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Abstract Using a technique devised by Bender, Milton and
Savage, we derive the Dyson–Schwinger equations for quan-
tum chromodynamics in differential form. We stop our anal-
ysis to the two-point functions. The ’t Hooft limit of color
number going to infinity is derived showing how these equa-
tions can be cast into a treatable even if approximate form. It
is seen how this limit gives a sound description of the low-
energy behavior of quantum chromodynamics by discussing
the dynamical breaking of chiral symmetry and confinement,
providing a condition for the latter. This approach exploits a
background field technique in quantum field theory.

1 Introduction

The main difficulty of quantun chromodynamics (QCD) is
that, at low energies, the theory is not amenable to treatment
using perturbation techniques. This implies that some non-
perturbative methods should be devised to solve them. The
most widespread approach is solving the equations of the the-
ory on a large lattice using computer facilities. This permitted
to obtain, with a precision of a few percent [1,2], some rele-
vant observables of the theory. This method improves as the
computer resources improve making even more precise the
comparison with experiment. Use of numerical techniques
is a signal that we miss some sound theoretical approach to
compute observables.

A similar situation is seen for the correlation functions
of the theory. Studies on the lattice of the gluon and ghost
propagators, mostly in the Landau gauge, [3–5] and the spec-
trum [6,7] proved that a mass gap appears in a non-Abelian
gauge theory without fermions. Theoretical support for these
results was presented in [8–13] providing closed form for-
mulas for the gluon propagator. Quite recently, the set of
Dyson–Schwinger equations for this case was solved, for
the 1- and 2-point functions, and the spectrum very-well
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accurately computed both in 3 and 4 dimensions [13–15].
Confinement was also proved to be a property of the theory
[14,16].

Indeed, the Dyson–Schwinger equations were considered,
since the start, the most sensible approach to treat a non-
perturbative theory like QCD at low-energies [17–19] and,
more recently, [20]. In any case, the standard technique is to
reduce the set of equations, that normally are partial differ-
ential equations, to their integral form in momentum space.
Some years ago, Bender, Milton and Savage [21] proposed to
derive the Dyson–Schwinger equations and treat them into
differential form. This way to manage these equation was
the one used to find the exact solution [13]. This technique
appears more general as it permits to work out a solution
to a quantum field theory also when a background field is
present. This is a rather general situation when a non-trivial
solution of the 1-point equation is considered. Such a pos-
sibility opens up the opportunity of a complete solution to
theories that normally are considered treatable only through
perturbation methods. The idea is that, knowing all the corre-
lation functions, a quantum field theory is completely solved.

The aim of this paper is to derive the Dyson-Schwinger
equations for QCD in differential form. We obtain them for
the 1- and 2-point functions. We show that, in the ’t Hooft
limit [22], the equations can be cast into a treatable form. It
appears that a non-local Nambu–Jona–Lasinio model is the
proper low-energy limit of the theory [23].

The paper is so structured. In Sect. 2, we give the main
equations and notations. In Sect. 3, we presente the technique
we will use to obtain the Dyson-Schwinger set of equations.
In Sect. 4, we derive the set of equations for the 1- and 2-
point correlation functions. In Sect. 5, we discuss the ’t Hooft
limit. In Sect. 6, we discuss the dynamical breaking of the
chiral symmetry and derive a confinement condition. Finally,
in Sect. 7, we present the conclusions.
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2 Basic equations

In QCD, one has the Lagrangian (to fix the notation we
assume (1,−1,−1,−1) for the metric signature)

L = Linv + Lg f + LFP (1)

where Linv denotes the classical gauge-invariant part, Lg f

the gauge-fixing terms and LFP the Faddeev-Popov (FP)
ghost term characteristic of non-Abelian gauge theories [24]

Linv = −1

4
Fμν · Fμν − ψ̄(iγμD

μ + m)ψ ,

Lg f = − 1

2α
(∂ · A)2 ,

LFP = −c̄ · ∂μD
μc . (2)

in the usual notation. We set α for the gauge parameter and
Dμ represents the covariant derivative whose explicit forms
are given by

Dμ ψ = (∂μ − igT · Aμ)ψ ,

Dμ c = ∂μc + gAμ × c . (3)

3 Dyson–Schwinger equations

It is a rather old result that a tower of equations for the cor-
relation functions of a quantum field theory can be obtained
from the equations of motion [25–27]. The solutions of this
set of equations, when performed exactly, solves completely
the theory itself. So, it appears like a very powerful non-
perturbative approach. Anyway, the set of equations is such
that any given equation depends on the correlation functions
of higher order making a truncation needed. The set can be
obtained using functional techniques as shown in [19,20]
and, more recently, in [21]. We are going to describe both
the methods to derive them with a simple example while this
paper will rely on the latter. It is important to emphasize that,
whatever approach one takes, the starting point are always the
classical equations of motion satisfying a given variational
principle.

3.1 Standard technique

The general starting point is the partition function, for a the-
ory with action S[φ],

Z [ j] = N
∫

[dφ]ei S[φ]−i
∫
d4x j (x)φ(x) (4)

being φ(x) a scalar field. The idea is that this functional
integral does not change after a reparametrization φ(x) →
φ(x) + α(x), being α(x) an arbitrary function. Then, this
gives

Z [ j] → Z [ j]〈ei
∫
d4xα(x)

(
δS

δφ(x) − j (x)
)
〉 j , (5)

from which, by requiring invariance, we derive the quantum
equation of motion
〈

δS

δφ(x)

〉
j
= j (x). (6)

The procedure can be iterated taking further derivative with
respect to j and this will give all the set of Dyson–Schwinger
equations for the correlation functions. We will obtain the
final result by taking j = 0 at the end of the computation.
We note that from the lhs of Eq. (6) one gets the average on
the classical equations of motion of the theory that are the
starting point of the procedure.

From this point on, the standard technique introduce the
vertex functions 	n(φ) using a Legendre transform. This
means that, for a simple φ4 theory, we will get the first two
Dyson–Schwinger equations

∂2G1 + m2G1 + λG3
1 + 3λG2(0)

+λ

∫
d4zd4z′d4z′′

G2(x − z)G2(x − z′)G2(x − z′′)	3(z, z,
′ , z′′) = 0

G−1
2 (x − y) = (∂2 + m2)−1δ4(x − y) + 3λG2(0)δ4(x − y)

+λ

∫
dzdz′dz′′G2(x − z)

G2(x − z′)G2(x − z′′)	4(z, z,
′ , z′′, y). (7)

Written in this way, the only viable approach is through a
Fourier transform to momenta and working with integral
equations. This could hide the physical content of the equa-
tions and the deep meaning of a possible truncation.

3.2 Bender–Milton–Savage method

Bender–Milton– method [21] takes the move from Eq. (6),
again the average of the classical equations of motion, but
does not take any Legendre transform so, vertex functions are
not introduced at all. Rather, one always works with higher-
order n-point functions Gn(x1, x2, . . . , xn). This permits to
preserve the differential structure of the Dyson–Schwinger
equations making them particular useful when exact solu-
tions are known. This will give for a φ4 theory [13]

∂2G1 + m2G1 + λG3
1 + 3λG2(0) + λG3(0, 0) = 0

(∂2 + m2)G2(x − y) + 3λG2(0)G2(x − y)

+3λ[G1(x − y)]2G2(x − y)

+3λG3(0, x − y)G1(x) + λG4(0, 0, x − y)) = δ4(x − y).

(8)

In this case, we have non-trivial exact solutions for G1, being
G3(0, 0) = 0 and the the set of Dyson–Schwinger equa-
tions becomes treatable without any truncation. This would
not have been possible with the Dyson–Schwinger equations
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written in the integral form as demanded by the standard
technique.

4 Correlation functions in QCD

As already stated above, we will use the Bender–Milton–
Savage method. In order to get the Dyson–Schwinger equa-
tions, we have to start from the classical equations of motion,
given by the functional derivatives of the action as in Eq. (6),
and average on them. These are given by

∂μ∂μA
a
ν − α−1∂ν(∂ · Aa)

+g f abc Abμ(∂μA
c
ν − ∂ν A

c
μ)

+g f abc∂μ(Ab
μA

c
ν) + g2 f abc f cde AbμAd

μA
e
ν

= g f abc∂ν(c̄
bcc) + g

∑
q,i

q̄ iγνT
aqi + jaν

∂μ∂μc
a + g f abc∂μ(Ab

μc
c) = εa

(i /∂ + gT · /A − mq)q
i = ηiq . (9)

Letters a, b, c, . . . = 1, . . . , 8 are for gluons and i, j, k, l, . . .
= 1, 2, 3 are for colors. The scalar product runs on the former.
Flavors are identified with the letter q = u, d, s, c, t, b. We
fix the gauge to the Landau gauge, α → 0, and c, c̄ are the
ghost fields. Averaging on the vacuum state and dividing by
the partition function ZQCD[ j, ε̄, ε, η̄q , ηq ]

∂2G( j)a
1ν (x)

+g f abc(〈Abμ∂μA
c
ν〉

−〈Abμ∂ν A
c
μ〉)Z−1

QCD[ j, ε̄, ε, η̄q , ηq ]
+g f abc∂μ〈Ab

μA
c
ν〉Z−1

QCD[ j, ε̄, ε, η̄q , ηq ]
+g2 f abc f cde〈AbμAd

μA
e
ν〉Z−1

QCD[ j, ε̄, ε, η̄q , ηq ]
= g f abc〈∂ν(c̄

bcc)〉Z−1
QCD[ j, ε̄, ε, η̄q , ηq ]

+g
∑
q,i

〈q̄iγνT
aqi 〉Z−1

QCD[ j, ε̄, ε, η̄q , ηq ] + jaν

∂2P(ε)a
1 (x) + g f abc∂μ〈Ab

μc
c〉Z−1

QCD[ j, ε̄, ε, η̄q , ηq ] = εa

(i /∂ − mq)q
(η)i
1 + gT · 〈 /Aqi 〉Z−1

QCD[ j, ε̄, ε, η̄q , ηq ] = ηiq .

(10)

The one-point functions are given by

G( j)a
1ν (x)ZQCD[ j, ε̄, ε, η̄q , ηq ] = 〈Aa

ν(x)〉
P(ε)a

1 (x)ZQCD[ j, ε̄, ε, η̄q , ηq ] = 〈ca(x)〉
q(η)i

1 (x)ZQCD[ j, ε̄, ε, η̄q , ηq ] = 〈qi (x)〉. (11)

These represent the 1-point function for the gluon, ghost and
quark fields respectively. Deriving once with respect to the
currents, at the same point because of the averages on the

vacuum (see [21]), one has

G( j)ab
2νκ (x, x)ZYM [ j, ε̄, ε] + G( j)a

1ν (x)G( j)b
1κ (x)ZYM [ j, ε̄, ε]

= 〈Aa
ν(x)A

b
κ (x)〉

H (ε)ab
2 (x, x)ZYM [ j, ε̄, ε]

+P(ε)a
1 (x)P(ε)b

1 (x)ZYM [ j, ε̄, ε] = 〈cb(x)ca(x)〉
H̄ (ε)ab

2 (x, x)ZYM [ j, ε̄, ε]
+P̄(ε)a

1 (x)P̄(ε)b
1 (x)ZYM [ j, ε̄, ε] = 〈c̄b(x)c̄a(x)〉

P(ε)ab
2 (x, x)ZYM [ j, ε̄, ε] + P̄(ε)a

1 (x)P(ε)b
1 (x)ZYM [ j, ε̄, ε]

= 〈c̄b(x)ca(x)〉
∂μG

( j)ab
2νκ (x, x)ZYM [ j, ε̄, ε]

+∂μG
( j)a
1ν (x)G( j)b

1κ (x)ZYM [ j, ε̄, ε]
= 〈∂μA

a
ν(x)A

b
κ (x)〉

K (ε, j)ab
2ν (x, x)ZYM [ j, ε̄, ε]

+P(ε)a
1 (x)G( j)b

1ν (x)ZYM [ j, ε̄, ε]
= 〈ca(x)Ab

ν(x)〉
/G( j)a

1 (x)q(η)i
1 (x)ZQCD[ j, ε̄, ε, η̄q , ηq ]

+ /W (η)ai
q (x, x)ZQCD[ j, ε̄, ε, η̄q , ηq ] = 〈 /Aaqi (x)〉

S(η)i j
q (x, x)ZQCD[ j, ε̄, ε, η̄q , ηq ]

+q̄(η)i
1 (x)q(η) j

1 (x)ZQCD[ j, ε̄, ε, η̄q , ηq ]
= 〈q̄i (x)q j (x)〉

J (η)ai j
qμ (x, x)ZQCD[ j, ε̄, ε, η̄q , ηq ]

+q̄(η)i
1 (x)γμT

aq(η) j
1 (x)ZQCD[ j, ε̄, ε, η̄q , ηq ]

= 〈q̄i (x)γμT
aq j (x)〉,

(12)

being W (η)ai
qμ (x, y) = δG( j)a

1μ (x)/δηiq(y), J (η)ai j
qμ (x, y) =

γμT aδq(η)i
1 (x)/δη j

q(y) = γμT aS(η)i j
q (x, y). Deriving twice

one has

G( j)abc
3νκρ (x, x, x)ZQCD[ j, ε̄, ε, η̄q , ηq ]

+G( j)ab
2νκ (x, x)G( j)c

1ρ (x)ZQCD[ j, ε̄, ε, η̄q , ηq ] +
G( j)ac

2νρ (x, x)G( j)b
1κ (x)ZYM [ j, ε̄, ε]

+G( j)a
1ν (x)G( j)bc

2κρ (x, x)ZQCD[ j, ε̄, ε, η̄q , ηq ] +
G( j)a

1ν (x)G( j)b
1κ (x)G( j)c

1ρ (x)ZQCD[ j, ε̄, ε, η̄q , ηq ]
= 〈Aa

ν(x)A
b
κ(x)Ac

ρ(x)〉. (13)

This give us the first set of Schwinger-Dyson equations as

∂2G( j)a
1ν (x) + g f abc(∂μG( j)bc

2μν (x, x) + ∂μG( j)b
1μ (x)G( j)c

1ν (x)

−∂νG
( j)μbc
2μ (x, x) − ∂νG

( j)b
1μ (x)G( j)μc

1 (x))
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+g f abc∂μG( j)bc
2μν (x, x) + g f abc∂μ(G( j)b

1μ (x)G( j)c
1ν (x))

+g2 f abc f cde(G( j)μbde
3μν (x, x, x)

+G( j)bd
2μν (x, x)G( j)μe

1 (x)

+G( j)eb
2νρ (x, x)G( j)ρd

1 (x) + G( j)de
2μν (x, x)G( j)μb

1 (x) +
G( j)μb

1 (x)G( j)d
1μ (x)G( j)e

1ν (x)) = g f abc(∂ν P
(ε)bc
2 (x, x)

+∂ν(P̄
(ε)b
1 (x)P(ε)c

1 (x))) + g
∑
q,i

J (η)aii
qν (x, x)

+g
∑
q,i

q̄(η)i
1 (x)γνT

aq(η)i
1 (x) + jaν

∂2P(ε)a
1 (x) + g f abc∂μ(K (ε, j)bc

2μ (x, x)

+P(ε)b
1 (x)G( j)c

1μ (x)) = εa

(i /∂ − mq)q
(η)i
1 (x) + gT · /G( j)

1 (x)q(η)i
1 (x)

+gT · /W (η)i
q (x, x)q(η)i

1 (x) = ηiq . (14)

Setting the currents to zero and noticing that, by trans-
lation invariance, is G2(x, x) = G2(x − x) = G2(0),
G3(x, x, x) = G3(0, 0), K2(x, x) = K2(0), W (η)a(x, x) =
W (η)a(0) and Jqν(x, x) = Jqν(0), we get

∂2Ga
1ν(x) + g f abc(∂μGbc

2μν(0) + ∂μGb
1μ(x)Gc

1ν(x)

−∂νG
νbc
2μ (0) − ∂νG

b
1μ(x)Gμc

1 (x))

+g f abc∂μGbc
2μν(0) + g f abc∂μ(Gb

1μ(x)Gc
1ν(x))

+g2 f abc f cde(Gμbde
3μν (0, 0) + Gbd

2μν(0)Gμe
1 (x)

+Geb
2νρ(0)Gρd

1 (x) + Gde
2μν(0)Gμb

1 (x) +
Gμb

1 (x)Gd
1μ(x)Ge

1ν(x))

= g f abc(∂νP
bc
2 (0) + ∂ν(P̄

b
1 (x)Pc

1 (x)))

g
∑
q,i

γνT
aSiiq (0) + g

∑
q,i

q̄ i1(x)γνT
aqi1(x)

∂2Pa
1 (x) + g f abc∂μ(Kbc

2μ(0) + Pb
1 (x)Gc

1μ(x)) = 0

(i /∂ − mq)q
i
1(x) + gT · /G1(x)q

i
1(x)

+gT · /W i
q(0)qi1(x) = 0. (15)

The Schwinger–Dyson equation for the two-point func-
tions can be obtained by further deriving Eq.(14). One has

∂2G( j)ad
2νκ (x − y) + g f abc(∂μG( j)bcd

3μνκ (x, x, y)

+∂μG( j)bd
2μκ (x − y)G( j)c

1ν (x) + ∂μG( j)b
1μ (x)G( j)cd

2νκ (x − y)

−∂νG
( j)μbcd
3μκ (x, x, y) − ∂νG

( j)bd
2μκ (x − y)G( j)μc

1 (x))

−∂νG
( j)b
1μ (x)G( j)μcd

2κ (x − y))

+g f abc∂μG( j)bcd
3μνκ (x, x, y)

+g f abc∂μ(G( j)bd
2μκ (x − y)G( j)c

1ν (x))

+g f abc∂μ(G( j)b
1μ (x)G( j)cd

1νκ (x − y))

+g2 f abc f cge(G( j)μbged
4μνκ (x, x, x, y)

+G( j)bgd
3μνκ (x, x, y)G( j)μe

1 (x)

+G( j)bg
2μν (x, x)G( j)μed

2κ (x − y)

+G( j)acd
3νρκ (x, x, y)G( j)ρb

1 (x)

+G( j)eb
2νρ (x, x)G( j)ρgd

2κ (x − y)

+G( j)ge
2νρ (x, x)G( j)ρbd

2κ (x − y)

+G( j)μg
1 (x)G( j)ged

3μνκ (x, x, y) +
G( j)μbd

2κ (x − y)G( j)g
1μ (x)G( j)e

1ν (x)

+G( j)μb
1 (x)G( j)gd

2μκ (x − y)G( j)e
1ν (x)

+G( j)μb
1 (x)G( j)g

1μ (x)G( j)ed
2νκ (x − y))

= g f abc(∂νK
( jε)bcd
3κ (x, x, y)

+∂ν(P̄
(ε)b
1 (x)K ( jε)cd

2κ (x, y)))

+∂ν(K̄
( jε)bd
2κ (x, y)P(ε)c

1 (x)))

+g
∑
q,i

J (η)i iad
q1νκ (0, x − y)

+g
∑
q,i

Q̄(η)id
κ (x − y)γνT

aq(η)i
1 (x)

+g
∑
q,i

q̄(η)i
1 (x)γνT

aQ(η)id
κ (x − y) + δadgνκδ4(x − y)

∂2P(ε)ad
2 (x − y) + g f abc∂μ(K (ε, j)bcd

3μ (x, x, y)

+P(ε)bd
2 (x − y)G( j)c

1μ (x)

+P(ε)b
1 (x)K ( jε)cd

2μ (x − y)) = δadδ
4(x − y)

∂2K ( jε)ad
2κ (x − y) + g f abc∂μ(L(ε, j)bcd

2μκ (x, x, y)

+K ( jε)bd
2κ (x − y)G( j)c

1μ (x)

+P(ε)b
1 (x)G( j)cd

2μκ (x − y)) = 0

(i /∂ − mq)S
(η)i j
q (x − y) + gT · /G( j)

1 (x)S(η)i j
q (x − y)

+gT · /W (η) j
1q (x, x, y)q(η)i

1 (x)

+gT · /W (η)
(x, x)S(η)i j

q (x − y) = δi jδ
4(x − y)

∂2W (η)ai
qν (x, y) + g f abc(∂μW (η)bci

1qμν (x, x, y)

+∂μW (η)bi
qμ (x, y)G( j)c

1ν (x)

+∂μG( j)b
1μ (x)W (η)ci

qν (x, y)

−∂νW
(η)μbci
1qμ (x, x, y) − ∂νW

(η)bi
qμ (x, y)G( j)μc

1 (x)

−∂νG
( j)b
1μ (x)W (η)μci

q (x, y))

+g f abc∂μW (η)bci
1qμν (x, x, y)

+g f abc∂μ(W (η)bi
qμ (x, y)G( j)c

1ν (x))

+g f abc∂μ(G( j)b
1μ (x)W (η)ci

qν (x, y))
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+g2 f abc f cde(W (η)μbdei
2qμν (x, x, x, y)

+W (η)bdi
1qμν (x, x, y)G( j)μe

1 (x)

+G( j)bd
2μν (x, x)W (η)μei

q (x, y)

+W (η)ebi
1qνρ (x, x, y)G( j)ρd

1 (x)

+Geb
2νρ(x, x)W (eta)ρdi (x, y)

+W (eta)dei
1qμν (x, x, y)Gμb

1 (x)

+G( j)de
2μν (x, x)W (η)μbi

q (x, y) +
W (η)μbi

q (x, y)G( j)d
1μ (x)G( j)e

1ν (x)

+G( j)μb
1 (x)W (η)di

qμ (x, y)G( j)e
1ν (x)

+G( j)μb
1 (x)G( j)d

1μ (x)W (η)ei
qν (x, y))

= g f abc(∂νY
(ε)bci
1q (x, x, y)

+∂ν(Ȳ
(ε)bi
q (x, y)P(ε)c

1 (x, y) + P̄(ε)b
1 (x)Y (ε)ci

q (x)))

+g
∑
j

J (η)aj ji
1qν (x, x, y)

+g
∑
j

q̄(η) j
1 (x)γνT

aS(η) j i
q (x, y)

(i /∂ − mq)Q
(η)ia
μ (x, y) + gT · /G( j)a

2μ (x, y)q(η)i
1 (x)

+gT · /G( j)
1 (x)Q(η)ia

μ (x, y)

+gT · /Z(η)ia
qμ (x, x, y)q(η)i

1 (x)

+gT · /W (η)i
q (x, x)Q(η)ia

μ (x, y) = 0. (16)

We have assumed 〈q̄q̄〉 = 0, 〈q̄ ′q〉 = 0 for q ′ �= q,
Y (ε)b...i
nq (x, y, . . . , z) = δP(ε)b...

n+1 (x, y, . . .)/δηiq , Q(η)ia
μ (x −

y) = δq(eta)i
1 (x)/δ jaμ(y), J (η)ai jk

1qμ (x, y, z) = δ J (η)ai j
qμ (x, y)/

δηkq(z) = γμTaδS
(η)i j
q (x, y)/δηkq(z),W

(η)a...i
nqμ (x, y, . . . , z) =

δG( j)a...
n+1μ (x, y, . . .)/δη j

q(z). Note that, for n = 0, we omit the
index, e.g. W0 = W . This yields, setting currents to zero and
using translation invariance,

∂2Gad
2νκ (x − y) + g f abc(∂μGbcd

3μνκ(0, x − y)

+∂μGbd
2μκ(x − y)Gc

1ν(x) + ∂μGb
1μ(x)Gcd

2νκ (x − y)

−∂νG
μbcd
3μκ (0, x − y) − ∂νG

bd
2μκ(x − y)Gμc

1 (x))

−∂νG
b
1μ(x)Gμcd

2κ (x − y))

+g f abc∂μGbcd
3μνκ(0, x − y)

+g f abc∂μ(Gbd
2μκ(x − y)Gc

1ν(x))

+g f abc∂μ(Gb
1μ(x)Gcd

1νκ (x − y))

+g2 f abc f cge(Gμbged
4μνκ (0, 0, x − y)

+Gbgd
3μνκ(0, x − y)Gμe

1 (x) + Gbg
2μν(0)Gμed

2κ (x − y)

+Gacd
3νρκ(0, x − y)Gρb

1 (x) + Geb
2νρ(0)Gρgd

2κ (x − y)

+Gge
2νρ(0)Gρbd

2κ (x − y) + Gμb
1 (x)Gged

3μνκ(0, x − y)

+Gμbg
2κ (x − y)Gd

1μ(x)Ge
1ν(x)

+Gμb
1 (x)Ggd

2μκ(x − y)Ge
1ν(x)

+Gμb
1 (x)Gg

1μ(x)Ged
2νκ (x − y))

= g f abc(∂νK
bcd
3κ (0, x − y) + ∂ν(P̄

b
1 (x)Kcd

2κ (x − y)))

+∂ν(K̄
bd
2κ (x − y)Pc

1 (x)))

+g
∑
q,i

J iiadq1νκ (0, x − y)

+g
∑
q,i

Q̄id
κ (x − y)γνT

aqi1(x)

+g
∑
q,i

q̄ i1(x)γνT
aQid

κ (x − y) + δadgνκδ4(x − y)

∂2Pad
2 (x − y) + g f abc∂μ(Kbcd

3μ (0, x − y)

+Pbd
2 (x − y)Gc

1μ(x)

+Pb
1 (x)Kcd

2μ(x − y)) = δadδ
4(x − y)

∂2Kad
2κ (x − y) + g f abc∂μ(Lbcd

2μκ(0, x − y) +
Kbd

2κ (x − y)Gc
1μ(x) + Pb

1 (x)Gcd
2μκ(x − y)) = 0

(i /∂ − mq)S
i j
q (x − y) + gT · /G1(x)S

i j
q (x − y)

+gT · /W j
1q(0, x − y)qi1(x)

+gT · /W(0)Si jq (x − y) = δi jδ
4(x − y)

∂2Wai
qν(x, y) + g f abc(∂μWbci

1qμν(0, x − y)

+∂μWbi
qμ(x, y)Gc

1ν(x) + ∂μGb
1μ(x)Wci

qν(x, y)

−∂νW
μbci
1qμ (0, x − y)

−∂νW
bi
qμ(x, y)Gμc

1 (x)

−∂νG
b
1μ(x)Wμci

q (x, y))

+g f abc∂μWbci
1qμν(0, x − y)

+g f abc∂μ(Wbi
qμ(x, y)Gc

1ν(x))

+g f abc∂μ(Gb
1μ(x)Wci

qν(x, y))

+g2 f abc f cde(Wμbdei
2qμν (0, 0, x − y)

+Wbdi
1qμν(0, x − y)Gμe

1 (x)

+Gbd
2μν(0)Wμei

q (x, y)

+Webi
1qνρ(0, x − y)Gρd

1 (x)

+Geb
2νρ(0)W ρdi

q (x, y)

+Gde
2μν(0)Wμbi

q (x, y) + Wdei
1qμν(0, x − y)Gμb

1 (x) +
Wμbi

q (x, y)Gd
1μ(x)Ge

1ν(x) + Gμb
1 (x)Wqμ

di (x, y)Ge
1ν(x)

+Gμb
1 (x)Gd

1μ(x)Wei
qν(x, y))

= g f abc(∂νY
bci
1q (0, x − y) + ∂ν(Ȳ

bi
q (x, y)Pc

1 (x, y)

+P̄b
1 (x)Y ci

q (x, y)))

123
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+g
∑
j

J a j j i1qν (0, x − y) + g
∑
j

q̄ j
1 (x)γνT

aS ji
q (x, y)

(i /∂ − mq)Q
ia
μ (x, y) + gT · /G( j)a

2μ (x, y)qi1(x)

+gT · /G1(x)Q
ia
μ (x, y) + gT · /Zia

qμ(0, x − y)qi1(x)

+gT · /W i
q(0)Qia

μ (x, y) = 0. (17)

5 ’t Hooft limit

We will give here an approximate solution to the set of equa-
tions we obtained in the preceding section. The technique we
will use is an iterative one starting from the exact solutions
we obtained or the 1- and 2-point functions of the Yang-Mills
theory [13]. These correlation functions will be modified by
the presence of quarks but, in a first iteration, we assume
they are a good non-perturbative approximation working well
in the deep infrared limit. In this way, we will be able to
derive a confining Nambu-Jona-Lasinio approximation. We
start from the set (15) and take

Pc
1 (x) = 0, P̄c

1 (x) = 0. (18)

For symmetry properties of P2 under exchange of indexes
the set reduces to

∂2Ga
1ν(x) + g f abc(∂μGbc

2μν(0)

+∂μGb
1μ(x)Gc

1ν(x) − ∂νG
νbc
2μ (0) − ∂νG

b
1μ(x)Gμc

1 (x))

+g f abc∂μGbc
2μν(0) + g f abc∂μ(Gb

1μ(x)Gc
1ν(x))

+g2 f abc f cde(Gμbde
3μν (0, 0) + Gbd

2μν(0)Gμe
1 (x)

+Geb
2νρ(0)Gρd

1 (x) + Gde
2μν(0)Gμb

1 (x) +
Gμb

1 (x)Gd
1μ(x)Ge

1ν(x)) = g
∑
q,i

γνT
aSiiq (0)

+g
∑
q,i

q̄ i1(x)γνT
aqi1(x)

(i /∂ − M̂q)q
i
1(x)

+gT · /G1(x)q
i
1(x) = 0. (19)

We have introduced the quark mass matrix

M̂i
q = mq I − gT · /W i

q(x, x). (20)

We note that is degenerate with respect the color index. Now,
we write the expected solution in the form in the Landau
gauge

Ga
1ν(x) = ηaνφ(x)

Gbd
2μν(x − y) =

(
gμν − ∂μ∂ν

∂2

)
δbd�(x − y) (21)

being ηaν some numerical coefficients, φ(x) a scalar field and
�(x−y) the propagator. We will get for the 1-point functions

ηaν ∂2φ(x) + 2Ng2�(0)ηaνφ(x) + Ng2ηaνφ3(x)

= g
∑
q,i

γνT
aSiiq (0) + g

∑
q,i

q̄ i1(x)γνT
aqi1(x)

(i /∂ − M̂i
q)q

i
1(x) + gT · /ηφ(x)qi1(x) = 0. (22)

In order to understand the behavior of the η−symbols, we
work out the case for SU(2) where the proof of their existence
is straightforward. Indeed, in this case, they can be defined
as

ηaμ = ((0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)), (23)

that yields

η1
μ = (0, 1, 0, 0), η2

μ = (0, 0, 1, 0), η3
μ = (0, 0, 0, 1),

(24)

that implies ηaμηaμ = 3. This generalizes to SU(N) as

ηaμηaμ = N 2 − 1. (25)

Similarly, by generalizing the SU(2) case,

ηaμηbμ = δab, (26)

and

ηaμηaν = 1

2

(
gμν − δμν

)
, (27)

being gμν the Minkowski metric and δμν the identity tensor.
We note that the number of components of ηaμ are identical
to those of γμT a , as can be checked already for the afore-
mentioned SU(2) case, as expected and the equation is con-
sistent. This permits to write for the 1-point functions, using
Eq. (25),

∂2φ(x) + 2Ng2�(0)φ(x) + Ng2φ3(x)

= 1

N2 − 1

⎡
⎣g

∑
q,i

ηaνγνT
aSiiq (0) + g

∑
q,i

q̄i1(x)ηaνγνT
aqi1(x)

⎤
⎦

(i /∂ − M̂i
q )qi1(x) + gT · /ηφ(x)qi1(x) = 0, (28)

where, in the first equation, a summation on the repeated
index a is implied giving explicitly the term η · γ · T . There-
fore, the 1-point function acquires a mass term given by
μ2

0 = Ng2�(0). Now, we apply Eq. (21) to the 2-point func-
tion set to obtain

∂2�(x − y) + 2Ng2�(0)�(x − y) + 3Ng2φ2(x)�(x − y)

= g
∑
q,i

Q̄ia
ν (x − y)γ νT aqi1(x)

+g
∑
q,i

q̄ i1(x)γ
νT aQia

ν (x − y) + δ4(x − y)

∂2Pad
2 (x − y) = δadδ

4(x − y)

(i /∂ − M̂i
q)S

i j
q (x − y)

+gT · /ηφ(x)Si jq (x − y) = δi jδ
4(x − y)

123
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∂2Wai
qν(x − y) + 2Ng2�(0)Wai

qν(x − y) + 3Ng2φ2(x)Wai
qν

= g
∑
j

q̄ j
1 (x)γνT

aS ji
q (x − y)

(i /∂ − M̂i
q)Q

ia
μ (x − y)

+gT · /ηφ(x)Qia
μ (x − y) + gT aγμ�(x − y)qi1(x) = 0.

(29)

This set of equations can be solved in the ’t Hooft limit
N � 1, keeping Ng2 constant, and Ng2 � 1. We have to
show the ordering in g for these equations, as by now we
are applying a perturbation technique for a strongly coupled
theory. This can be accomplished by a perturbation theory
devised in [28]. In order to get the right ordering of terms in
a strong coupling limit, we rescale the space-time variables
as xμ → √

Ng2xμ. E.g. this implies for the first equation in
(28)

∂2φ(x ′) + 2�(0)φ(x ′) + 3φ3(x ′)

= 1√
Ng2

√
N (N 2 − 1)

⎡
⎣∑

q,i

η · γ · T Siiq (0)

+
∑
q,i

q̄ i1(x
′)η · γ · Tqi1(x ′)

⎤
⎦ . (30)

Therefore, we realize that the RHS is at least of order
O(1/

√
Ng2) and so, negligible with respect to the LHS in the

’t Hooft limit as the scalar field scales accordingly. A similar
argument can be applied to Eq. (29). For the quark equation,
we will show in a moment that the φ field, in this approxima-
tion, will take a factor 1/

√
Ng2. Essentially, the idea, for the

gluon field, is that it is of order Ng2 while the corrections
implied by the quark field are always

√
Ng2 implying the

start of an iterative procedure to solve this system of equa-
tions. Then, our leading order equations can be written as

∂2φ0(x) + 2Ng2�(0)φ0(x) + 3Ng2φ3
0(x) = 0

(i /∂ − M̂i
q)q̂

i
1(x) = 0. (31)

Indeed, for 1-point function we have the non-trivial solution
[15]

φ0(x) =
√

2μ4

m2 + √
m4 + 2Ng2μ4

sn (p · x + χ, κ) (32)

being μ and χ arbitrary integration constants and κ =
−m2+

√
m4+2Ng2μ4

−m2−
√

m4+2Ng2μ4
. We have set m2 = 2Ng2�(0) and taken

the momenta p so that

p2 = m2 + Ng2μ4

m2 + √
m4 + 2Ng2μ4

. (33)

In this way, we are able to see the consistency of our approx-
imation as φ ∼ O(1/

√
Ng2) and then, when applied to the

LHS of the given equations, this changes them in higher order
contributions. We just observe that the leading order is non-
perturbative, due to its dependency on the coupling, and non-
trivial and so, it is consistent in the infrared limit. For this
reason, we write the second set of equations as

∂2�(x, y) + 2Ng2�(0)�(x − y) + 3Ng2φ2(x)�(x − y)

= g
∑
q,i

Q̄ia
ν (x, y)γ νT aq̂i1(x)

+g
∑
q,i

¯̂qi1(x)γ νT aQia
ν (x, y) + δ4(x − y)

∂2Pad
2 (x − y) = δadδ4(x − y)

(i /∂ − M̂i
q )Ŝi jq (x − y) = δi j δ

4(x − y)

∂2Wai
qν(x, y) + 2Ng2�(0)Wai

qν(x, y) + 3Ng2φ2(x)Wai
qν(x, y)

= g
∑
j

¯̂q j
1(x)γνT

a Ŝ ji (x − y)

(i /∂ − M̂i
q )Q̂ia

μ (x, y) + gT aγμ�(x − y)q̂i1(x) = 0. (34)

This set of equations can be solved exactly and yields the
self-consistency equations of the theory. In order to present
the solutions, we point out that the equation

∂2�0(x − y) + [m2 + 3Ng2φ2
0(x)]�0(x − y) = δ4(x − y)

(35)

has the solution

�0(p) = MẐ(μ,m, Ng2)
2π3

K 3(κ)

∞∑
n=0

(−1)n
e−(n+ 1

2 )π
K ′(κ)
K (κ)

1 − e−(2n+1)
K ′(κ)
K (κ)

π
(2n + 1)2 1

p2 − m2
n + iε

(36)

Here we have set

M =
√
m2 + Ng2μ4

m2 + √
m4 + 2Ng2μ4

, (37)

123
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and

Ẑ(μ,m, Ng2) = 1

4

(m2 + √
m4 + 2Ng2μ4)

7
2 [N 2g4μ8 + 2m2(m2 + √

m4 + 2λμ4)(m4 + 2Ng2μ4)]
√
m4 + 2Ng2μ4 + m2

√
m4 + 2Ng2μ4(6N 2g4μ12m2 + N 3g6μ12

√
m4 + 2Ng2μ4

+19N 2g4μ8m6 + 9N 2g4μ8m4
√
m4 + 2Ng2μ4 + 16Ng2μ4m10

+ 2Ng2μ4m8
√
m4 + 2Ng2μ4 + 4m12

√
m4 + 2Ng2μ4)

. (38)

The mass spectrum is given by

mn = (2n + 1)
π

2K (κ)

√
m2 + Ng2μ4

m2 + √
m4 + 2Ng2μ4

.

(39)

Then,

m2 = 2Ng2MẐ(μ,m, Ng2)
2π3

K 3(κ)

∞∑
n=0

(−1)n
e−(n+ 1

2 )π
K ′(κ)
K (κ)

1 − e−(2n+1)
K ′(κ)
K (κ)

π
(2n + 1)2

×
∫

dd p

(2π)d

1

p2 − (2n + 1)2M2 + iε
. (40)

This self-consistency equation provides the proper spectrum
of a Yang–Mills theory with no fermions [15], in very close
agreement with lattice data. Therefore, we get immediately

Ŝi jq (x, y) = δi j (i /∂ − M̂i
q )−1δ4(x − y)

Q̂ia
μ (x, y) = −g

∫
d4y′ ∑

j

Ŝi jq (x − y′)T aγμ�(y′, y)q̂ j
1 (y′)

Wai
qν(x, y) = g

∫
d4y′�0(x − y′)

∑
j

¯̂q j
1(y′)γνT

a Ŝ ji
q (y′ − y)

�(x, y) = �0(x − y) + g
∫

d4y′�0(x − y′)
⎡
⎣∑

q,i

¯̂Qia
ν (y′, y)γ νT aq̂i1(y′)

+
∑
q,i

¯̂qi1(y′)γ νT a Q̂ia
ν (y′, y)

⎤
⎦ . (41)

The last equation is an integral equation to be solved itera-
tively. This will yield the corrections to the gluon propagator.

Similarly, for the quark mass we have to solve the self-
consistent system of equations

(i /∂ − M̂i
q)q̂

i
1(x) = 0

(i /∂ − M̂i
q)Ŝ

i j
q (x − y) = δi jδ

4(x − y), (42)

given the mass matrix

M̂i
q = mq I − g2

∫
d4y′�0(x − y′)T aγ ν

∑
k

¯̂qk1(y′)γνT
a Ŝkiq (y′ − x) (43)

that couples both. This set will yield the quark propagator.
These equations can be written as

(i /∂ − mq)q̂
i
1(x) = −g2

∫
d4y′�0(x − y′)T aγ ν

∑
j

¯̂q j
1(y

′)γνT
a Ŝ ji

q (y′ − x)q̂i1(x)

(i /∂ − mq)Ŝ
i j
q (x − y) = δi jδ

4(x − y)

−g2
∫

d4y′�0(x − y′)T aγ ν

∑
k

¯̂qk1(y′)γνT
a Ŝkiq (y′ − x)Ŝi jq (x − y) (44)

At this stage, we can act perturbatively by iterating on the
leading order solutions. We will see that the solution is
consistent as it should. Then, the first approximation for
q̂i1(x) = qi0(x) is the free particle solution. The second equa-
tion will yield the approximation

�i
q(x, x) = g2

∫
d4y′�0(x − y′)T aγ ν

∑
j

¯̂q j
0(y

′)γνT
a Ŝ ji

0q(y
′ − x) (45)

that is a non-local Nambu–Jona–Lasinio approximation pro-
vided we identify Ŝ j i

0q(y
′ − x) with the free Dirac propagator.

6 Dynamical chiral symmetry breaking and
confinement in the ’t Hooft limit

We now discuss how dynamical chiral symmetry breaking
arises naturally in the ’t Hooft limit giving also a condition
for confinement of quarks. In order to do this we need to
evaluate the quark propagator. We consider Eq. (42) and we

123



Eur. Phys. J. C (2020) 80 :707 Page 9 of 11 707

take the Nambu–Jona–Lasinio approximation. One has

(i /∂ − mq + �i
N J L(x, x))Ŝi jq (x − y) = δi jδ

4(x − y) (46)

being the quark self-energy

�i
N J L(x, x) = g2

∫
d4y′�0(x − y′)T aγ ν

∑
j

¯̂q j
0(y

′)γνT
a Ŝ ji

0q(y
′ − x). (47)

We realize that the non-local kernel comes out from the gluon
propagator �0(x − y). We note that

�i
N J L(p) = g2

∫
d4 p1

(2π)4 �0(p1)T
aγ ν

∑
j

¯̂q j
0(p)γνT

a Ŝ ji
0q(p1 − p). (48)

Quark self-energy says us that the corrections to the quark
propagator can depend on momenta. So, we will have dynam-
ical symmetry breaking until a solution for the quark mass
can be found. When the on-shell mass condition fails, varying
the coupling, we will have a confined quark. This is a possi-
ble definition of quark confinement given by Gribov [29] and
Roberts and Williams [19]. Therefore, we compute the gap
equation in the limit of very low momenta. This will yield

Mq = mq − Tr�i
N J L(0) (49)

where the trace is over flavors, colors and spinor indexes.
This yields

Mq = mq + N f (N 2 − 1)Ng2

2

∫
d4 p

(2π)4 �0(p)
Mq

p2 + M2
q

(50)

Fig. 1 Equation of the effective mass, μ(x, y), as a function of Mq/�

and αs and fixing m0 = 0.417. Here N = 3, N f = 6, mq = mu =
2 MeV and � = 1 GeV

having moved to Euclidean. This equation admits a real solu-
tion for the local limit �0(p) → constant for a critical
value of the coupling g. This implies a free quark and so,
no confinement. In the general case, from the gluon propa-
gator Eq. (36), we can write (in the Euclidean limit)

�0(p) =
∞∑
n=0

Bn

p2 + m2
n

(51)

with the mass spectrum, mn , given in Eq. (39). We assume
no degeneracy between mn and Mq and we approximate the
gluon propagator in Eq. (36) with the correction to the mass
m2 neglected. This is a fairly good approximation as shown
in [15]. So, we have to evaluate

Mq = mq + N f (N 2 − 1)Ng2

2

∫
d4 p

(2π)4

∞∑
n=0

Bn

p2 + m2
n

Mq

p2 + M2
q
. (52)

The integral can be evaluated exactly when a cut-off � is
used, as usual for Nambu–Jona–Lasinio models. This yields

Mq = mq + N f (N 2 − 1)Ng2

16π2

∞∑
n=0

BnMq

2(m2
n − M2

q )[
m2

n ln

(
1 + �2

m2
n

)
− M2

q ln

(
1 + �2

M2
q

)]
. (53)

This equation is amenable to a numerical treatment. It should
be solved with the conditions Mq ≥ 0 and Mq � � that
is, the effective mass of the quark should not exceed the
ultraviolet cut-off representing, at least, the boundary of the
region where asymptotic freedom starts to set in (generally
taken at � ≈ 1 GeV). We can normalize this equation to the
cut-off � by introducing the new variables x = m0/� and
y = Mq/� having taken mn = (2n + 1)m0. The mass m0

can be assumed to be that of the σ meson or f(500) that we
fix to m0 = 0.417 GeV. Then,

y = mq

�
+ καs

∞∑
n=0

Bn y

(2n + 1)2x2 − y2

[
(2n + 1)2x2 ln

(
1 + 1

(2n + 1)2x2

)

−y2 ln

(
1 + 1

y2

)]
(54)

being κ = N f (N 2 − 1)N/8π and αs = g2/4π . We note
that the cut-off is completely disappeared except for the ratio
mq/� that, for the light quarks, is negligible small. The result
for Eq. (54), written in implicit form
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Fig. 2 Section curves of
μ(x, y), as a function of Mq/�,
for different values of αs . We
consider unphysical the region
with Mq/� > 1

μ(x, y) = y − mq

�
− καs

∞∑
n=0

Bn y

(2n + 1)2x2 − y2

[
(2n + 1)2x2 ln

(
1 + 1

(2n + 1)2x2

)
− y2 ln

(
1 + 1

y2

)]
,

(55)

and fixing x = m0/� as said above, is given in Fig. 1 where
the zeros of the function μ(x, y) are of interest here.

One can see that, when αs is moving from the asymp-
totic freedom region, αs < 1, toward the infrared fixed point
generally taken at αs = π , the number of solutions moves
from one simple root, very near 0, where the quark retains
its small mass, to 3 roots with the quark gaining a dynamical
mass and the root near 0 persisting but becoming negative
and so, unphysical. Such a scenario is better appreciated in
Fig. 2.

This implies that, the chiral symmetry, if quarks would be
massless, is broken. It is however interesting to note that there
is a critical coupling beyond which the effective mass could
overcome the cut-off entering into an unphysical region. This
is for αs ≈ 0.5, given the value of m0 we chose.

Indeed, this particular value of the coupling can be evalu-
ate exactly and can give a confinement condition that applies
quite generally to light quarks (u,d,s). This holds when the
confinement criteria we stated above applies, in agreement
with [19,29], that is the on-shell quark mass fails for the
propagator. This is given by assuming that that we evaluate
Eq. (55) with the condition y = Mq/� < 1. So, the value
Mq = � provides a confinement condition. We will get from
Eq. (55)

αs = min
q=u,d,s

1 − mq
�

κξ
(56)

being ξ given by

ξ =
∞∑
n=0

Bn

(2n + 1)2(m0/�)2 − 1[
(2n + 1)2(m0/�)2 ln

(
1 + 1

(2n+1)2(m0/�)2

)
− ln 2

]

(2n + 1)2(m0/�)2 − 1
.

(57)

For the values we have chosen, we get αs ≈ 0.5105 in agree-
ment with our previous qualitative analysis derived from the
breaking of the chiral symmetry. So, in ordinary QCD such
a minimum exists and the theory is confining.

7 Conclusions

We have derived the set of Dyson–Schwinger equations for
QCD for 1- and 2-point correlation functions. We have seen
that they can be cast in a treatable form in the ’t Hooft limit.
The main aim of this effort is to present a proof of confine-
ment for the theory.

Indeed, in the ’t Hooft limit, we were able to show how
the transition from the regime of dynamical breaking of sym-
metry transits to confinement, deriving a general condition
for confinement of light quarks that is satisfied by QCD. We
hope in future works to extend this analysis.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There are no data
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