-
tions are stable under the above potentially dangerous per-
turbations. Although this is not a complete proof of stability,
it is a very non-trivial test.
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3.6.2 Electromagnetic perturbations

A very useful approach to study the stability of the supercon-
ducting Baryonic tubes is to perform electromagnetic pertur-
bations on the effective medium defined by the topological
solitons. This is a good approach in the ’t Hooft limit, since
in the semiclassical interaction Photon-Baryon, the Baryon
is essentially unaffected due to the Photon has zero mass (see
[108]).

The complete stability analysis requires to study the most
general perturbations of the solutions defined in Eqs. (17),
(21) and (22). This is a very hard task even numerically as
it involves a coupled system of linear PDEs, therefore in
practical terms, consider only electromagnetic perturbations
greatly simplifies the stability analysis and allows to reveal
very relevant features of the superconducting tubes, as we
will see immediately.

Here we will analyze the simplest non-trivial case which
is related to the role of the subleading corrections in the ’t
Hooft expansion to the Skyrme model of the sixth order. As
it has been already emphasized in the previous sections such
sixth order term does not even appear in the equation for
the profile (while it does enter in the corresponding Maxwell
equations). This is very interesting since it shows that, despite
the universal character of the present crystals of gauged soli-
tons (which are almost unaffected by the subleading terms),
their stability properties may depend explicitly on the sub-
leading terms themselves. Also for simplicity reasons, we
will set m to zero.

Let us consider the following perturbations on the Maxwell
potential

(u, 0, 0,−Lu) → (u + εξ1, 0, 0,−Lu + εξ2),

ξi = ξi (t, r, θ, φ), 0 < ε  1.

At first order in the parameter ε the Maxwell equations
become

∂θ (∂φξ2 − L2∂tξ1) = 0,

∂r (∂φξ2 − L2∂tξ1) = 0,

(∂2
r + ∂2

θ + ∂2
φ)ξ1 − ∂φ∂tξ2 + V ξ1 = 0,

(∂2
r + ∂2

θ − L2∂2
t )ξ2 + L2∂φ∂tξ1 + V ξ2 = 0,

where V and �(α) are defined in Eqs. (29) and (31) (up to
sixth order). Note that, since we want to test linear stability
one should check the (absence of) growing modes in time.
This implies that ξ1 and ξ2 must depend on the temporal
coordinate. But, according to the previous equations if ξ1

and ξ2 depend on time these functions must also depend on
the coordinate φ, that is

∂tξi �= 0, ∂φξi �= 0, ξi = {ξ1, ξ2}.

We can assume that

∂φξ2 = L2∂tξ1.

By consider the Fourier transformation in the coordinate φ

we get an equation for ξ̂i in the form

−�ξ̂i + (k2 − V )̂ξi = 0, � ≡ −L2∂2
t + ∂2

r + ∂2
θ ,

where

ξ̂i (t, r, θ, k) =
∫

ξi (t, r, θ, φ)e−ikφdφ,

is the Fourier transform of ci , and the non-vanishing eigen-
value k = l/(2π) is the wave-number along the φ-direction,
with l a non-vanishing integer.

According to Duhamel’s principle (see, for instance, [109]
and references therein), an inhomogeneous equation for a
function W = W (x, t) of the form

(d2
t + M)W = f,

with M a non-negative operator and initial conditions
W (·, 0) = ψ1, ∂tW (·, 0) = ψ2, has the following general
solution

W (·, t) = ∂t B(t)ψ1 + B(t)ψ2 +
∫ t

0
B(t − τ) f (τ )dτ,

B(t) = M− 1
2 sin(tM

1
2 ).

In our case, to ensure that the perturbed Maxwell equation
can be solved we need to demand that Veff > 0, with

Veff = k2 − V . (42)

Since V depends on α and the square of its derivative α′ =
α′(E0), defined via Eq. (20), one can find the following upper
bound to the potential V :

|V | ≤ Vmax <
4

L2

(
K L4 + (q2 + E0)λK L2 + 2q2c6E0

)
.

Then, a necessary condition11 for a positive defined effective
potential Veff in Eq. (42) is
(

l

2π

)2

− 4

x

(
Kx2 + (q2 + E0)λKx + 2q2c6E0

)
≥ 0,

x = L2,

(43)

(the most restrictive case being the one with l2 = 1 as it is
easier to satisfy the above inequality when l2 is large). The
above inequality set an upper bound on the allowed values of

11 We think that this bound can be improved increasing the stability
range of these solutions. Since, in the present subsection, we only want
to show that the subleading terms could have relevant physical effects,
we will not discuss the improved bound for the effective potential fur-
ther. We hope to come back on this issue in a future publication.
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L (which is the same as a lower bound on the allowed values
of Baryon densities):

x

16π2 −
(
Kx2 + (q2 + E0)λKx + 2q2c6E0

)
≥ 0. (44)

The above inequality is equivalent to

L2
Min ≤ x ≤ L2

Max, (45)

L2
Max = 1

2K

(
1

16π2 − (E0 + q2)Kλ

+
√(

1

16π2 − (E0 + q2)Kλ

)2

−8c6q2E0K

)
,

(46)

L2
Min = 1

2K

(
1

16π2 − (E0 + q2)Kλ

−
√(

1

16π2 − (E0 + q2)Kλ

)2

−8c6q2E0K

)
,

(47)

together with the obvious condition that

x ≥ 0. (48)

Thus, in the range of parameters in which L2
Max is positive

(which always exists) the conditions on L2 is

L2 <
1

2K

(
1

16π2 − (E0 + q2)Kλ

+
√(

1

16π2 − (E0 + q2)Kλ

)2

−8c6q2E0K

)
.

Thus, at a first glance, from Eq. (19) one could think that the
presence of the c6, which for energetic considerations must be
positive (see Eq. (34)), do not play any role in the perturbation
of the system. However, it is quite interesting to see that this
term can in fact affect the stability of the system determining
the maximum allowed value of the size of the box in which
the superconducting strings are confined. We hope to come
back on the physical properties of these gauged crystals in
the low energy limit of QCD in a future publication.

4 Conclusions and perspectives

The Maxwell-gauged Skyrme model in (3 + 1)-dimensions
together with all the subleading corrections in the ’t Hooft
expansion admit configurations describing ordered arrays of

Baryonic superconducting tubes where (most of) the Bary-
onic charge and total energy is concentrated in tube-shaped
regions. The corresponding current cannot be deformed con-
tinuously to zero as it is tied to the topological charge.
Quite remarkably, no matter how many subleading terms
are included, these ordered arrays of gauged solitons are
described by the very same ansatz and keep their main prop-
erties manifesting a sort of universal character. The similarity
with the plots obtained numerically in the analysis of nuclear
spaghetti phase is quite amusing [32–35]. These results open
the unprecedented possibility to analyze these complex struc-
tures with analytic tools which are able to disclose novel
features which are difficult to analyze with many body sim-
ulations. On the other hand, the subleading terms in the ’t
Hooft expansion (which almost do not affect the solutions
of the field equations) do, in fact, affect the stability prop-
erties of the superconducting tubes setting upper bounds on
the allowed values of the spatial volume in which they can
live.
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Appendix I: Explicit tensors

From the ansatz defined in Eqs. (12), (13), (14), (17) and (27),
the explicit expression of the matrix U , the components of
the tensor Lμ and the components of the current Jμ are given
by
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U =
(

cos(α) + i sin(α) cos(qθ) ie−i p(t/L−φ) sin(α) sin(qθ)

ieip(t/L−φ) sin(α) sin(qθ) cos(α) − i sin(α) cos(qθ)

)
,

Lt =
( p

L
− 2u

) (
i sin2 α sin2(qθ) e−i p(t/L−φ) sin α sin(qθ)(cos α − i sin α cos(qθ)

−eip(t/L−φ) sin α sin(qθ)(cos α + i sin α cos(qθ) −i sin2 α sin2(qθ)

)
,

Lr =
(

i cos(qθ)α′ e−i p(t/L−φ) sin(qθ)α′
ieip(t/L−φ) sin(qθ)α′ −i cos(qθ)α′

)
,

Lθ =
( −iq sin α cos α sin(qθ) qe−i p(t/L−φ) sin α(sin α + i cos α cos(qθ))

−qeip(t/L−φ) sin α(sin α − i cos α cos(qθ)) iq sin α cos α sin(qθ)

)
,

Lφ = −LLt ,

Jt = 2

L4 sin2(α) sin2(qθ)

(
K L2(L2 + q2λ sin2(α) + λα′2)

+ q2 sin2(α)α′2
[

2c6 + c8

L2 (q2 sin2(α) + α′2)
])

×
(
p

L
− 2u

)
,

Jr = Jθ = 0, Jφ = −L Jt .

Appendix II: Reducing the Skyrme equations

In this appendix we will show how and why the Skyrme
equations (using the ansatz defined by Eqs. (12), (13), (14),

and (17)) are reduced to just one integrable ODE for the
soliton profile α = α(r). To see this fact it is possible to take
two paths, as we detail below.

In order to make this reduction clear, in this appendix we
will consider the action in Eq. (1) without the higher order
terms and without the coupling with Maxwell theory, i.e. we
will deal only with the usual Skyrme action

ISkyrme =
∫

d4v

4

[
KTr

(
LμLμ + λ

8
GμνG

μν

)]
,

Lμ = U−1∇μU, Gμν = [Lμ, Lν],
d4v = d4x

√−g,

U ∈ SU(2), Lμ = L j
μt j , t j = iσ j . (49)

The reason for doing this is that the mechanism which makes
the present strategy successful with the usual Skyrme model
works in exactly the same way when the higher order terms
are included.

The most direct way to see that the Skyrme equations are
reduced to just one equation with the ansatz defined by Eqs.
(12), (13), (14), and (17) corresponds to write the action in
Eq. (49) explicitly in terms of the functions α = α(xμ),
� = �(xμ) and � = �(xμ), according to Eqs. (13), (14).
In this parameterization Eq. (49) becomes

ISkyrme = K

2

∫
d4v

⎛
⎜⎜⎝

∇μα∇μα + sin2 α∇μ�∇μ� + sin2 α sin2 �∇μ�∇μ�

+λ

⎛
⎝ sin2 α

(
(∇μα∇μα)(∇ν�∇ν�) − (∇μα∇μ�)2

)
+ sin2 α sin2 �

(
(∇μα∇μα)(∇ν�∇ν�) − (∇μα∇μ�)2

)
+ sin4 α sin2 �

(
(∇μ�∇μ�)(∇ν�∇ν�) − (∇μ�∇μ�)2

)
⎞
⎠

⎞
⎟⎟⎠ . (50)

Now, varying the action in Eq. (50) w.r.t the functions α, �,
�, in a long but direct calculation, we get to the following
set of equations:
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(−�α + sin(α) cos(α)
(∇μ�∇μ� + sin2 �∇μ�∇μ�

))

+λ

⎛
⎜⎜⎜⎜⎝

sin(α) cos(α)
(
(∇μα∇μα)(∇ν�∇ν�) − (∇μα∇μ�)2

)
+ sin(α) cos(α) sin2(�)

(
(∇μα∇μα)(∇ν�∇ν�) − (∇μα∇μ�)2

)
+2 sin3(α) cos(α) sin2(�)

(
(∇μ�∇μ�)(∇ν�∇ν�) − (∇μ�∇μ�)2

)
−∇μ

(
sin2(α)(∇ν�∇ν�)∇μα

) + ∇μ

(
sin2(α)(∇να∇ν�)∇μ�

)
−∇μ

(
sin2(α) sin2(�)(∇ν�∇ν�)∇μα

) + ∇μ

(
sin2(α) sin2(�)(∇να∇ν�)∇μ�

)

⎞
⎟⎟⎟⎟⎠

= 0, (51)

(− sin2(α)�� − 2 sin(α) cos(α)∇μα∇μ� + sin2(α) sin(�) cos(�)∇μ�∇μ�
)

+λ

⎛
⎜⎜⎝

sin2(α) sin(�) cos(�)
(
(∇μα∇μα)(∇ν�∇ν�) − (∇μα∇μ�)2

)
+ sin4(α) sin(�) cos(�)

(
(∇μ�∇μ�)(∇ν�∇ν�) − (∇μ�∇μ�)2

)
−∇μ

(
sin2(α)(∇να∇να)∇μ�

) + ∇μ

(
sin2(α)(∇να∇ν�)∇μα

)
−∇μ

(
sin4(α) sin2(�)(∇ν�∇ν�)∇μ�

) + ∇μ

(
sin4(α) sin2(�)(∇ν�∇ν�)∇μ�

)

⎞
⎟⎟⎠ = 0, (52)

(− sin2(α) sin2(�)�� − 2 sin(α) cos(α) sin2(�)∇μα∇μ� − 2 sin2(α) sin(�) cos(�)∇μ�∇μ�
)

+λ

( −∇μ

[
sin2(α) sin2(�)(∇να∇να)∇μ�

] + ∇μ

[
sin2(α) sin2(�)(∇να∇ν�)∇μα

]
−∇μ

[
sin4(α) sin2(�)(∇ν�∇ν�)∇μ�

] + ∇μ

[
sin4(α) sin2(�)(∇ν�∇ν�)∇μ�

]
) = 0. (53)

The equations system written above are completely equiv-
alent to the system in Eq. (5) when the parameterization in
Eqs. (13) and (14) is considered. For instance, one can check
that with this parametrization the original spherical hedgehog
ansatz of Skyrme himself [50–52] reads

α = α(x), � = θ, � = φ, (54)

ds2 = −dt2 + dx2 + x2
(
dθ2 + sin2 θdφ2

)
, (55)

where x is the radial coordinate of flat space-time metric in
spherical coordinates. If one plugs the ansatz in Eqs. (54) and
(55) into the field equations (51), (52) and (53) one can see
that, first of all, the field equations for � and � are identically
satisfied and, secondly, that the remaining field equation for
α reduces to the well known equation for the profile of the
spherical Skyrmion. This is the defining characteristic of the
hedgehog ansatz and is equivalent to the statement that the
field equations reduce consistently to just one ODE for the
profile α.

At this point we can directly evaluate the ansatz in Eq.
(17) into Eqs. (51), (52) and (53) and check whether or not
the same hedgehog property holds. One could think that the
spherical symmetry is relevant to get a good hedgehog ansatz
but the present analysis show that the hedgehog property
does not need spherical symmetry at all. Considering that
our ansatz satisfies the useful relations in Eqs. (16) and (18),
namely

∇μ�∇μα = ∇μα∇μ� = ∇μ�∇μ�

= ∇μ�∇μ� = �� = �� = 0,

one can see that Eqs. (52) and (53) are identically satisfied,
while Eq. (51) leads to

−�α + sin(α) cos(α)∇μ�∇μ�

+λ sin(α) cos(α)∇μα∇μα∇ν�∇ν� = 0. (56)

Eq. (56) is an integrable ODE for the soliton profile α. In
fact, taking into account that

�α = 1

L2 α′′, ∇μ�∇μ� = q2

L2 , ∇μα∇μα = 1

L2 α′2,

the above equation becomes

α′′ − q2

2
sin(2α) − λq2

2L2 sin(2α)α′2 = 0.

Note also that using

sin(2α)α′2 = [sin2(α)α′]′2(α) − sin2(α)α′′,

we finally arrive to the following equation for α:

α′′ − q2

2
sin(2α) + λq2

L2 sin(α)[cos(α)α′2 + sin(α)α′′] = 0,

which, of course, coincides with Eq. (19).
On the other hand, one could be dissatisfied with the above

method to establish the hedgehog property since in most text-
book such a property is defined by looking at the SU(2) val-
ued field without using the explicit parametrization in terms
of the fields α, � and �. Here we offer another method to
derive the hedgehog property which perhaps is more familiar
to many of the readers. This method uses the properties of
the normalized Isospin vector ni of the generalized hedgehog
ansatz in Eq. (51), (52) and (53), is using.

Let us remind that the most general parametrization for
the Skyrme field is

U = Y 0
I + Y i ti , (Y 0)2 + YiY

i = 1,

Y 0 = cos(α), Y i = sin(α)ni , nin
i = 1,

n1 = cos � sin �, n2 = sin � sin �, n3 = cos �,

and the Maurer–Cartan form reads

Lμ = U−1∇μU = Li
μti , ti = iσi ,
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where the generators of the SU(2) group, ti , satisfy

[ti , t j ] = −2εi jk t
k, ti t j = −δi j I − εi jk t

k .

One can check that, for the ansatz in Eq. (17), the ni vectors
satisfy the following eigenvalue equation

�ni = �ni , � = − q2

L2 . (57)

It is worth to note that the original ansatz for the spherical
Skyrmion in Eqs. (54) and (55) satisfies a similar property
(but with a different � which depends explicitly on the radial
coordinate: thus, we can say that in this sense the present gen-
eralized hedgehog ansatz is simpler than the usual spherical
hedgehog ansatz). Equation (57) is a very important result
since it allows to reduced all the Skyrme system to just only
one equation for the soliton profile thanks to a very nice fac-
torization property of the complete field equations (such a
factorization is the matrix version of-and completely equiva-
lent to-the property discussed above which is responsible for
the fact that the three Skyrme field equations (51), (52) and
(53) for α, � and � reduce to just one equation for α).

One can directly check that the components of the Maurer-
Cartan tensor Lμ defined above are

Lk
μ = Y 0∇μY

k − Y k∇μY
0 + εi jkYi∇μY j

= nk∇μα + 1

2
sin(2α)∇μn

k + εi jk sin2(α)ni∇μn j .

(58)

Now, according to Eq. (5), the Skyrme equations have the
following general form

∇μ

(
Lμ + λ

4
[Lν,Gμν]

)
= 0. (59)

Using Eqs. (57), (58) and

∇μn
i∇μα = 0, ni∇μn

i = 0, ∇μni∇μn
i = −�,

we can compute both terms in the Skyrme equation sepa-
rately. For the first term we have

∇μLk
μ = nk

(
�α + 1

2
� sin(2α)

)
. (60)

Hence, one can see that the divergence ∇μLk
μ of the Lk

μ

tensor in Eq. (60) (that corresponds to the NLSM field equa-
tions) is factorized into the Isospin vector nk itself (which
obviously never vanishes) time a factor which depends on α.
Consequently, in the NLSM case, such a factor is nothing but
the equation for the profile α. Hence, the choice of α and of
the Isospin vector nk in Eq. (51), (52) and (53) reduces the
three field equations of the NLSM

∇μLk
μ = 0

to just

�α + 1

2
� sin(2α) = 0.

The factorization of the divergence ∇μLk
μ of the Lk

μ tensor
in Eq. (60) is the matrix form of the property stated here
above that the field equations (51), (52) and ( 53) reduce
to just one equation for the soliton profile α: however, this
“matrix form” of the hedgehog property can be more familiar
to most of the readers so that, for pedagogical reasons we
have included it here in the present discussion. Once again,
we see that the hedgehog property is not related at all with
the spherical symmetry and nice ansatz can be constructed
even at finite density and without spherical symmetry. Even
more, the present non-spherical hedgehog, useful to describe
multi-solitonic solutions at finite Baryon density is actually
simpler than the spherical hedgehog (which describes one
Skyrmion since the function � in Eq. (60) is constant, as one
can see from Eq. (57 )).

One may wonder whether this nice factorization prop-
erty survives when the Skyrme term (and, in fact, also the
higher order corrections terms mentioned in the main text) is
included. In order to see that this is indeed the case, one can
proceed as follows. In fact, the commutator in Eq. (59) can
be written as

[Lν,Gμν] = 4(SLk
μ − Sν

μL
k
ν)tk, (61)

where we have defined

Sν
μ = Li

μL
ν
i = ∇μα∇να + sin2(α)∇μn

b∇νnb,

so that

S = Li
μL

μ
i = ∇μα∇μα − � sin2(α).

Using the above relations it is possible to verify that for the
second term in Eq. (59) we obtain

∇μ(SLk
μ − Sν

μL
k
ν)

= −
(

1

2
sin(2α)(∇μα∇μα) + sin2(α)�α

+ 1

2
� sin (2α) sin2(α)

)
�nk + 1

2
sin(2α) sin2 α

×
(

∇μ∇νnk∇νn
b∇μnb + ∇μnk∇ν∇μn

b∇νnb

)

− sin4 αεkcdnc

×
(

∇μ∇νnd∇νn
b∇μnb + ∇μnd∇μ∇νnb∇νnb

)
. (62)

Finally, and since for our ansatz we have that

∇μ∇νn
a∇μn

b∇νnb = −na�2, ∇ν∇μn
b∇νnb = 0,
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the Skyrme term in Eq. (62) takes the form

∇μ(SLk
μ − Sν

μL
k
ν)

= −
(

1

2
sin(2α)(∇μα∇μα) + sin2(α)�α

)
�nk, (63)

which is also proportional to the vectors nk , as expected.
Combining Eqs. (59), (60) and (63) we obtain again the equa-
tion for α in Eq. (19).

This analysis clearly shows that the ansatz defined in Eqs.
(12) , (13), (14) and (17) reduces the Skyrme equations to a
single equation for the soliton profile thanks to the factoriza-
tion property mentioned here above. It is straightforward to
show that the same derivation is still valid when the higher
order terms of the generalized Skyrme model are included. To
the best of authors knowledge, this is the first complete dis-
cussion of the equivalence of these two different viewpoints
on the hedgehog ansatz.
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