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Abstract We revisit the scalar weak gravity conjecture
and investigate the possibility to impose that scalar interac-
tions dominate over gravitational ones. More precisely, we
look for consequences of assuming that, for leading scalar
interactions, the corresponding gravitational contribution is
sub-dominant in the non-relativistic limit. For a single mas-
sive scalar particle, this leads us to compare four-point self-
interactions in different type of potentials. For axion-like
particles, we retrieve the result of the axion weak gravity
conjecture: the decay constant f is bounded by the Planck
mass, f < MPl . Similar bounds are obtained for exponen-
tial potentials. For quartic, power law and Starobinsky poten-
tials, we exclude large trans-Planckian field excursions. We
then discuss the case of moduli that determine the scalars
masses. We retrieve the exponential dependence as requested
by the Swampland distance conjecture. We also find extremal
state masses with field dependence that reproduces both the
Kaluza-Klein and winding modes behaviour. In particular
cases, our constraints can be put in the form of the Refined
de Sitter Conjecture.

1 Introduction

Among the a priori consistent low energy quantum field the-
ories, it is believed that some cannot be embedded in a the-
ory of quantum gravity. They form what is denoted as the
swampland [1,2] (see [3,4] for a review). One of the selec-
tion criteria of consistent effective theories is provided by
the Weak Gravity Conjecture (WGC) [5]. It claims that, in a
theory with U (1) gauge symmetry with coupling g, a state
of charge q and mass m satisfying the inequality

gq ≥ m

MPl
(1.1)
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must exist. Considering the charge over mass ratio, this con-
dition can be obtained requiring that extremal black holes
do decay entirely, leaving no remnants. It is furthermore
consistent with black hole physics based arguments for non-
existence of global symmetries in quantum gravity. This con-
jecture was claimed to be valid in any theory of quantum
gravity and has been shown to hold in known examples in
string theory.

There are two aspects of (1.1) that are useful to stress.
First, in theories with N ≥ 2 supersymmetries, the central
charge Z of the supersymmetry algebra is given by gq and
is related to the mass of the BPS state through |Z | = m (in
Planck units). The relation (1.1) goes in opposite direction
of the BPS condition. It can be therefore tempting to look for
other forms of such conjectures by considering the extremal
states identities and turning it to an (anti-BPS) inequality.
This was stressed in [6].

The other useful aspect is the appearance of an ultraviolet
scale � ∼ gqMPl , controlled by the gauge coupling g, which
sets the cut-off of the EFT. This was dubbed as the magnetic
weak gravity conjecture in [5] and is clearly related to the
non-existence of global symmetries in quantum gravity in
the limit of weakly coupled gauge theories g → 0.

Following the proposal of the WGC, another form was put
forward as a Repulsive Force Conjecture (RFC) [6,7]. This
postulates the existence of a state within the U (1) theory
with the property that, taken far apart, two copies of such
state feel a repulsive force between each other. This avoids
gravitational bound states. It was accurately described in [7],
where many of its consequences were exhibited.

Going beyond gauge fields and writing a similar conjec-
ture for scalar fields, possibly complementary to swampland
conjectures, is not straightforward. First, there is no such
obvious argument on decay of black holes that can be used
to induce the form of the conjecture. Second, to test in all
generality different scalar conjectures in a quantum gravity
theory is not easy. The scalar sector of the theory is very sen-
sitive to the supersymmetry breaking. Implementing super-
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symmetry breaking in a string theory and extracting the full
corrections to the scalar potential of a single real field in flat
space-time is a non trivial problem. Moreover, supersymmet-
ric models involve complex scalars, and it is not evident how
to disentangle all the facets of constraints applying on one
real scalar. With the lack of non-supersymmetric string the-
ory examples, one is lead to postulate some form of the scalar
conjecture and evaluate it by investigating the consequences.
The hope is that even this modest trial and error method will
turn out to be useful and will allow us to shed some light
on the landscape of the effective field theories coupled to
gravity. This way of proceeding applies to the conjectures
discussed below.

A Scalar Weak Gravity Conjecture (SWGC) was investi-
gated in [6] as a special case of the RFC. In the context of the
RFC, the scalar field is massless and one is interested in the
long range interactions it mediates. In an attempt to retrieve
the Swampland Distance Conjecture mass formulae, it was
proposed that:

gi j∂im∂ jm ≥ m2 (1.2)

where ∂im ≡ ∂m/∂φi is the derivative of the mass term m
with respect to the scalar field φi and gi j is the appropriate
metric on the space of fields. In a footnote of [6], it was also
mentioned that, looking at different forms of the equalities
satisfied by the central charge in N = 2, another possible
form of the conjecture could have been:

gi j∂i∂ jm
2 ≥ gi j∂im∂ jm + m2. (1.3)

The constraint (1.2) does not involve repulsive interactions
and as such cannot be considered as a realization of the RFC.
It seemed puzzling in the RFC set-up discussed in [6], as
scalar mediated forces are attractive, and the possibility (1.3)
was not pursued any further, with the exception of a few
comments in [8]. It was somehow dismissed due to the lack
of simple physical interpretation.

All these considerations led to the proposal of another
form of the conjecture for scalar fields in [9]: the mass m of
an interacting scalar field satisfies the bound [10]:

m2 ∂2

∂φ2

(
1

m2

)
≥ 1

MPl
2 (1.4)

This was obtained by modifying by a factor 2 and an
additional four-point contact interaction the inequality (1.2)
expressed as derivatives of the scalar potential. This form of
the conjecture was motivated by a set of implications [9–13],
some of which might be of phenomenological importance.
However, it raises some questions about its origin and the
meaning of the corresponding inequality. As a consequence
of the (1.4), for states with a mass depending on the scalar
φ, the equality in (1.4) is reached for

m2(φ) = m2
0

Ae−φ + Beφ
(1.5)

where A and B are integration constants. Through the identi-
fication e−φ = R2, the result of (1.5) has been interpreted in
[9] as an indication of the extended nature of the fundamental
states.

Taken as such, the above proposals were dismissed in
[14], because of inconsistent implications for simple scalar
potentials, and it was instead suggested that scalar particles
should be subject to constraints in such a way that they would
not form bound states with size smaller than their Comp-
ton wavelength. No generic alternative formulation for these
constraints on the scalar potential was proposed.

In this work, we will postulate that in the appropriate low
energy limit, for the leading interaction, the gravitational con-
tribution must be sub-leading. For particular scalar fields, we
will propose an explicit set-up, based on the computation of
four-point functions, for comparing the different interactions.
The resulting inequalities will reproduce different forms of
the Swampland conjectures, and, in a particular case, the
inequality will be saturated for masses of the form (4.13):

m2
X (φ) = m2−e−2φ + m2+e2φ. (1.6)

instead of (1.5).
The paper is organized as follows. In Sect. 2, we formu-

late the constraint of dominance of scalar interactions with
respect to the gravitational ones for the case of a single mas-
sive scalar field self-interacting. We illustrate the constraint
by the simplest example of a single real field with a cubic and
quartic potential. A few other examples are studied in Sect. 3.
Those include the quartic complex potential, the axion, the
exponential and the Starobinsky potential. In the Sect. 4, we
discuss an extension to moduli and massless scalars. Section
5 presents our conclusions.

2 Scalar vs gravity in the non-relativistic regime

The Weak Gravity Conjecture states that for any abelian
gauge symmetry U (1) there is at least one state with gauge
self-interaction stronger than the gravitational one. Here, we
will investigate a possible extension of the conjecture to the
case of scalar fields.

We start with the case of a single self-interacting massive
scalar field. We will postulate that for this scalar field the
self-interaction is stronger than the gravitational one.

This assertion calls for a few immediate remarks. First, we
need to specify at which scale the different interactions are
computed and compared. This is chosen to be of order of the
mass of the self-interacting particle. This is consistent with
the fact that the Weak Gravity Conjecture makes statements
about properties of effective field theories. At these energy
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Fig. 1 The identification of the 2 → 2 scattering in the non relativistic theory coming from the corresponding scattering in the relativistic case

scales, the non-relativistic theory is a good approximation.
This means, for example, that in scattering processes the par-
ticle number is conserved. We shall therefore investigate the
strength of the interactions by computing the simplest scat-
tering processes. Precisely, we will compare the four-point
amplitude contribution of the scalar self-interaction versus
the gravitational one.

We work in the non-relativistic limit and keep only the
leading order in 1/c2. The gravitational forces are then
expected to be well described by the Newtonian potential.
Higher order corrections, as those given by the Einstein–
Infeld–Hoffman Lagrangian, will be neglected. In practice,
instead of dealing with the potential in coordinates space,
we will work in the Fourier-transform space by comput-
ing the scattering amplitudes. The dominance of scalar self-
interaction means in particular that all the higher dimensional
non-renormalizable interactions suppressed by higher pow-
ers of the Planck mass should be subdominant and may be
neglected. We will see below that this preeminence can hap-

pen to be violated in isolated regions of size �φ2

m2 ∼ m2

M̃2
Pl

where the interactions can switch nature between attractive
and repulsive.

We restrict to four-dimensional Minkowski space-time
and use from now on natural units h̄ = c = 1. We first
investigate the simplest case of cubic and quartic potential
and discuss other forms of scalar potentials in the next sec-
tion.
We consider a real scalar φ with the potential:

V (φ) = 1

2
m2

0φ
2 + μ

3!φ
3 + λ

4!φ
4. (2.1)

In string theory, our fiducial quantum gravity theory, all the
low energy parameters are field dependent. But we will con-
sider here that the other scalar fields are fixed to their vacuum
value and decouple from the dynamics of the low energy
effective action under scrutiny. At energy scales E ∼ m0,
the theory is non-relativistic and can be described by the cor-
responding limit. We study fluctuations around φ = 0 and
make the field redefinition:

φ(x) = 1√
2m0

(
ψ(x, t)e−im0t + ψ∗(x, t)eim0t

)
(2.2)

where the phase e−im0t is introduced to take into account
the leading m0 term in the non-relativistic limit expansion
E � m0 +p2/2m0 where p is the particle three-dimensional
momentum. The denominator

√
2m0 comes from the differ-

ent normalizations in relativistic and non-relativistic quan-
tum mechanics.

The potential for the non-relativistic field ψ should be of
the form

Vef f
(
ψψ∗) = m0ψψ∗ + λ̃

16m2
0

(
ψψ∗)2

. (2.3)

We now want to relate the single non-relativistic coupling λ̃

with the coefficients of the relativistic potential. We identify
the low energy limit of the 2 → 2 scattering in the φ descrip-
tion with the corresponding scattering of four ψ states. This
leads trivially to λ = λ̃ when μ = 0 in (2.1). In the case
where μ 	= 0, we will have to take into account the con-
tributions to the 2 → 2 scattering from the exchange of a
virtual φ. We have in this case three diagrams, one for each
channel, as shown in Fig. 1. We can compute the non rela-
tivistic limit of each one of them. This is obtained requiring
s − 4m2

0 
 m2
0, where s = (p1 + p2)

2 is the usual Man-
delstam variable and p1, p2 the four-momenta of the initial
states. We also have t = − 1

2 (s − 4m2
0)(1 − cos(θ)) and

u = − 1
2 (s − 4m2

0)(1 + cos(θ)), θ being the angle between
the in-going and out-going particles momenta in the center
of mass frame. This basic computation yields the s-channel
contribution as:

(−iμ)2 i

s − m2
0

= −iμ2

3m2
0

+ O
(
s − 4m2

0

m2
0

)
, (2.4)

and the t-channel as:

(−iμ)2 i

t − m2
0

= iμ2

m2
0

+ O
(
s − 4m2

0

m2
0

)
. (2.5)

Finally, the u-channel contribution is the same as the t-
channel one. Summing up the three contributions we obtain

i 5
3

μ2

m2
0
, so that the effective four-point self-interaction cou-

pling in the non-relativistic limit is:

λ̃ = λ − 5

3

μ2

m2
0

. (2.6)
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In computing the gravitational interaction, we have assumed
m2

0 > 0. Both attractive and repulsive forces can be obtained
from the quartic self-interaction, through the choice of λ < 0
and λ > 0 respectively. On the other hand, the trilinear term
always leads to an attractive force in a 2 → 2 states scatter-
ing. However, when λ < 0 the stability of the potential means
that additional non renormalizable terms are important and
should be taken into account. In the case of λ > 0, Eq. (2.6)
shows the competition between the attractive and repulsive
interactions in the non-relativistic limit. The resulting sign
of λ̃ tells us about the attractive or repulsive nature of the
effective interaction and, in the case where they are in com-
petition, which one of the two terms dominate at energies
E ∼ m0.

In the WGC the gauge and gravity forces have similar
dependence in the distance between the scattering particles
at leading order. There are two corrections, one from the
evolution of gauge coupling with energy and the other from
post-Newtonian effects. This is not the case for the scalar
interaction. In the non-relativistic limit, the scalar potential
is approximated by a delta distribution in space while the
gravitational potential is Newtonian. A point-like interaction
arises from integrating out massive mediators. In the infrared,
at energies below the mass scale, the gravitational scatter-
ing exhibits a divergence coming from the t and u channels.
Obviously, to compare a Newtonian potential at long dis-
tance with the strength of the scalar localised interaction is
not very instructive. It is essential in the comparison to fix
the energy scale, and naturally it is given by the mass of the
scalar particle, and consider the gravitational scattering in
the s-channel at s ∼ 4m2

0.
Requiring that gravity is the weakest force at low energy

amounts then to impose:

∣∣∣λ̃
∣∣∣ =

∣∣∣∣∣λ − 5

3

μ2

m2
0

∣∣∣∣∣ ≥ m2
0

M2
Pl

. (2.7)

We have put an absolute value on the left hand side so that it
holds independently of the sign of the self-interaction. Note

also that, in the spirit of [5,15,16], the quantity
√

|λ̃|MPl ,
could be interpreted as an ultra-violet cut-off scale dictated
by quantum gravity. In particular, this means that both the
limits λ → 0 and μ → 0 cannot be taken simultaneously.
Cancellation of the two terms in λ̃, as we said, might encode
the change of nature of the scalar interactions on a region of
the phase space that need to be studied case by case.

Below, we will work in more generic field background
values and potentials, therefore we will impose a stronger
condition

4m2
0

∣∣∣∣ ∂4Vef f
∂2ψ∂2ψ∗

∣∣∣∣
ψ=0

≥ c̃

M2
Pl

∣∣∣∣ ∂2Vef f
∂ψ∂ψ∗

∣∣∣∣
2

ψ=0
(2.8)

and take the order one constant c̃ to be c̃ = 1, which amounts
to redefine the Planck mass to M̃Pl . The r.h.s. of (2.8) repre-
sents the gravitational attractive interaction between the two
particles only when we work at the minimum of the potential
and the squared mass is positive defined.

We focus now on the simplest case μ = 0 and investigate
the relative strengths of self-interaction and gravitational one
when φ sweeps the range of possible values. For this purpose
we consider small perturbations δφ, corresponding to the
above ψ , around background values φ. We expand

V (φ + δφ) = 1

2
m2

0φ
2 + 1

4!λφ4

+m2
0φδφ + λ

3!φ
3δφ

+1

2

(
m2

0 + λ

2
φ2

)
(δφ)2

+ λ

3!φ(δφ)3 + λ

4! (δφ)4. (2.9)

From (2.9), we can immediately read the mass term, the
cubic and the quartic couplings for δφ and the effective quar-
tic coupling in the non-relativistic limit. Those are given by:

m2
δφ(φ) = m2

0 + λ

2
φ2, μδφ = λφ, λδφ = λ

λ̃ = λ − 5

3

λ2φ2

m2
0 + λ/2φ2

. (2.10)

We restrict to the case with m2
0, λ > 0 to explicitly exhibit

the competition between the attractive and repulsive terms.
Requiring gravity to be the weakest force leads to∣∣∣∣∣λ − 5

3

λ2φ2

m2
0 + λ

2 φ2

∣∣∣∣∣ ≥ 1

M̃2
Pl

(
m2

0 + λ

2
φ2

)
. (2.11)

The term inside the absolute value of (2.11) vanishes for

φ2 = 6
7
m2

0
λ

. The cubic term dominates above this turning
point, a region where the interaction is attractive. The quartic
one dominates instead below the turning point, making the
scalar interaction repulsive.

We first investigate the φ2 ≤ 6
7
m2

0
λ

region where (2.11)
reads

φ4 +
(

4
m2

0

λ
+ 14

3
M̃2

Pl

)
φ2 + 4

m4
0

λ2 − 4M̃2
Pl
m2

0

λ
≤ 0.

(2.12)

Assuming λ ≥ m2
0

M̃2
Pl

and discarding the solutions with φ2 <

0, this is verified inside the region

0 ≤ φ2 ≤ −2
m2

0

λ
− 7

3
M̃2

Pl + 7

3
M̃2

Pl

√
1 + 120

49

m2
0

λM̃2
Pl

.

(2.13)
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At the first order in 1
M̃2

Pl
, this is obtained:

φ2 � 6

7

m2
0

λ
− 600

343

m4
0

λ2

1

M̃2
Pl

(2.14)

which exhibits a small region of order M̃−2
Pl below the crit-

ical value where gravity is stronger than quartic scalar self-
interaction.

For λ ≤ m2
0

M̃2
Pl

, the turning point happens at a scale φ2 ∼
m2

0
λ

≥ M̃2
Pl and, as the inequality would not be solved for

φ2 ≤ 6
7
m2

0
λ

, this would translate in gravity being stronger
than scalar interactions all the way up to the Planck scale.

Let us now turn to the case φ2 ≥ 6
7
m2

0
λ

. There, the inequal-
ity translates into

φ4 +
(

4
m2

0

λ
− 14

3
M̃2

Pl

)
φ2 + 4

m4
0

λ2 + 4M̃2
Pl
m2

0

λ
≤ 0.

(2.15)

At leading order in
m2

0

M̃2
Pl

, the region where the inequality is

verified is given by

6

7

m2
0

λ
+ 600

343

m2
0

λ2

m2
0

M̃2
Pl

� φ2

� 14

3
M̃2

Pl − 6

7

m2
0

λ
+ O(M̃−2

Pl ) (2.16)

In conclusion, up to the Planck scale, the gravity seems to

dominate only around the special value φ2 = 6
7
m2

0
λ

in a sym-

metric interval of radius �φ2 ∼ m4
0

M̃2
Pl

. It would be interesting

to investigate, for explicit examples of quantum gravity, if
the theory can be insensitive to such small field excursion
regions, but this goes beyond the scope of this work.

3 Single scalar field potentials

In this section, we would like to investigate what the impli-
cations of requiring gravity to be weaker than the scalar field
self-interactions in the non-relativistic limit are on differ-
ent potentials. More precisely, we will consider very slowly
rolling fields, having in mind possible cosmological applica-
tions. We impose the condition (2.8) and extract its implica-
tions for the involved scales and couplings.

3.1 The Mexican hat or Higgs-like quartic potential

We consider the quartic scalar potential

V (φ, φ̄) = −m2φ̄φ + λ(φ̄φ)2. (3.1)

with λ > 0, insuring stability, and m2 > 0.

It is convenient to use the parametrization φ(x) =
1√
2
ρ(x)eiπ(x). This potential develops a minimum at ρ2 =

m2

λ
. This theory has a globalU (1) symmetry,1 which is spon-

taneously broken at the minimum, and π(x) is the associated
Goldstone boson. The final mass of π(x) depends on details
of the complete theory. It might be generated by the higher
order terms breaking the global symmetry, as dictated for
instance by the WGC. It could also be that the U (1) symme-
try is gauged. Then π(x) gives rise to the longitudinal mode
of the massive gauge boson. We will focus here only on the
field ρ(x) which plays in the latter case the role of the Higgs
field.

We consider a small perturbation δρ(x) around a the back-
ground value ρ(x). The expansion of the potential, up to
O(δρ4), reads:

V (ρ + δρ) � −1

2
m2ρ2 + λ

4
ρ4 + (λρ3 − m2ρ)δρ

+1

2
(3λρ2 − m2)δρ2 + λρδρ3 + λ

4
δρ4. (3.2)

The effective mass term, trilinear and quartic couplings of
δρ(x) are then given by m2

δρ = 3λρ2 − m2, μδρ = 6λρ,
λδρ = 6λ, respectively. The δρ(x) resulting quartic self-
interaction λ̃ at low energies can now be computed to be

λ̃ = 6λ − 60λ2ρ2

3λρ2 − m2 = −6λ
(m2 + 7λρ2)

3λρ2 − m2 . (3.3)

Vanishing self-interaction, i.e. a null value for λ̃, corresponds
to m2λ + 7λ2ρ2 = 0. This is obviously never satisfied here.

We discard the region ρ2 < m2

3λ
where the effective mass

of δρ(x) is either tachyonic or vanishing, though we have
checked that the inequality (2.8) is satisfied.

We will investigate the region m2
δρ > 0, i.e. ρ2 > m2

3λ
. We

have:

9
λ2

M̃2
Pl

ρ4 −
(

6λ
m2

M̃2
Pl

+ 42λ2

)
ρ2 + m4

M̃2
Pl

− 6m2λ ≤ 0.

(3.4)

Discarding the region ρ2 ∈
[
0, m2

3λ

]
as discussed above,

the inequality is satisfied for:

m2

3λ
< ρ2 � 14

3
M̃2

Pl + 17

21

m2

λ
+ O(M̃−2

Pl ) (3.5)

It is worth mentioning that at the minimum, where ρ2 =
m2

λ
≡ v, we get λ̃ = −24λ, and the conjecture is then verified

in the case:

λ ≥ 1

12

m2

M̃2
Pl

∼ 10−17 ⇔ v2 ≤ 12M̃2
Pl ∼ 1037GeV 2, (3.6)

1 Quantum gravity requires that either the symmetry is gauged or
broken. However, the latter might be sub-leading to the quartic self-
interaction considered here.
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where we have taken m to be the electroweak scale.

3.2 Axion-like potential

Let’s consider the case of the axion potential:

V (φ) = μ4
(

1 − cos

(
φ

fa

))
. (3.7)

Expanding this potential around a fixed value φ0 and exclud-

ing points where cos
(

φ0
fa

)
= 0 as the state becomes massless

and our non-relativistic limit no more applies, we obtain up
to fourth order in δφ:

V (φ) � μ4
[

1 − cos

(
φ0

fa

)

+ sin

(
φ0

fa

)
δφ

fa
+ 1

2
cos

(
φ0

fa

)
(δφ)2

f 2
a

− 1

3! sin

(
φ0

fa

)
(δφ)3

f 3
a

− 1

4! cos

(
φ0

fa

)
(δφ)4

f 4
a

]
,

(3.8)

from which we can read λ̃ = − 1
f 4
a

(
cos

(
φ0
fa

)
+ 5

3
sin2(φ0/ fa)
cos(φ0/ fa)

)
.

Requiring gravity to be the weakest force leads to

1

f 2
a

∣∣∣∣∣∣cos

(
φ0

fa

)
+ 5

3

sin2
(

φ0
fa

)

cos
(

φ0
fa

)
∣∣∣∣∣∣ ≥ 1

M̃2
Pl

∣∣∣∣cos

(
φ0

fa

)∣∣∣∣, (3.9)

which yields

1

f 2
a

∣∣∣∣1 + 5

3
tan2

(
φ0

fa

)∣∣∣∣ ≥ 1

M̃2
Pl

. (3.10)

We have expanded around a generic background value φ0

thus (3.10) leads to:

f 2
a ≤ M̃2

Pl (3.11)

We therefore retrieve the Axion Weak Gravity Conjecture,
which requires an axion decay constant lower the Planck
scale [5,17–30]. Note that, in the r.h.s. of (3.9), we have taken
the absolute value of the squared mass term. Here we see the
inequality as taken on derivatives of the potential since the
squared mass can be negative.

3.3 Inverse power-law effective scalar potential

Another scalar potential is the inverse power-law one, fre-
quently used in cosmological applications. It reads

V (φ) = M4+pφ−p, (3.12)

where p > 0 is a constant and M sets the energy scale. In
the general case, we expand the potential as a Taylor series

1

M4+p
V (φ0 + δφ) = φ

−p
0 − pφ−p−1

0 δφ

+ p(p + 1)

2
φ

−p−2
0 (δφ)2

− p(p + 1)(p + 2)

3! φ
−p−3
0 (δφ)3

+ p(p + 1)(p + 2)(p + 3)

4!
×φ

−p−4
0 (δφ)4. (3.13)

The effective quartic interaction in the non-relativistic limit
is given by

λ̃ = − p(p + 1)(p + 2)

3
(2p + 1)φ

−p−4
0 . (3.14)

The gravitational interaction will thus be weaker than the
scalar self-interaction in the non-relativistic limit if

p(p + 1)(p + 2)

3
(2p + 1)

∣∣∣φ−p−4
0

∣∣∣
≥ p(p + 1)

M̃2
Pl

∣∣∣φ−p−2
0

∣∣∣ . (3.15)

which is satisfied for

φ2
0 ≤ (p + 2)(2p + 1)

3
M̃2

Pl , (3.16)

therefore forbidding large trans-Planckian excursions.

3.4 Exponential scalar potential

Another popular class of scalar potentials is represented by
sums of exponential functions. We focus here on the simplest
case

V (φ) = �0e
−λφ/ f . (3.17)

The expansion around a background value φ0 reads

V (φ0 + δφ) = �0e
−λφ0/ f

[
1 − λ

δφ

f

+1

2
λ2

(
δφ

f

)2

− 1

3!λ
3
(

δφ

f

)3

+ 1

4!λ
4
(

δφ

f

)4
]

, (3.18)

and the self-interaction of the scalar field in the non-
relativistic limit is encoded in the λ̃ quartic coupling

λ̃ = �0e
−λφ0/ f

(
λ4

f 4 − 5

3

λ4

f 4

)
= −2

3

λ4

f 4 �0e
−λφ0/ f .

(3.19)
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Application of our bound is straightforward and yields the
following inequality

2

3

λ2

f 2 ≥ 1

M̃2
Pl

, (3.20)

The weak gravity regime under scrutiny is realized for scalars
with an exponential potential as long as their scale does not
exceed the Planck one, with

f 2 ≤ 2

3
λ2M̃2

Pl . (3.21)

This bound still allows for a cosmological expansion (see
e.g. [31]), but is in conflict with the requirement obtained in
[32], as we will discuss below.

Let’s consider the case of a double exponential potential

V (φ) = �1e
−λ1φ/ f + �2e

−λ2φ/ f , (3.22)

with the assumption λ1 ∼ λ2. We develop each exponential
as in (3.18) to get

λ̃ = �1
λ4

1

f 4 e
−λ1φ0/ f + �2

λ4
2

f 4 e
−λ2φ0/ f

−5

3

1

f 4

(
�1λ

3
1e

−λ1φ0/ f + �2λ
3
2e

−λ2φ0/ f
)2

�1λ
2
1e

−λ1φ0/ f + �2λ
2
2e

−λ2φ0/ f
, (3.23)

which can be rewritten as

λ̃ = − 1

f 4

2
3�2

1λ
6
1e

−2λ1φ0/ f + 2
3�2

2λ
6
2e

−2λ2φ0/ f + �1�2λ
2
1λ

2
2

( 10
3 λ1λ2 − λ2

1 − λ2
2

)
e−(λ1+λ2)φ0/ f

�1λ
2
1e

−λ1φ0/ f + �2λ
2
2e

−λ2φ0/ f
. (3.24)

The analysis of this constraint on a double exponential is
somehow quite involved, and not useful here to discuss in
full generality. In the case where λ2

1 +λ2
2 ≤ 10

3 λ1λ2, all three
terms in the numerator have the same sign. For �1,2 > 0
(�1,2 < 0) the scalar self-interaction is attractive (repulsive).
The condition for gravity to be the weakest force reads

I (�1,�2, λ1, λ2, f )

= λ4
1�

2
1

(
2

3

λ2
1

f 2 − 1

M̃2
Pl

)

e−2λ1φ0/ f + λ4
2�

2
2

(
2

3

λ2
2

f 2 − 1

M̃2
Pl

)
e−2λ2φ0/ f

+�1�2λ
2
1λ

2
2

(
10/3λ1λ2 − λ2

1 − λ2
2

f 2 − 2

M̃2
Pl

)

e−(λ1+λ2)φ0/ f

≥ 0 (3.25)

It is verified for mass scales not exceeding the value f 2 ∼
2
3λ2

1,2M̃
2
Pl .

3.5 Starobinsky potential

The power-law and the exponential potentials are frequently
used in early Universe cosmology. We investigate here the
implications of (2.8) for the Starobinsky’s potential [33].

We consider the potential:

V (φ) = �4
(

1 − e−√
2/3φ/M̃Pl

)2
(3.26)

and expand it around a background field value φ0, and study

the leading order contribution to the quartic self-interaction
perturbation δφ = φ−φ0. The non-relativistic regime quartic
coupling λ̃ is given by:

M̃4
Pl

�4 λ̃ = − 256
27 e−4

√
2/3φ0/M̃Pl + 80

27e
−3

√
2/3φ0/M̃Pl − 16

27e
−2

√
2/3φ0/M̃Pl

2e−2
√

2/3φ0/M̃Pl − e−√
2/3φ0/M̃Pl

. (3.27)
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The weakness of the gravitational interaction reads now

∣∣∣∣−16

9
e−2

√
2/3φ0/M̃Pl + 5

9
e−√

2/3φ0/M̃Pl − 1

9

∣∣∣∣
≥

∣∣∣∣e−2
√

2/3φ0/M̃Pl − e−√
2/3φ0/M̃Pl + 1

4

∣∣∣∣ , (3.28)

where we have put the absolute value on the r.h.s. to stress
its positivity even if it is useless, being the square of a real
quantity. Nevertheless, we still should study the sign and the
strength of the l.h.s. of (3.28). The term inside the absolute
value is always negative, meaning the scalar interaction is
always attractive. So we can just drop the absolute values in
Eq. (3.28). Simple algebra finally leads us to the conclusion
that gravity is weaker than the scalar self-interaction if

φ0 ≤
√

3

2
ln

(
14√

51 − 4

)
M̃Pl ∼ 2M̃Pl . (3.29)

The coefficient in front of M̃Pl in the above equation is
of order 1. Slitghly before reaching this scale, we would

encounter tachyonic modes for φ ∼
√

3
2 ln (2)M̃Pl . In this

Starobinsky’s model, self-interactions are strong enough to
keep gravity the weakest force all the way up to the Planck
scale.

3.6 Weak gravity and quintessence

One of the popular use of the above scalar potentials is for
inducing cosmic acceleration, more precisely using φ as the
quintessence field. We discuss here some direct implications
of our constraints for such applications.

The late time cosmic acceleration may indeed be under-
stood either in terms of a cosmological constant, in the con-
text of the �CDM, or in terms of a dynamical scalar field,
slowly rolling towards the minimum of its potential [34,35].
In the equation of state, the ratio pressure/energy density w is
fixed to the valuew = −1 in the first case, while it becomes a
dynamical variable in the case of the quintessence [36]. The
swampland criteria seem to be in favor of the latter scenario,
that, with parameters tightened by the current observations,
may fit into the program (see [32]). In this context, for the
dark energy to take over the control of the expansion of the
Universe at late times, the quintessence field needs to be very
light, with mass of order the Hubble parameter as measured
today m � H0 ∼ 10−33eV . The corresponding potential
is unknown and forms similar to those studied above have
been considered (see for a review [31]). Requirements for
the evolution equations of a scalar field φ to have a fixed
point realizing the desired equation of state can be expressed
as

⎧⎨
⎩
wef f ≡ ρφ+ρm

Pφ+Pm
= wφ > − 1

3 ;
�φ ≡ ρφ

3M2
Pl H

2 = 1,
(3.30)

where we denote with the subscriptm the matter contribution,
and φ for the quintessence one, and [37]:
(
MPl

V ′(φ)

V (φ)

)2

≡ λ∗2 < 2. (3.31)

Obviously, wφ ≡ Pφ

ρφ
= φ̇/2−V (φ)

φ̇/2+V (φ)
, leads to different dynam-

ics for the different potentials.
The axion potential gives the thawing solution, where the

field and its corresponding equation of state are almost con-
stant in the early cosmological era, with wφ = −1, and then
starts to evolve after the mass drops below the Hubble param-
eter, leading to wφ ≥ −1 [38,39]. The axion shift symmetry
might allow to tame loop corrections. The condition (3.31)
reads then2

sin2
(

φ

fa

)
< 2

f 2
a

M2
Pl

(
1 + cos

(
φ

fa

))2

. (3.32)

The requirement fa ≤ MPl allows the axion-like fifth force
to be stronger than gravity when φ gets sufficiently close to 0
for Eq. (3.32) to be realized. Observational constraints allow
this model to be used for quintessence withw0 ∈ ]−1,−0.7[,
w0 being today’s value.

The power law potential gives rise to the tracking solution
[40,41]. This allows for a cosmic evolution from the so-called

scaling fixed point (x, y) =
(√

3
2

1+wm
λ

,

√
3
2

1−wm
2

λ2

)
, with

x = φ̇√
6MPl H

and y =
√
V (φ)√

3MPl H
, where matter dominates,

to the fixed point (x, y) = (λ∗/
√

6,
√

1 − λ∗2/6), where the
cosmic acceleration can be realized [37]. The behaviour of
the equation of state is opposite to the previous case, as w

slowly decreases with the evolution. Equation (3.31) gives

φ2 >
1

2
p2M2

Pl , (3.33)

Unless the p parameter is tuned to be very small, this calls
for trans-Planckian values of the field, as we should have
expected since the potential is monotonically decreasing to
reach its asymptotic value V = 0 at infinity. Together with
our constraint of weak gravity φ2 ≤ (p+2)(2p+1)

3 M2
Pl , this

leads to:

(p + 2)(2p + 1)

3
>

p2

2
, (3.34)

which is valid for all positive powers. Of course, the applica-
bility of the effective field theory treatment at trans-Planckian

2 Note, that for the cosmological application, we have taken, as in [38],

the potential to be V (φ) = μ4
(

1 + cos
(

φ
fa

))
. This corresponds to

a shift of the minimum in (3.7) with no consequence for the analysis
performed in Sect. 3.2.
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scales is for the least questionable. Observations have led
to constrain the tracker equation of state so tightly that the
current accepted range of value for the exponent p is very
restricted. Indeed, the upper bound on p was argued to be
p < 0.107 in [42], or p < 0.17 in [43], so that positive inte-
gers should be excluded, making it difficult to realize power
law potentials within the observational bounds in particle
physics models.

The single exponential potential is popular as the cosmo-
logical evolution is there described by a closed system of
equation [37,44]. However, the fact that λ∗ is constant in this
case leads to strongly constrain this potential. It is realized
again in the fixed point mentioned above but to be reached
from the trivial fixed point (x, y) = (0, 0) [31]. In partic-
ular, the transition from the more interesting scaling fixed

point (x, y) =
(√

3
2

1+wm
λ

,

√
3
2

1−wm
2

λ2

)
is forbidden. This

can be circumvented by taking the case of a double exponen-
tial potential, as in Eq. (3.22). The solution which is realized
in this case is a tracking one with constant �φ [49].

The exponential potentials with decay constants respect-
ing the upper bound discussed may well fit into the proposed
inequality with

λ2 M
2
Pl

f 2 >
3

2
. (3.35)

For the epoch of cosmic acceleration to be realized we need
instead

λ2 M
2
Pl

f 2 < 2. (3.36)

As we see, this seems to leave a window for both the weakness
of gravity and the period of cosmic accelerated expansion to
be realized through an exponential potential.

These type of potentials have also been constrained with
current observations in the interest of other swampland con-
jectures, namely the de Sitter and the TCC conjectures
[32,45]. It was argued in [32] we should have for an expo-
nential potential λ∗ = λ

MPl
fa

≤ 0.6. This was devised to be
in agreement with the de Sitter conjecture with the constant
c there appearing bounded to be c ≤ 0.6. This bound is sen-
sitive to uncertainties in the data as was investigated in e.g.
[46,47]. This seems to leave as the only viable conclusion
that an exponential quintessence model can only lead to fifth
force interactions weaker than gravity. However, [48] has
hinted to the possibility that dark matter-dark energy cou-
pling may relax constraints on λ.

A double exponential is usually devised to respect both
constraints coming from big-bang nucleosynthesis and cos-
mic acceleration. As such, one exponent, λ1, is taken to give
λ1

MPl
f ∼ 1 − 10, while the second is expected to take over

at late times and respects the same bounds as those for the
single exponent [32,42,49]. In this case, the weak gravity

may be realized in the early Universe as long as the double
exponential is concerned, but at late time, one faces the same
strong constraints as discussed above.

4 Multiple scalar and moduli fields

We consider now more complex situations with multiple
scalar fields. The preeminence of the scalar interaction over
the gravitational one has to be formulated in more general
terms to account for these cases. In particular, we need to
specify what are the processes we should consider to com-
pare scalar and gravitational interactions.

In the case of multiple scalars, we assume that in the appro-
priate low energy limit, for the leading interaction, the grav-
itational contribution must be sub-leading. The focus on the
leading scalar interaction can be seen as parallel to constrain-
ing the biggest ratio q/m in the WGC.

Let’s illustrate the meaning of this statement. First con-
sider the case of a massive scalar X , taken to be complex for
simplicity. The leading interaction is given by the Yukawa
coupling to another real scalar field φ and is described by :

Lint = μφ|X |2 + · · · (4.1)

where the dots stand for sub-leading higher order terms. We
can write the potential as:

V (X, φ) = m2
X (φ) |X |2, μ = ∂φm

2
X (4.2)

The preeminence of scalar interactions must be taken at the
mass scale ∼ 2mX and reads then:

|∂φmX | ≥ mX

M̃Pl
(4.3)

We can square the above three-point amplitudes on each side,
2X → φ on the left and 2X → G, on the right side, where G
is the graviton. The comparison concerns then two XX∗ →
XX∗ processes, at the energy scale mX , one through scalar
and the other through graviton exchange. This leads to the
following potentials for X :

Vscalar (r) = − μ2

4m2
Xr

, Vgrav(r) = − m2
X

M̃2
Plr

(4.4)

Now, both scalar and gravitational interactions have similar
dependence in the inter-particles distance and the comparison
is straightforward:

μ2

4m2
X

≥ m2
X

M̃2
Pl

(4.5)

which can be written:

∂φmX∂φmX ≥ m2
X

M̃2
Pl

(4.6)
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In the extremal case saturating the above inequality, the solu-
tion is given by:

m2
X (φ) = m2

0 e±2φ/M̃Pl . (4.7)

This is the Swampland Distance Conjecture (SDC) [2,45,50–
54]. The inequality (4.6) has been proposed by [6] in order
to retrieve (4.7) and discussed by [6,12,55] with different
motivations.

Let us now move forward and consider another case: a
massless complex modulus field , therefore with vanishing
potential. We assume again that the theory contains at least
one complex scalar field X such that the mass of X and
its different couplings are functions of φ. For simplicity, we
also assume that X has no tadpole and its vacuum expectation
value vanishes, 〈X〉 = 0. Under these assumptions, the scalar
potential then takes the form:

V (X, ) = m2
X ()|X |2 + · · · m2

X = m2
X0 + λ||2 + · · ·

(4.8)

where

λ = ∂∂̄m
2
X (, ̄) (4.9)

represents now the leading non-gravitational interaction of
. Here, m2

X0 is a contribution to the squared mass indepen-
dent of , but depending on other fields while λ gives a
scalar four-point interaction term of  and X obtained by
expanding (4.8) in powers of  and ̄. The weakness of
gravitational interaction becomes a statement comparing on
one side the annihilation of two X states into two  state (and
vice-versa) and on the other side the same channel through
graviton exchange, both taken at the threshold energy scale
∼ 2mX .

As the modulus is massless, the gravitational interaction
gets an enhancing factor of 2 compared to the massive case,
analogous to the case of the gravitational deflection of light.
In this case, the statement that the gravitational interaction is
weaker reads:3

∂∂̄m
2
X ≥ 2

m2
X

M̃2
Pl

(4.10)

If the state X has a self-quartic interaction, then we will
also have to check a similar constraint on the self coupling
|λ̃4|M̃2

Pl ≥ m2
X .

3 For real fields, the inequality reads gi j∂i∂ jm2
X ≥ 2nm2

X/M̃2
Pl where

gi j and n are the metric in the space and the number of moduli fields.
The dots in (4.8) include 2 and ̄2 as required to recover the case of
real fields scattering and account for an extra factor of 2.

The extremal case corresponds to the case of equality in
(4.10). It is solved for:4

m2
X (, ̄) = m2−e

−√
2 +̄

M̃Pl + m2+e
√

2 +̄

M̃Pl (4.11)

We can use the following parametrization:

 = 1√
2
(φ + iχ),

e
√

2 +̄

M̃Pl = e
2 φ

M̃Pl , and e
φ

M̃Pl = R (4.12)

then:

m2
X (R) = m2−

R2 + m2+R2 (4.13)

which is the well known formula for string states squared

masses with the
m2−
R2 as the low energy Kaluza-Klein modes

and m2+R2 the winding modes that are typical to extended
objects, strings, winding around a compactified dimension.
The (4.13) differs sensibly from (1.4) as it extremizes a dif-
ferent inequality.

Note that in the statement about the preeminence of the
scalar interaction, the two fields  and X play a symmetric
role.

Now, consider the case where the field φ is a modulus
appearing only as a parameter in the couplings of the massive
scalar X (〈X〉 = 0), through

V (X, φ) = m2
X (φ)X2 +

∑
n≥4

λn(φ)Xn (4.14)

Then, the condition (4.3) can be written as:

|∂φV (X, φ)|
V

∣∣∣∣
X=0

≥
√
c̃

MPl
(4.15)

while the condition (4.10) reads now:

|∂φ∂φ̄V (X, φ)|
V

∣∣∣∣
X=0

≥ 2c̃

M2
Pl

(4.16)

where we note the similarity with the Refined de Sitter Con-
jectures [56–65] (in (4.16) when the second derivative is neg-
ative).

A popular way to look at the Weak Gravity Conjecture
rests on the fact that the equality in (1.1) relates to the BPS
states relation. In [6], it was suggested that the identity sat-
isfied by the central charge in N = 2 supersymmetry [66]

gi j̄ Di D̄ j̄ |Z |2 = gi j̄ Di Z D̄ j̄ Z̄ + n|Z |2 (4.17)

4 Note that this is not the most general solution but we focus on
reproducing the toroidal compactification dependence. Moreover, as
the potential (4.8) and the Eq. (4.10) are symmetric under the exchange
of the real and imaginary part, we choose to focus on the real part of
the field only i.e. KK and winding excitation along one of the torus
dimensions.
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can be used to extract a bound on the mass m as in the BPS
case |Z | = m:

gi j∂i∂ jm
2 ≥ gi j∂im∂ jm + nm2 (4.18)

with derivatives are with respect to scalar fields, and gi j is the
corresponding metric. Here, we would like to contemplate a
different possibility. Following [66], the right hand side of
(4.17) is identified with the scalar potential of the black hole
solution, and it was shown that it implies that at the critical
point the potential satisfies (in reduced Planck mass units):

∂i∂ j̄ V

∣∣∣∣
cri tical

= 2Gi j̄ Vcritical (4.19)

We would like to contemplate here the possibility to extend
this relation, beyond its derivation in the N = 2 world, to

|∂i∂ j̄ V | ≥ cV (4.20)

as given by (4.16). Along this line of thought, we note the
similarity of (4.10), up to a factor 2 due to the masslessness
of our field , and the equation [66]:

∂i∂ j̄ m(, ̄, p, q)

∣∣∣∣
cri tical

= 1

2
Gi j̄ (, ̄) m(, ̄, p, q)cri tical (4.21)

where , ̄ are moduli fields, p, q electrical and magnetic
charges, m is the black hole mass and Gi j̄ is the scalar metric
on the moduli space.

Finally, let us comment that while supersymmetry was
not explicitly invoked here, it might be required to insure
the stability of some flat directions, therefore moduli fields,
when radiative corrections are taken into account.

5 Conclusions

In contrast with the WGC, there is no obvious, no totally
convincing road towards uncovering a law governing the
scalar potential in quantum gravity. The main ideas have been
reviewed in the introduction. Their variety can be considered
as an evidence both for the difficulty and risks in writing such
constraints and for the interest in investigating their implica-
tions.

We postulate that in the appropriate low energy limit, for
the leading interaction, the gravitational contribution must
be sub-leading. Such a statement is hollow if one does not
specify which process is concerned and the energy scale at
which the interaction strengths are compared. We provided
answers for these questions for some cases and found that
we retrieve some forms of the Swampland conjectures.

The constraint (2.8) differs from previous proposed
inequalities. Indeed, [6,7] focused on massless scalars and
their role in the formation of gravitational bound states.

Strictly speaking, the logic behind their inequalities would
lead to (4.6) but with an opposite sign for the r.h.s. part. This is
due to the fact that their arguments constrain repulsive inter-
actions to be stronger than gravitational one, while the scalar
mediated one is attractive. While the logic in this work differs,
in the massless case (4.5) agrees with one of the proposals
of [6], that was also discussed further in [9,12,55]. This is
all but surprising as the different arguments were put such as
one recovers the SDC, which corresponds to the ubiquitous
Kaluza-Klein states present in String theory compactifica-
tions. Our analysis differs also in the fact that we have also
considered self-interacting scalars but only focused on the
case of neutral states.

The conjecture presented in [9] leads to an inequality that
would constrain in qualitatively similar manner attractive
self-interactions for a massive particle (non-tachyonic), but
we were not able to recover their coefficients for the dif-
ferent contributions. Moreover, the field dependence of the
extremal states squared mass (1.5) differs sensibly from our
result (4.13).

The main playground for testing different conjectures
about quantum gravity is string compactifications and their
effective supergravity theories. While they represent an
opportunity to put the conjecture on firm grounds (see [67]
for a recent proposal), one should be able to disentangle what
is due to generic quantum gravity from what is due to super-
symmetry, other symmetries or just consistency of the precise
string theory compactification. Here, we have kept the anal-
ysis on a very basic level which we believe is sufficient to
stress the main points. We plan to test our constraints in string
compactification models in the future.

We end by mentioning two immediate remarks. For the
Standard Model Higgs scalar, it was found that the running
quartic coupling vanishes at energies of order 1011 GeV [68],
we should therefore contemplate this intermediate energy
scale as an ultra-violet cut-off. Scalar interactions deter-
mine the behaviour of spherically symmetric cosmological
clumps. The size and dynamics of these objects is different
depending on the quartic self-interaction coupling λ. For the
case of repulsive complex scalars, massive boson stars, with
masses comparable to the fermionic ones, are allowed only
when the relevant relativisticparameterλM2

Pl/m
2 is big [69].

This is a prediction of the weak gravity conjecture discussed
here.

Going through the implications of our weak gravity
requirement we recovered, in the corresponding cases and
forms, some of the Swampland program expectations: the
Axion Weak Gravity Conjecture, the Swampland Distance
Conjecture, the string Kaluza-Klein and winding modes mass
formula and the Swampland de Sitter Conjecture. It would be
interesting to investigate if a formulation from general prin-
ciples of the preeminence of scalar interactions when com-
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pared to gravitational ones can lead to a unified Swampland
conjecture that rules them all.
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