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Abstract We take a fresh look at Feynman diagrams in the
spinor-helicity formalism. Focusing on tree-level massless
QED and QCD, we develop a new and conceptually sim-
ple graphical method for their calculation. In this pictorial
method, which we dub the chirality-flow formalism, Feyn-
man diagrams are directly represented in terms of chirality-
flow lines corresponding to spinor inner products, without
the need to resort to intermediate algebraic manipulations.
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1 Introduction

During the past decades, various techniques for calculating
scattering amplitudes have emerged, resulting in both com-
pact analytic formulae and efficient numerical approaches.
In this context, strategies for managing quantum numbers,
such as color and helicity have played a major role. Both for
color and helicity, factorized approaches, where amplitudes
have a particular color structure or helicity assignment, have
been used.

In color decomposition, amplitudes are decomposed into
color factors multiplied by smaller, gauge-invariant pieces,
so-called partial amplitudes, and various approaches exist,
differing in the way of choosing the set of vectors in which
the color decomposition is obtained [1–32]. For helicity apli-
tudes, i.e. amplitudes with assigned helicities, and in partic-
ular for partial amplitudes, the spinor-helicity formalism in
which diagrams and amplitudes are expressed in terms of
two-component Weyl spinors, has been very successful [33–
48], especially after realizing that also the polarization vec-
tors of external vector bosons can be expressed in terms of
two-component Weyl spinors. In the Weyl-van-der-Waerden
formalism [7,8,13–15,20,49–51], diagrams and amplitudes
can even be expressed in such a way as to avoid Lorentz
four-vectors entirely, using that Dirac spinors and Lorentz
four-vectors transform under the (1/2, 0) ⊕ (0, 1/2) and
(1/2, 1/2) = (1/2, 0) ⊗ (0, 1/2) representations of the
Lorentz group respectively. This is a fact which we also rely
on in this paper.
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For diagrams or amplitudes in the spinor-helicity for-
malism, particularly compact analytic expressions exist in
the form of the Parke–Taylor formula and other maximally-
helicity-violating (MHV) amplitudes [8,52–55]. However,
also helicity amplitudes with more complicated next-to-
maximally-helicity-violating (NMHV) configurations, etc.,
have been studied.

In the spinor-helicity formalism, calculations of single
Feynman diagrams, as well as complete scattering ampli-
tudes, are significantly simplified by expressing them in
terms of spinor inner products. In this paper, we take a fresh
look at Feynman diagrams in the spinor-helicity formalism
in massless QED and QCD. In an attempt to further simplify
their calculations, we extend the spinor-helicity formalism
with an intuitive pictorial representation, reminiscent of the
pictorial representations often used in the treatment of color
degrees of freedom.

In the context of the color-flow picture, a graphical rep-
resentation which provides an intuitive approach in terms of
the flow of color is used [3,19,20,28,32]. Here, indices in the
adjoint representation are converted to (pairs of) indices in
the fundamental representation of SU(N ) color, and the color
degrees-of-freedom are accounted for by considering all pos-
sible connections in the space of fundamental color indices,
i.e. all possible color flows. As an example, in a condensed
notation, the four-gluon vertex can be expressed as

(1.1)

where Vgggg(1, 2, 3, 4) denotes the color-stripped four-gluon
vertex in the color-flow picture, S(2, 3, 4) denotes the set of
permutations of the integers 2, 3, 4, and the lines represent
the color flows.

Noting that the Lorentz group algebra consists of two
copies of the (complexified) su(2) algebra, it can be antic-
ipated that an analogous graphical approach should be appli-
cable for the Lorentz group.1 Unlike the single su(3) color
algebra, this would require two different types of flow lines
– one dotted and one undotted – which can never be con-
tracted into each other, since the corresponding object would
not be Lorentz invariant. We dub this graphical approach the
chirality-flow formalism.

More concretely, the chirality-flow formalism relies on
the fact that objects carrying Lorentz indices can be con-

1 Based on the Weyl-van-der-Waerden formalism, a double-line nota-
tion analogous to the double-line notation in the color-flow picture for
spinor-helicity diagrams has been observed before [20]. A birdtrack
[4,56] based graphical formalism has also been noted [57]. However,
to the best of our knowledge, a corresponding pictorial representation,
with a directed continuous flow has not previously been formulated.

verted to objects carrying spinor indices instead. Feynman
diagrams can then be rewritten in terms of contractions of
spinor indices in a flow-like picture, similar to the color-flow
picture. For example, the four-gluon vertex can be expressed
in a similarly condensed notation as

(1.2)

where Z(2, 3, 4) denotes the set of cyclic permutations of the
integers 2, 3, 4, and the lines represent the chirality flows.

In this new graphical formalism, the contractions of the
spinor indices in Feynman diagrams are more obvious, allow-
ing for a more transparent, shorter journey from Feynman
diagrams to spinor inner products. The usual algebraic iden-
tities needed to transform a Feynman diagram into a set of
spinor inner products are directly built into the pictorial rep-
resentation.

We intend for this paper to serve as a readable introduction
for beginners to the spinor-helicity formalism, and in this
spirit we have written it in a self-contained manner, although
some basic identities are only given in Appendix A. Further
introductions and overviews can be found in [20,51,58–66].

The rest of the paper is organized as follows. In Sect. 2 we
warm up by reviewing the color-flow idea. The traditional
spinor-helicity formalism, as well as chirality-flow repre-
sentations of external particles, inner products and slashed
momenta are introduced in Sect. 3. Section 4 paves the way
for the chirality-flow Feynman rules, as we complete and
prove the validity of the chirality-flow picture for Feynman
diagrams in massless QED and QCD. The Feynman rules are
then collected in Sect. 5. In Sect. 6 we give examples, and in
Sect. 7 we summarize and conclude.

2 Color flow

As a warm-up, let us start with considering a well-known
example of a flow-like representation in the context of SU(N )
scattering amplitudes – color flow (with N colors).

In the color-flow formalism [3,19,20,28,32] the color fac-
tors of Feynman rules are converted into color-flow rules.
Color indices in the adjoint representation of SU(N ) are
thereby converted to pairs of color indices, one in the fun-
damental representation and one in the antifundamental rep-
resentation, and color factors are given by Kronecker δ’s,
connecting the fundamental index of one parton to the anti-
fundamental index of another parton. In other words, we can
write the Fierz identity for the SU(N ) generators

tai j t
a
kl = δilδk j − 1

N
δi jδkl , (2.1)
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in a graphical representation

(2.2)

where the adjoint representation is replaced by (a linear com-
bination of) flows of color.

Equation (2.2) can be seen as an example of color flow
in the case of a gluon exchanged between two quark lines,
in which case one also talks about the exchange of a U(N )
gluon in the first term, and a U(1) gluon in the second, color-
suppressed term.

For gluon exchange between a quark line and a gluon, or in
pure gluon interactions, the color-suppressed terms drop out,
and it is possible to express gluons as U(N ) gluons only. For
example, the color flows of the four-gluon vertex are given
in (1.1).

Given a diagram or amplitude one can write down all pos-
sible flows of color, and from these infer the corresponding
color-stripped amplitudes or diagrams. The color-stripped
Feynman rules in the color-flow formalism, sometimes also
referred to as the double-line formalism, come with the ben-
efit that diagrams and amplitudes are easier to calculate
and can be given a more intuitive interpretation.2 In this
paper we define a similarly intuitive picture, which we dub
the chirality-flow formalism, for Feynman diagrams in the
spinor-helicity formalism.

For future reference we define the generators t and struc-
ture constants f of the SU(N ) color algebra by

Tr
(
tatb

) = δab , (2.3)

i f abc = Tr
(
ta[tb, tc]) , (2.4)

with the indices a, b, c = 1, . . . , N 2 − 1 in the adjoint rep-
resentation of SU(N ), and the indices i, j, k, l = 1, . . . , N
in the (anti)fundamental representation. We normalize the
generators to unity in (2.3) to avoid carrying around unnec-
essary powers of 2 in QCD algebra relations. This fixes the
constant on the right-hand side of (2.1) to unity. Combin-
ing (2.3) with the algebra relation [ta, tb] = i f abctc, (2.4)
follows.

2 Various approaches for color decomposition of QCD amplitudes, or
SU(N ) amplitudes in general, exist, differing in the way of choosing
the set of vectors in which the color decomposition is obtained. The
trace [2,7–10,12–17,21,23,24,26–28,67–70] and color-flow [3,19,20,
28,32] representations have been very useful for deriving amplitudes,
and analytic formulae exist for many cases [8–10,12–17,26–28]. On
the other hand, orthogonal, group-theory based multiplet bases [1,4–
6,11,22,25,29–31,56,69,71–73] are superior for squaring amplitudes,
and adjoint (DDM) bases [18] may be advantageous for the pure gluon
case.

3 The basics of the spinor-helicity formalism

In this section we review some basics of the spinor-helicity
formalism, focusing on massless fermions and vector bosons
(some additional relations are given in Appendix A, and more
detailed introductions can be found in [20,51,58–66]). We
also introduce the chirality-flow representations of spinors,
spinor inner products and bispinors.

3.1 Spinors and spinor inner products

Let us first consider an incoming fermion or outgoing anti-
fermion of momentum p in the chiral, or Weyl, represen-
tation. For massless fermions and in a condensed notation
we can write the corresponding four-component spinors in
momentum space as

u(p) =
(
uL
uR

)
=

(
λ̃α̇
p

λp,β

)
, v(p) =

(
vL
vR

)
=

(
λ̃α̇
p

λp,β

)
,

(3.1)

where we have introduced the two-component Weyl spinors3

λp,β and λ̃α̇
p. The state λ̃α̇

p, with a dotted index, trans-

forms under the left-chiral ( 1
2 , 0)-representation of the

Lorentz group, while the state λp,β , with an undotted index,
transforms under the right-chiral (0, 1

2 )-representation (see
Appendix A.2). These states are projected out from the four-
component spinors by the chiral projection operators PR/L =
1
2 (1+/−γ 5), such that for example PLv(p) = (

vL
0

) =
(

λ̃α̇
p

0

)

and PRv(p) = (
0
vR

) = ( 0
λp,β

)
, where we use the Dirac

matrices in the chiral basis,

γ μ =
(

0 σμ,α̇β

σ̄
μ
βα̇ 0

)
=

(
0

√
2τμ,α̇β√

2τ̄
μ
βα̇ 0

)

,

γ 5 = iγ 0γ 1γ 2γ 3 =
(−12×2 0

0 12×2

)
. (3.2)

Here we have introduced normalized versions of the Pauli
matrices4 such that, analogous to (2.3), we have

Tr
(
τμτν

) = δμν ⇔ Tr
(
τμτ̄ ν

) = gμν . (3.3)

The spinors for outgoing fermions and incoming anti-
fermions are then given by

ū(p) ≡ u†(p)γ 0 =
(
(uR)†, (uL)†

)
=

(
λ̃p,β̇ , λα

p

)
,

v̄(p) ≡ v(p)†γ 0 =
(
(vR)†, (vL)†

)
=

(
λ̃p,β̇ , λα

p

)
, (3.4)

3 Explicit representations of the Weyl spinors are given in Eqs. (A.10)
and (A.11).
4 They are also known in the literature as Infeld-van-der-Waerden
symbols (see e.g. [62]). Explicit representations of the Pauli matrices
are given in (A.2).
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such that for example ū(p)PL = (
(uR)†, 0

) = (
λ̃p,β̇ , 0

)
and

ū(p)PR = (
0, (uL)†

) = (
0, λα

p

)
, where we have used the

Hermitian conjugate relations for massless spinors,

(λp,β)† = λ̃p,β̇ and
(
λ̃α̇
p

)† = λα
p, (3.5)

which implies for the components (λp,β)∗ = (λ̃p,β̇ ) and

(λ̃α̇
p)

∗ = (λα
p), for β = β̇ and α̇ = α.

In this paper we will use the convention of counting all
particles in a scattering process as outgoing. The four types
of outgoing spinors we need to consider are thus

(3.6)

(3.7)

(3.8)

(3.9)

where we further introduce the common bra-ket notation for
Weyl spinors, and where the left graphical rules correspond
to the conventional Feynman rules (showing fermion-flow
arrow, momentum label and helicity label) whereas in the
right pictorial rules, we use dotted lines to denote particles
with dotted indices (outgoing positive helicity) and solid lines
to denote particles with undotted indices (outgoing negative
helicity).5 Also note the arrow direction in the rightmost pic-
torial rules, which – at this point – goes against the fermion-
flow arrow direction. This arrow direction follows what we
dub a chirality flow, i.e. a flow between Weyl spinors in
the (1/2, 0)-representation (for dotted lines) or the (0, 1/2)-
representation (for solid lines).

We will find situations where the chirality-flow arrow can-
not be kept anti-aligned with respect to the fermion-flow
arrow. Nevertheless, we adopt the convention of reading all
chirality-flow expressions, such as spinor inner products, fol-
lowing the chirality-flow arrow. For convenience we collect
our conventions in Tables 1 and 2 in Appendix A.4.

5 For massless, outgoing fermions as well as anti-fermions, the positive
and negative helicity states are described by the corresponding left- and
right-chiral Weyl spinors respectively, i.e. ū+ = (

(ū+)L , (ū+)R
) =(

(ū+)L , 0
)

and ū− = (
(ū−)L , (ū−)R

) = (
0, (ū−)R

)
as well as v+ =(

(v+)L
(v+)R

)
= (

(v+)L
0

)
and v− =

(
(v−)L
(v−)R

)
= ( 0

(v−)R

)
, where we have

made the helicity labels explicit.

Spinor indices are raised and lowered by the Levi-Civita
tensor (sometimes called the spinor metric) εαβ/εα̇β̇/εαβ/εα̇β̇ ,
which we define as

ε12 = −ε21 = ε21 = −ε12 = 1 , (3.10)

such that εαβεβγ =δ
γ

α and εα̇β̇εβ̇γ̇ =δα̇
γ̇ . With our definition

of the ε-tensor above, the operations for lowering and raising
spinor indices are6

λp,α = εαβλβ
p , λ̃p,α̇ = εα̇β̇ λ̃β̇

p ,

λα
p = εαβλp,β , λ̃α̇

p = εα̇β̇ λ̃p,β̇ . (3.11)

Considering that ε is the SL(2,C) invariant object, the defini-
tions for the (antisymmetric, Lorentz invariant) spinor inner
products follow as

〈i j〉 def= 〈i || j〉 = λα
i λ j,α = εαβλi,βλ j,α = −εβαλi,βλ j,α

= −λi,βλ
β
j = −〈 j i〉 , (3.12)

[i j] def= [i || j] = λ̃i,α̇ λ̃α̇
j = εα̇β̇ λ̃

β̇
i λ̃α̇

j = −εβ̇α̇λ̃
β̇
i λ̃α̇

j

= −λ̃
β̇
i λ̃ j,β̇ = −[ j i] , (3.13)

implying in particular 〈i i〉 = [i i] = 0. Having defined
spinors and their graphical representations in the chirality-
flow picture, we can represent the spinor inner products pic-
torially as well,

(3.14)

(3.15)

where we read following the chirality-flow arrow.
Any scattering amplitude can be written in terms of

Lorentz-invariant spinor inner products, and in the following
sections we will see that we can always find corresponding
graphical representations for its Feynman diagrams in terms
of chirality-flow lines.

3.2 Four-vectors

Next, we consider Lorentz four-vectors. A four-vector pμ

can be mapped to Hermitian 2 × 2-matrices, or bispinors,7

(3.16)

(3.17)

6 Note that λp,α = −εβαλ
β
p = −λ

β
pεβα .

7 Explicit representations of momentum bispinors are given in
Eqs. (A.25) and (A.26).
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where we have introduced a slash notation for the momentum
bispinors, not to be confused with the Feynman slash. The
ordinary Lorentz four-vector transformation rules are recov-
ered by boosting and rotating the bispinors as indicated by
the spinor index structure, which translates to the statement
that Lorentz four-vectors transform under the (1/2, 1/2) =
(1/2, 0)⊗ (0, 1/2) representation of the (restricted) Lorentz
group.

Translating the index structure into the chirality-flow for-
malism allows us to define a convenient momentum-dot nota-
tion

(3.18)

If a momentum p is massless, i.e. light-like, the corre-
sponding momentum bispinors can be expressed as outer
products, or dyads, of Weyl spinors,

(3.19)

(3.20)

or in the chirality-flow picture,

(3.21)

(3.22)

where p in the right graphical rules denotes that the line ends
correspond to spinors with momentum p. If a momentum p
is a linear combination of several external momenta pi , p =∑

i ci pi with p2
i = 0 – which is always the case at tree level

– we may use the linearity of Eqs. (3.19) and (3.20) in p to
write

(3.23)

(3.24)

or in the chirality-flow picture,

(3.25)

(3.26)

It is sometimes useful to write a four-vector pμ in terms
of a spinor contraction, rather than as a bispinor. We can do
so by using (A.4) with (3.16), then using (3.19),

pμ = pα̇β τ̄
μ
βα̇ = 1√

2
λβ
p τ̄

μ
βα̇λ̃α̇

p = 1√
2
〈p|τ̄ μ|p] , (3.27)

or similarly, by using (A.4) with (3.17), then using (3.20),

pμ = p̄αβ̇τμ,β̇α = 1√
2
λ̃p,β̇ τμβ̇αλp,α = 1√

2
[p|τμ|p〉.

(3.28)

The above relations will be utilized when proving the
chirality-flow picture in Sect. 4, and in the chirality-flow
Feynman rules of the fermion propagator and the triple-gluon
vertex in Sect. 5.

As a final comment, we remind that for massless spinors
the Dirac equation separates into two massless Weyl equa-
tions, which in the spinor-helicity formalism take on a par-
ticularly simple form. For example, using (3.19) we have

(3.29)

which is easily confirmed to be true, as 〈pp〉 = 0 due to the
antisymmetry of the spinor inner products (for the other three
Weyl equations see Appendix A.3).

3.3 Polarization vectors

Aside from external spin-1/2 fermions and momentum four-
vectors we also need to treat external vector bosons, for which
the outgoing polarization vectors can also be written in terms
of Weyl spinors [33,34,40,41,45,46,59],

(3.30)

(3.31)

where pi is the vector boson momentum and r is an arbitrary
light-like reference momentum satisfying pi · r �= 0. The
subscripts in ε± denote helicity labels, and the two polariza-
tions are related by complex conjugation, i.e.

(
ε
μ
−(pi , r)

)∗ =
ε
μ
+(pi , r) .

As for any four-vector, we may trade the Lorentz index in
ε
μ
± for spinor indices using Eqs. (3.16, 3.17) and (A.7) and
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write them as bispinors,

(3.32)

(3.33)

From the bispinor representations, we note that an exter-
nal vector boson has the same numerator structure as an
external fermion–antifermion pair, giving a natural graph-
ical interpretation in terms of chirality-flow lines. Also,
the two polarization-bispinors are not directly related by
complex conjugation. Rather, viewed as matrices we have(
ε−(pi , r)

)∗ = (
ε+(pi , r)

)ᵀ, which follows from the Her-
mitian conjugation relations between Weyl spinors, (3.5).

As we will see in the next section, we can equally well
write the polarization vectors as

(3.34)

(3.35)

or again as bispinors,

(3.36)

(3.37)

Some more details are provided at the end of Appendix A.3.

4 Building the chirality-flow picture

In this section we will see that we can always cast any tree-
level Feynman diagram into a linear combination of products
of chirality flows, which – when contracted with external
spinors – result in spinor inner products. We will also be
able to express these chirality flows diagrammatically. This
sets the scene for the tree-level chirality-flow Feynman rules
in the next section. Here and in the following we work in
Feynman gauge.

4.1 A simple QED example

Let us first consider the example of single photon exchange
between two distinct fermions. We note that in the chiral
representation, the Lorentz structure of the fermion-photon
vertex may be separated into two parts, corresponding to two
different vertices

ū(p1)γ
μv(p2) =

(
λ̃1,β̇ , λα

1

) (
0

√
2τμ,β̇η√

2τ̄
μ
αγ̇ 0

) (
λ̃

γ̇
2

λ2,η

)

= √
2λ̃1,β̇ τμ,β̇ηλ2,η + √

2λα
1 τ̄

μ
αγ̇ λ̃

γ̇
2 . (4.1)

For photon exchange, i.e. two fermion-photon vertices with
an intermediate photon propagator, there are four possible
terms, corresponding to the four possible helicity combina-
tions. Focusing only on the Lorentz structure we have

(
ū(p1)γμv(p2)

)
gμν

(
ū(p3)γνv(p4)

)
∼

(4.2)

Considering the second or third term in (4.2), having the
structure τμτ̄μ, we note that the Lorentz indices can be con-
tracted using the Fierz identity. Graphically, for example for
the third term, we have in the chirality-flow picture

(4.3)
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where we have not yet applied the external spinors. This is a
graphical embodiment of the Fierz identity, and can be com-
pared to the corresponding identity for SU(3) color, (2.1). The
left diagram in (4.3) is a hybrid representation between a con-
ventional Feynman diagram and a diagram in the chirality-
flow picture. Here we let the photon line denote the group
theory structure only, in analogy with the gluon line in (2.2).8

We see that, at least in this case, the Lorentz structure of the
photon propagator in the chirality-flow picture may be rep-
resented by a double line

(4.4)

where we defined a double line to be two parallel lines with
opposing arrows, where one line is dotted and the other is
undotted.

Note that (4.3), when applied to external spinors, results
directly in the spinor inner products

τ̄
μ

αβ̇
τ γ̇ η
μ λα

1 λ̃
β̇
2 λ̃3,γ̇ λ4,η = 〈1 4〉[3 2] , (4.5)

or pictorially,9

(4.6)

In the first and fourth terms in (4.2), of the forms τμτμ and
τ̄ μτ̄μ respectively, the arrow directions in the chirality-flow
picture would – at this point – not match. For example, for
the fourth term we have (using (A.8))

(4.7)

8 The absence of the 1/N -suppressed term in (4.3), compared to Eqs.
(2.1) or (2.2), can be understood by noting that this term is canceled
against the contribution from τ̄ 0

αβ̇
τ

γ̇ η
0 . An equivalent way of viewing this

is that we are summing over the generators of U(2) in (4.3), meaning
that we should not expect an additional term.
9 We remark that the graphical appearance of (4.6) is very similar to the
one of (4.3), the difference being only in the labels of the external lines.
We will usually supply the external lines of a chirality-flow diagram
with particle labels, i.e. labels of spinor momenta, but the external lines
may in principle also be kept “free”, i.e. with spinor indices to act as
placeholders, to be supplied with particle labels at some later stage.

where we note that the dotted (undotted) lines point away
from (towards) each other. Here it is less obvious how to
proceed, but we will show that the flow picture as applied in
(4.3), the case of matching arrows, can actually be applied
here as well.

To see this we use the identity for charge conjugation of
a current10

λα
i τ̄

μ

αβ̇
λ̃

β̇
j

def= εαγ εβ̇δ̇λi,γ τ̄
μ

αβ̇
λ̃ j,δ̇

= λ̃ j,δ̇(−εγα)(−εδ̇β̇ )τ̄
μ

αβ̇
λi,γ = λ̃ j,δ̇τ

μ,δ̇γ λi,γ , (4.8)

or equivalently

〈i |τ̄ μ| j] = [ j |τμ|i〉 , (4.9)

which we have already used to relate the polarization vec-
tors in Eqs. (3.30) and (3.31) to the ones in Eqs. (3.34) and
(3.35) respectively. This means that whenever a τ̄ is squeezed
between external spinors we can trade it for a τ , or vice versa,
if we also perform the corresponding index lowering or rais-
ing operations on the spinors.

The pictorial representation of Eqs. (4.8) and (4.9) in the
hybrid representation is

(4.10)

from which we conclude that, for gauge boson exchange
between free fermions, the directions of the chirality-flow
arrows at a fermion-photon vertex may be flipped such
that the resulting diagram is one with matching chirality-
flow arrows. Once flipped, the Fierz identity (4.3) may be
used such that, for example, the fourth term in (4.2) can be
expressed as

(4.11)
where we have performed the arrow swap at the lower vertex.
Note that we could have alternatively performed the arrow
swap at the upper vertex. Graphically we see that also in this
diagram, the Lorentz structure of the photon propagator in
the chirality-flow picture may be represented by a double line
with arrows opposing each other, as in (4.4).

Therefore, in the example of single photon exchange
between fermions, we see that for every allowed combination
of external helicities we can turn the Feynman diagram into
a chirality-flow diagram.

10 In the last step we use (A.27), the relation between τ and τ̄ , which can
also be seen from the explicit matrix representation for the τ matrices,
(A.2).
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4.2 Proof for QED

We will now show that this can be done for all QED tree-level
Feynman diagrams with explicit external helicities. To do so,
we must show that it is always possible to swap the chirality-
flow arrows such that we can use the Fierz identity, (4.3),
for each contraction of vector indices. While proving this,
we will also show that we can always write gμν (or gμν) as a
double line with opposing arrows, i.e. that (4.4) always holds.

We have just seen that we can always swap the chirality-
flow arrows on a fermion line which emits a single photon,
(4.10). Similarly, it is possible to show that we can swap
the chirality-flow arrows for a fermion line which emits an
arbitrary number of photons, i.e.

(4.12)

where we use the momentum-dot notation from (3.18) for
the fermion propagators. We can prove (4.12) by using
Eqs. (3.23–3.26) to write it as

〈i |τ̄ μ1
(

|i]〈i | + |1]〈1|
)
τ̄ μ2 . . . τ̄ μn

(
|i]〈i | + |1]〈1| + · · · + |n]〈n|

)
τ̄ μn+1 | j]

= [i |τμ1
(

|i〉[i | + |1〉[1|
)
τμ2 . . . τμn

(
|i〉[i | + |1〉[1| + · · · + |n〉[n|

)
τμn+1 | j〉 , (4.13)

which is seen by applying (4.9) to transform each 〈k|τ̄ μ|l] ↔
[l|τμ|k〉.

The photons attached to the fermion line in (4.12) may be
either internal or external. If they are external, we use that
the Lorentz structure of an external photon is the same as
that of a fermion–antifermion pair connected to the fermion
line by that photon, i.e. εμ ∼ 〈i |τ̄ μ| j] as noted at the end of
Sect. 3.3. We call such a structure a pseudo-vertex, and for
each pseudo-vertex we can always adjust the chirality-flow
arrows such that the Fierz identity can be applied.

If a photon in (4.12) is internal, it must be attached to
another fermion line. In QED, we can build any Feynman dia-
gram by using internal photons to iteratively stitch together
such fermion lines. At tree level, each new fermion line
attaches to only one already existing fermion line, so we
can freely adjust the chirality-flow arrows on the new line

such that the Fierz identity holds at the attachment. Remem-
bering that the external photons are equivalent to fermion
lines, we can therefore write any Feynman diagram in such
a way that the chirality-flow arrows match, and (4.4) holds.
We conclude that any QED tree-level Feynman diagram can
be written as a chirality-flow diagram multiplied by scalar
factors from vertices, propagators, and external photons.

4.3 Proof for QCD

It remains to show that the flow picture can be applied to
QCD tree-level Feynman diagrams as well. We begin by
remarking that the fermion-boson QCD vertex and the exter-
nal polarization vectors have the same Lorentz structure as
in the QED case. What remains therefore is to understand
the Lorentz structures of the triple-gluon vertex, made up of
terms ∼ pμgνρ , and the four-gluon vertex, with terms of the
form ∼ gμνgρσ .

Let us first ignore factors of pμ from the triple-gluon ver-
tex. In this case, the metric factors gμν from the non-abelian
vertices (possibly combined with metric factors from propa-
gators) will only act to contract indices from τ or τ̄ matrices
in fermion lines, as in QED. Therefore, we can swap the
chirality-flow arrow as required, and (4.4) still holds.

Next, we include the factors of pμ. Using Eqs. (3.27) and
(3.28),

pμ = 1√
2
〈p|τ̄ μ|p] = 1√

2
[p|τμ|p〉 , (4.14)

we see that the momentum pμ can be viewed as another
type of pseudo-vertex, and we can again proceed as in the
QED case. We thus conclude that (4.4) still holds, and that
any tree-level QCD Feynman diagram with explicit helicities
can be cast as a (sum of) chirality-flow diagram(s) multiplied
by (Lorentz) scalar factors from vertices, propagators, and
external gluons.

4.4 QCD remarks

A novel feature of the QCD non-abelian vertices is the exis-
tence of disconnected Lorentz structures. For example, in the
four-gluon vertex consisting of terms of the form gμνgρσ , the
flow of Lorentz indices in gμν does not affect the flow of the
Lorentz indices in gρσ . This leads to disconnected pieces of
a chirality-flow diagram, i.e. spinor lines not related to each
other by either momentum dots or a shared double line. We
can flip the arrow direction of one disconnected piece without
affecting the arrow direction of the other.

Additionally, a new chirality-flow rule for pμ in the triple-
gluon vertex must be found. If pμ is contracted with a fermion
line or the polarization vector of an external gluon, it will
result in pμτμ = /p/

√
2 (or pμτ̄μ = /̄p/

√
2), allowing to use

123



Eur. Phys. J. C (2020) 80 :1006 Page 9 of 27 1006

(3.18) to identify

(4.15)

in these cases.
The remaining situation to consider is when the momen-

tum pμ
i is instead contracted with another momentum pν

j . In
this case, we obtain

(4.16)

for which we can choose the chirality-flow arrow indepen-
dently from the rest of the diagram. Such a term is therefore
another example of a disconnected piece of a chirality-flow
diagram.

We thus conclude that the chirality-flow rule for pμ in the
triple-gluon vertex can be taken to be (4.15). Note that due
to (4.14), we may always use the version of (4.15) required
to obtain chirality-flow arrows which match the rest of the
diagram.

5 Chirality-flow Feynman rules

In this section we will collect the chirality-flow Feynman
rules for massless QED and QCD, using the result of the
previous section that any tree-level Feynman diagram can
be cast as a (sum of) chirality-flow diagram(s). The corre-
sponding rules for external spinors and polarization vectors
have been collected in Sects. 3.1 and 3.3 already. For con-
venience we also collect the full set of Feynman rules, in
various representations, in the ‘Rosetta stones’ in Tables 1
and 2 in Appendix A.4.

5.1 Vertices

We start with the fermion-photon vertex. Suppressing spinor
indices, it is given by

(5.1)

with e and Q f being the electromagnetic coupling constant
and the charge respectively. In the Weyl representation we
can separate the vertex into two parts,

(5.2)

(5.3)

depending on the helicity configurations of the fermions.
Here we make the Weyl spinor indices explicit, and the right
graphical rules represent the two parts in the chirality-flow
picture. If the fermion–antifermion pair is a quark–antiquark
pair we have to multiply by an additional δi j̄ , with i and j̄

being the color indices of the (outgoing) quark and antiquark
respectively.

The quark–gluon vertex is similarly given by11

(5.4)

with gs denoting the strong coupling constant. Note that,
comparing to the (perhaps most common) convention where
Tr(tatb) = 1

2δab, our generators and structure constants are
a factor

√
2 larger, which affects the normalization of our

QCD vertices.
In the Weyl representation we can again separate the vertex

into two parts,

(5.5)

(5.6)

depending on the helicity configurations of the quarks.
We also need the three- and four-gluon vertices. For the

three-gluon vertex, the color and kinematic parts factorize
trivially,

11 Note that i and j̄ are the color indices of outgoing quarks and
antiquarks respectively, meaning that indices on tai j̄ , as well as color-
flow arrows are read against the fermion flow. Correspondingly, the
reading direction of f abc is clockwise. Opposite reading directions, for
both quark color (along fermion arrow) and structure constants (counter
clockwise) may be imposed without introducing additional signs. In the
color-flow picture, and with our conventions in Eqs. (2.1) and (2.3), tai j̄
is translated to δi ı̄a δia j̄ .
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×

(5.7)

where we take the graph with only color indices and a dot in
the vertex to equal i f a1a2a3 . The kinematic part can also be
written in a more condensed form as Vμ1μ2μ3

3 (p1, p2, p3) =∑
Z(1,2,3) g

μ1μ2(p1− p2)
μ3 , where Z(1, 2, 3) denotes the set

of cyclic permutations of the integers 1, 2, 3. Using Eqs. (4.4)
and (4.15) to translate gμ1μ2 and (p1 − p2)

μ3 etc. to the
chirality-flow picture, we get

×

(5.8)

where the chirality-flow arrows have been removed since they
must flow in different directions for different terms in the
sum. However, the arrow directions of the dotted and undot-
ted chirality-flow lines must always oppose each other in the
double lines (from the metric), and form a continuous flow in
the lines joined by a momentum-dot (from the momentum).
Note that since we only consider tree-level diagrams with
massless particles, the momentum parts can always be writ-
ten as linear combinations of external momenta pi , with p2

i =
0, such that we can use Eqs. (3.23–3.26) to reduce the corre-
sponding momentum bispinors to outer products, or dyads,
of momentum spinors. Using Eqs. (2.4) and (2.1), and realiz-
ing thatVμ1μ2μ3

3 (p1, p2, p3) = −Vμ1μ3μ2
3 (p1, p3, p2), we

can further translate the color part of the three-gluon vertex
to the color-flow picture, such that

×

(5.9)

where S(2, 3) denotes the set of permutations of the integers
2, 3, and where the lines below the Kronecker deltas represent
the color flows.12

For the four-gluon vertex, we translate the metric to the
chirality-flow picture in the same way as before,

×

(5.10)
where we also give the conventional graphical representation
for the color factors, as well as the graphical chirality-flow
representation for the kinematic parts. Again, the arrow direc-
tions in the chirality-flow lines must oppose each other and
be adjusted to match the rest of the diagram.

The four-gluon vertex can also be written in a more con-
densed form,

12 In the trace basis, and with our conventions in Eqs. (2.1) and (2.3,
2.4), this vertex is igs/

√
2

∑
S(2,3) Tr

(
ta1 ta2 ta3

)
Vμ1μ2μ3

3 (p1, p2, p3).

123



Eur. Phys. J. C (2020) 80 :1006 Page 11 of 27 1006

×

(5.11)
or if we sort by the same metric factors,

×

(5.12)
Translating to the chirality-flow picture, using the conven-

tional graphical representation for the color structure, we note
that this corresponds to sorting by chirality flows, such that

×

(5.13)
Note that the gluons which are chirality-flow connected

are not connected in the structure constants. Finally, we can
use Eqs. (2.1) and (2.4) to translate the color parts of the
four-gluon vertex to the color-flow picture, such that

×

(5.14)

where the lines below the Kronecker deltas represent the
color flows.13 The lines in the graphs in parentheses rep-
resent chirality flows, and we note that they correspond
to the Lorentz structure of the kinematic part Vμ1...μ4

4 =(
2gμ1μ3gμ4μ2 −gμ1μ2gμ3μ4 −gμ1μ4gμ2μ3

)
in the color-flow

decomposition.

5.2 Propagators

We also need the propagators for fermions and vector bosons.
Starting with the propagator for a massless fermion with
momentum p in QED

(5.15)

we see that – like the fermion-photon vertex – the fermion
propagator separates into two parts,

(5.16)

(5.17)

Note that since we only consider tree-level diagrams with
massless particles, the momentum can always be written as
a linear combination of external momenta pi , with p2

i = 0,
such that we can use Eqs. (3.23–3.26) to reduce the corre-
sponding momentum bispinors to outer products, or dyads,
of momentum spinors. In the case that the fermion is a quark
we have to multiply by an additional δi j̄ , with i and j̄ being
the color indices of the two ends of the quark propagator.

The propagator for a photon with momentum p is given
by

(5.18)

We recall from the previous section that – as for the three-
and four-gluon vertices – considering a full diagram, we can
translate gμν to the chirality-flow picture using (4.4), such
that

(5.19)

for which the arrow directions of the dotted and undotted
lines in the double line must oppose each other, but should
be adjusted to match the rest of the diagram. In the case of

13 In the trace basis, and with our conventions in Eqs. (2.1) and (2.3,
2.4), this vertex is ig2

s /2
∑

S(2,3,4) Tr
(
ta1 ta2 ta3 ta4

)
Vμ1μ2μ3μ4

4 .
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a gluon propagator we simply multiply by an additional δab,
with a and b being the color indices of the two ends of the
gluon propagator.14

To conclude this section, we note that we have formulated
a set of chirality-flow rules, analogous to color-flow rules. In
fact, in a sense, the flow picture works even better here than
in the case of color, since for color we have to bear in mind
the 1/N suppressed term in (2.1) for the gluon propagator,
as well as for external gluons upon squaring – as long as we
are not considering purely gluonic processes. For the Lorentz
structure, this complication does not arise.

5.3 Application

In the following we give a “recipe” for using the chirality-
flow Feynman rules. The Feynman rules are conveniently
collected in Tables 1 and 2, and concrete examples are given
in Sect. 6.

Consider a Feynman diagram with a given combination
of external (outgoing) helicities:

1. Collect all factors of ±i ,
√

2 and coupling constants from
vertices (see Sect. 5.1), as well as denominators from
propagators (Sect. 5.2) and external polarization vectors
(Sect. 3.3).

2. Assign chirality-flow lines, i.e. dotted and undotted
lines. Ignore chirality-flow directions in this step. When
assigning internal momentum labels to momentum-dots,
write the corresponding momentum in terms of external
momenta, directed as usually in Feynman diagrams.

• External fermions with positive or negative helicity
are assigned a single dotted or undotted line, respec-
tively, and a momentum label (see Eqs. (3.6–3.9)).

• External vector bosons are assigned a double line and
two momentum labels; the line corresponding to the
physical helicity (the dotted line for positive helicity,
the undotted line for negative helicity) is assigned
the physical momentum whereas the other line is
assigned the reference momentum (see Eqs. (3.32,
3.33) and (3.36, 3.37)).

• Vector boson propagators are assigned a double line,
one dotted and one undotted (see (5.19)).

• Fermion propagators are assigned a pair of successive
lines, turning from dotted to undotted (or vice versa),
joined by a momentum-dot, with the corresponding
momentum label (see Eqs. (5.16, 5.17)).

• Using the appropriate vertices, all lines are connected
in the only possible way for the Feynman diagram

14 In the color-flow picture, and with our conventions in Eqs. (2.1) and
(2.3), δab is translated to δia ı̄b δib ı̄a − 1/Nδia ı̄a δib ı̄b .

to form a chirality-flow diagram. For photon- and
gluon-fermion vertices, use either one of the chirality-
flow structures in (5.2) or (5.3) (equivalently (5.5)
or (5.6)), for three-gluon vertices use the sum of
chirality-flow structures in (5.8) (or (5.9) for the
color-ordered approach) and for four-gluon vertices
use the chirality-flow structures in (5.13) (or (5.14)
for the color-ordered approach).

3. Assign chirality-flow directions. Start with any external
chirality-flow line and assign to it a chirality-flow arrow
in an arbitrary direction.15 Follow the line through the
chirality-flow diagram, continuing through any poten-
tial momentum-dot, and assign chirality-flow arrows in
the same direction. Assign the other arrow directions
such that double lines from gauge bosons have oppos-
ing arrows. Note that non-abelian vertices will give rise
to disconnected pieces (see Sect. 4.4). For each such dis-
connected piece, independently apply the above arrow
direction rules.

Due to the sums of chirality flows from the non-abelian
vertices, each Feynman diagram is now turned into a sum of
chirality-flow diagrams. Multiplied by the collected factors
in step 1, as well as by potential color factors,16 we obtain
the result of the Feynman diagram without any non-trivial
algebraic manipulation.

If it is desired to obtain the result in conventional form with
spinor brackets, expand the momentum-dots and translate the
lines to spinor inner products.

6 Examples

In order to demonstrate how the chirality-flow picture is
applied, we give some examples. We remind the reader that
we adopt the convention of counting all particles in a scatter-
ing process as outgoing.17 The recipe for turning a Feynman
diagram into a chirality-flow diagram is given in Sect. 5.3,
and for convenience the Feynman and chirality-flow rules are
collected in Tables 1 and 2.

15 In a sum of Feynman diagrams there is no rule where and how
to set the initial chirality-flow arrow. As shown in the previous section,
chirality-flow arrow swaps are identity operations, and performing them
for each Feynman diagram independently can therefore not introduce
any relative minus signs.
16 Note that in the case of four-gluon vertices the color parts do not
trivially factorize. Due to this, depending on whether or not we work
in a color-ordered approach, color factors may or may not be collected
globally in front of the Feynman diagram; i.e. different chirality flows
may have different color factors.
17 We remind the reader that after crossing from incoming to outgoing
states, a (left-chiral) negative helicity incoming particle for instance
turns into a (left-chiral) positive helicity outgoing anti-particle, etc.
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6.1 e+e− → μ+μ−

We begin with a simple example of electron–positron anni-
hilation, creating a muon–antimuon pair through photon
exchange. We follow the recipe in Sect. 5.3 and arbitrar-
ily choose one of the possible helicity configurations for the
external fermions, considering M(0 → e−

L e
+
Rμ−

Lμ+
R ).

Step 1 asks to collect prefactors and denominators, while
step 2 requires assigning dotted lines to positive helicity par-
ticles and undotted lines to negative helicity particles, giving

(6.1)

with se+e− = (pe+ + pe−)2 = 2pe+ · pe− . From the chirality-
flow diagram, we see that we no longer need the helicity
labels, since the dotted and undotted lines give the same infor-
mation. Step 3 advises us how to add chirality-flow arrows.
We arbitrarily choose the chirality-flow arrow from the e−
to point inward and follow its line through the chirality-flow
diagram to the μ−, which then has its chirality-flow arrow
pointing outward. The arrow on the solid line is then fixed
by the double line from the photon propagator; it has to be
opposite to that of the dotted line, such that

(6.2)

which is our final result. The directed dotted and solid lines
are equivalent to the spinor inner products which we may,
if desired, convert to the more familiar square and angled
brackets using Eqs. (3.14) and (3.15) to obtain M(0 →
e−
L e

+
Rμ−

Lμ+
R ) = 2ie2

se+e−
[e−μ−]〈μ+e+〉.

The only other non-trivial diagram needed for calculat-
ing the helicity-summed result is generated by swapping the
helicities of the muons,

(6.3)

Using Eqs. (3.14) and (3.15), we get M(0 → e−
L e

+
Rμ−

Rμ+
L )

= 2ie2

se+e−
[e−μ+]〈μ−e+〉. The remaining two helicity config-

urations needed for calculating the helicity-summed result
are simply given by exchanging the dotted and solid lines in
the chirality-flow diagrams in Eqs. (6.2) and (6.3).

While the above is a simple example – also in the ordinary
spinor-helicity formalism, we stress that we did not need to
perform a single algebraic manipulation to arrive at the result.

6.2 e+e− → μ+μ−γ

As our next example we consider the same process, but with
an additional photon radiated externally. This introduces a
fermion propagator and a polarization vector. We choose a
particular helicity configuration to start with, considering the
amplitude M(0 → e−

L e
+
Rμ−

Lμ+
Rγ +

1 ). One diagram for this
process has the photon emitted from the μ−. Steps 1 and
2 from the recipe ask to draw the chirality-flow structure,
giving

(6.4)
where r denotes the reference momentum of the external
photon, the fermion propagator has momentum p1+ pμ− and
we have used the shorthand notation p1 → 1 to denote the
photon momentum. Step 3 is to assign chirality-flow arrows.
Following the same procedure as in the previous example,
remembering to continue the flow through the momentum-
dot, we get
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(6.5)

This is in principle our final result, as it contains all the spinor
inner products in the diagram. To write out the inner products
as square or angled brackets, we first expand the momentum-
dot using (3.25), and then use Eqs. (3.14) and (3.15) to obtain

(6.6)

The diagram with the photon emitted from the μ+ has a
similar structure,

(6.7)

where in the last step we have used that [11] = 0.
Following the same procedure to obtain results for the

remaining two diagrams gives

(6.8)

Note that in the results above, we have left the reference
momentum of the external photon unassigned. We may sim-
plify the results by choosing it appropriately,18 to generate
spinor inner products of the form 〈i i〉 = [i i] = 0. We stress
again that we did not need to perform a single algebraic
manipulation, other than to expand momentum-dots, to arrive
at the results.

18 We need to choose the same reference vector for each gauge-
invariant subset of diagrams.
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(a) (b) (c)

Fig. 1 The three diagrams contributing to the partial helicity amplitude M(0 → q−
2 1+q̄−

1 q+
1 q̄+

2 ) multiplying the color factor ta1
q2 q̄1

δq1q̄2

We also remark on the simplicity of the result: in QED
every Feynman diagram gives a single chirality-flow graph,
where every spinor line is contracted with the “nearest” (clos-
est possible, following the chirality flow) spinor of the same
kind.

6.3 q1q̄1 → q2q̄2g

We now consider our first QCD example, q1q̄1 → q2q̄2g.
For this example we will – for comparison – also go through
the standard spinor-helicity calculation. We will also for the
first time encounter a disconnected chirality-flow structure.

There are six Feynman diagrams in total, and the color
structure can be decomposed into four linearly independent
basis vectors (color factors). We will consider the (color-
ordered) partial helicity amplitude M(0 → q−

2 1+q̄−
1 q+

1 q̄+
2 )

multiplying the color factor ta1
q2q̄1

δq1q̄2 , which has contribu-
tions from the three diagrams in Fig. 1.

Using the standard spinor-helicity method, the Lorentz
structure of the diagram in Fig. 1a is given by

(6.9)

where, in the first line, we collected the prefactors and denom-
inators from propagators, and wrote down the spinor expres-
sion for each fermion line. The spinor expressions begin with
the quark, have a τμ or τ̄ μ for each vertex, and a /p or /p
for each fermion propagator. We expand out the propagator
momentum and contract polarization vectors with a τ where
possible. In the second line we rewrote the slashed propa-
gator momenta and the slashed polarization vector in terms
of spinors. Finally, we used [11] = 0, and utilized the Fierz
identity between τ and τ̄ to write the result in terms of spinor
inner products.

Within the chirality-flow formalism, we collect scalar fac-
tors and write down the result immediately (first without
arrows)

(6.10)

in close resemblance to the first term in (6.8).
Following the standard spinor-helicity procedure, as in

(6.9), the diagram in Fig. 1c gives

123



1006 Page 16 of 27 Eur. Phys. J. C (2020) 80 :1006

×

(6.11)

which requires a few steps. However, in the chirality-flow
formalism, we immediately write this down (cf. (6.7))

(6.12)

The new type of diagram in this example is Fig. 1b. Using
the standard spinor-helicity method we get

×

(6.13)

where in the second step we used momentum conserva-
tion within a triple gluon vertex, pa − pb = 2pa + pc =
−pc −2pa . This was done to simplify the result, since in the
third step we used the Dirac equation to remove the terms
containing pc. In this step we also used the Fierz identity
between τ and τ̄ and rewrote the polarization vector in terms
of spinors. Finally, in the last step, we expanded the slashed
propagator momenta in terms of spinors.

To calculate Fig. 1b using the chirality-flow method is
again simpler. For the triple-gluon vertex, we start with the
term in which the two quark pairs are contracted with the
metric, and then add the cyclic permutations. Performing
steps 1 and 2 gives
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(6.14)

where, as in (6.13), we used momentum conservation and
antisymmetry of the spinor inner product to simplify the
slashed momenta (i.e. the labels of the momentum-dots).

Step 3 is to assign the arrows. We begin with the first
chirality-flow diagram, and choose the arrow of q1 to point
inward. As before, this uniquely fixes the arrows of the dotted
line to point from q1 → q̄2, and the solid line from q2 → q̄1.
However, the spinor line from 1 ↔ r is unaffected by this
arrow choice. In this sense, we say that the chirality-flow
diagram has two disconnected pieces, and we are free to
choose the arrow to e.g. point from 1 → r . Similarly, in the
second and third terms, the arrow directions of q1 and q̄2 can
be chosen independently of each other. An appropriate set of
arrow choices gives the spinor structure

(6.15)

as in (6.13).
Comparing the two methods, we see that the chirality-flow

method simplifies the calculation in two ways. First, there
is no need to explicitly write all objects as spinor expres-
sions, and then use the Fierz identity to remove the remaining
Lorentz indices. Second, it is much more transparent which
spinor inner products occur.

Finally, we stress that once one is familiar with the flow
formalism, it is possible to write down an amplitude like this
in one step,

123



1006 Page 18 of 27 Eur. Phys. J. C (2020) 80 :1006

(6.16)

where the first two terms correspond to the diagrams in Fig. 1a
and 1c respectively, and the last three terms to the diagram
in Fig. 1b. We again emphasize that the above already con-
tains the sum of all spinor inner products, and that we may
simplify the result by choosing the reference momentum
appropriately to generate spinor inner products of the form
〈i i〉 or [i i].

6.4 qq̄ → gg

For this example we will leave the helicity of the vector
bosons unassigned. We call this the helicity-agnostic case.
This can be done in the traditional spinor-helicity method as
well, but its consequences are more obvious in the chirality-
flow picture, as the helicity and chirality structures of the dia-
grams are more transparent. To this end, we introduce a com-
mon notation for the bispinor representations of the negative-
and positive-helicity polarization vectors in Eqs. (3.32, 3.33)
and Eqs. (3.36, 3.37),

(a) (b)

Fig. 2 The two diagrams contributing to the partial helicity amplitude
M(0 → q+1 2 q̄−), multiplying the color factor t1

qi t
2
i q̄

(6.17)

where h = ∓,

i p and im =
{
r and i , h = −
i and r , h = + ,

fh(i p, im) =
{ [imi p] = [ir ] , h = −

〈imi p〉 = 〈ri〉 , h = + , (6.18)

and where i p (im) denotes the positive- (negative-)helicity
spinor in gluon i .

For this example we consider the partial helicity amplitude
M(0 → q+1 2 q̄−), multiplying the color factor t1

qi t
2
i q̄ . This

means that we only consider the two diagrams in Fig. 2. For
the Lorentz structure of the diagram in Fig. 2b we get

(6.19)
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while for the diagram in Fig. 2a we obtain

×

(6.20)

where we again used momentum conservation to rewrite all
momenta in the triple-gluon vertex pa − pb = 2pa + pc =
−2pb − pc. Since pc = p2 in the first flow diagram, and
pc = p1 in the last diagram, and in each of these either
im = i or i p = i for i = 1, 2, we could again remove the
term with pc. The full result for a gluon of either helicity is
then

M(0 → q+1 2 q̄−) = ig2
s

fh,1 fh,2

(
1

s12

[
− [q1p]〈1mq̄〉[2p1]〈12m〉

+ 〈1m2m〉[2p1p][q1]〈1q̄〉 + [q2p]〈2mq̄〉[1p2]〈21m〉
]

− 1

sq1
[q1p](〈1mq〉[q2p] + 〈1m1〉[12p])〈2mq̄〉

)
. (6.21)

If both gluons have positive helicity, then (1m, 1p) =
(r1, 1) and (2m, 2p) = (r2, 2) such that choosing 1m =
2m = q̄ and using the antisymmetry of the spinor inner
products we see that the amplitude vanishes. If both glu-
ons have negative helicity, choosing 1p = 2p = q we see
that the amplitude vanishes. Looking at the chirality-flow
diagrams in Eqs. (6.19) and (6.20), this is easy to see from
an early stage, since e.g. q always flows to/from either 1p

or 2p, except for when it flows to/from q̄ , in which case 2p

flows to/from 1p.
The only non-zero case is the MHV case, where e.g. h1 =

−, h2 = +, (1m, 1p) = (1, r1) and (2m, 2p) = (r2, 2).
We choose 1p = q and 2m = q̄ , such that the reference

momentum of each gluon is equal to the momentum of the
quark with opposite helicity, giving

M(0 → q+1−2+q̄−)

= ig2
s

[1q]〈q̄2〉
[

1

s12

[
− 0 + 〈1q̄〉[2q][q1]〈1q̄〉 + 0

]
− 1

sq1
(0)

]

= − ig2
s 〈q̄1〉2[2q]

〈q̄2〉〈12〉[21]
〈q̄q〉〈q1〉
〈q̄q〉〈q1〉 = − ig2

s 〈q̄1〉2〈q1〉(−[21]〈1q̄〉)
〈q1〉〈12〉〈2q̄〉〈q̄q〉[21]

= − ig2
s 〈q̄1〉3〈q1〉

〈q1〉〈12〉〈2q̄〉〈q̄q〉 , (6.22)

which is the standard MHV formula.19 To obtain this, in
the second line, we multiplied by one, expanded out s12 =
〈12〉[21] (see (A.37)) and canceled the [q1] brackets, before
using that [2q]〈qq̄〉 = −[21]〈1q̄〉, due to momentum con-
servation (see (A.39)).

6.5 gg → gg

In this example, we explore the four-gluon vertex. We con-
sider the three diagrams contributing to the partial helicity
amplitude M(0 → 1h1 2h2 3h3 4h4), multiplying the color fac-
tor Tr

(
t1t2t3t4

)
. For now, we leave the helicities of each par-

ticle unassigned. Steps 1 and 2 give for the s-channel diagram

(6.23)

where we have factorized the two triple-gluon vertices,
used the shorthand notation i = (im, i p), and written the
gluon propagator as a double line without a label. Stitch-

19 The minus sign here is often omitted in the literature [60], such that
this MHV QCD amplitude resembles the relevant gluino-gluon ampli-
tude, and therefore obeys the supersymmetric Ward identities without
additional minus signs [52,53,55].
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(a) (b) (c)

Fig. 3 The three diagrams contributing to the color-partial helicity amplitude M(0 → 1h1 2h2 3h3 4h4 )

ing together the two factorized terms and assigning arrows
results in

(6.24)

where we see a contraction of momenta

(6.25)

for the first time.

The t-channel diagram Fig. 3b has the same form as the
s-channel diagram, and can be found by permuting the labels

(1, 2, 3, 4) in the cyclic direction, 1 → 2, 2 → 3, etc. What
remains to calculate is therefore only the contact diagram,
Fig. 3c, for which we directly write

.

×

(6.26)
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While the sum of the diagrams still appears complicated, it
contains all of the information needed to obtain the four-
gluon scattering amplitude for any combination of gluon
helicities. For example, if we choose h1 = h2 = −h3 =
−h4 = 1, r1 = r2 = p4 and r3 = r4 = p1, only a single
term, the first term in (6.24), remains. The resulting ampli-
tude is then

M(1+, 2+, 3−, 4−) = −ig2
s

〈34〉2[21]2

s12〈14〉[41]
= −ig2

s
〈34〉2[21]

〈12〉〈14〉[41]
〈34〉2

〈34〉2 = ig2
s

〈34〉4

〈12〉〈34〉〈41〉
[21]

〈34〉[41]
= ig2

s
〈34〉4

〈12〉〈34〉〈41〉
[21]

−〈32〉[21] = ig2
s

〈34〉4

〈12〉〈23〉〈34〉〈41〉 , (6.27)

as expected [8,54].

7 Conclusion and outlook

In this paper we have presented a new graphical formalism
for calculating massless QED and QCD Feynman diagrams.

In the spinor-helicity formalism, Dirac matrices are aban-
doned in favor of the smaller Pauli matrices, and in the
Weyl-van-der-Waerden formalism further simplification is
obtained by recasting Feynman rules and diagrams to expres-
sions without Pauli matrices, which instead depend on the
antisymmetric ε-tensor, i.e., the SL(2,C) invariant object.

In this work, we take this one step further, and argue that
we can directly write diagrams, and hence amplitudes, as a
combination of spinor inner products. Using charge conju-
gation, we argue that we can formulate a set of chirality-
flow Feynman rules for massless QED and QCD diagrams at
tree-level. After this, there are no algebraic manipulations or
matrix equations involved in the process of finding the spinor
inner products appearing in a scattering amplitude.

Conceptually our method is similar to the idea of a flow
of color in QCD, in the sense that after stripping off the
external color/spinor wave functions, what remains can be
thought of as Kronecker contractions connecting the exter-
nal color/spinor structures. We therefore dub our method the
chirality-flow formalism. We remark, however, that the flow
picture for color and the flow picture for chirality can be
used completely independently, and in fact we have given
both ordinary Feynman rules and color-flow Feynman rules
for the chirality-flow method.

We also note that the methods differ by using one su(3)-
algebra for color and two (complexified) su(2)-algebras for
chirality, hence we need two different types of lines – dot-
ted and undotted – which can never be contracted with each
other, since the corresponding object would not be Lorentz
invariant.

On the more practical side we note that, aside from being
more transparent, the chirality-flow method also shortens

actual calculations by removing a few steps compared to
the ordinary spinor-helicity method. This complete avoid-
ance of matrix structure may turn out beneficial in automated
tools for calculating amplitudes, particularly those relying on
Feynman diagrams, e.g. [74–76].

Finally, we remark that while the present paper deals only
with massless particles in QED and QCD, the spinor-helicity
formalism for massive particles is well known, and work
towards completing the chirality-flow method for the full
standard model is ongoing.
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A Conventions and identities

In this appendix, we give some conventions and collect some
additional identities, as well as explicit representations for
spinors and four-vectors in the spinor representation. For con-
venience, some of the previous definitions and identities will
be repeated in this appendix.

A.1 Pauli matrices

We define the Dirac matrices in the chiral, or Weyl, repre-
sentation as

γ μ =
(

0 σμ

σ̄μ 0

)
=

(
0

√
2τμ√

2τ̄ μ 0

)
, (A.1)
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and the Pauli matrices as

σμ = (σ 0, σ ) = (σ 0, σ 1, σ 2, σ 3)

=
((

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
, (A.2)

σ̄ μ = (σ 0,−σ ) , (A.3)

or equivalently the Infeld-van-der-Waerden matrices, or τ

matrices, as τμ = 1√
2
σμ and τ̄ μ = 1√

2
σ̄ μ. The elements

of the Pauli or τ matrices are denoted by τμ,α̇β = 1√
2
σμ,α̇β

and τ̄
μ

αβ̇
= 1√

2
σ̄

μ

αβ̇
. The Pauli matrices are Hermitian 2 × 2-

matrices, i.e.
(
σμ

)† = σμ, and we further have
(
σμ

)2 =
(

1 0
0 1

)
, for μ = 0, 1, 2, 3. Consequently,

(
τμ

)† = τμ and
(
τμ

)2 = 1
2

(
1 0
0 1

)
, for μ = 0, 1, 2, 3. The normalization of

the τ matrices is chosen such that no unnecessary powers of
2 are carried around in the algebraic relations,

Tr
(
τμτ̄ ν

) = gμν , (A.4)

Tr
(
τ̄ μτ̄ ν

) = δμν , (A.5)

Tr
(
τμτν

) = δμν , (A.6)

τ α̇β
μ τ̄

μ
γ η̇ = δ β

γ δα̇
η̇ , (A.7)

τ̄
μ

αβ̇
τ̄μ,γ η̇ = εαγ εβ̇η̇ , (A.8)

τμ,α̇βτ γ̇ η
μ = εα̇γ̇ εβη , (A.9)

where gμν = diag(1,−1,−1,−1) denotes the Minkowski
metric and ε the Levi-Civita tensor (see (3.10)).

A.2 Spinors and spinor inner products

We recall from Sect. 3.1 that the Weyl spinors, i.e. the two-
component spinors in the chiral or Weyl representation, are
solutions to the Weyl equations, i.e. the decoupled equations
for left- and right-chiral two-component spinors that follow
from the Dirac equation in the massless case. We denote
the Weyl spinors of massless outgoing left-chiral (positive-
helicity) fermions of momentum p by λ̃α̇(p) = λ̃p,α̇ and
outgoing left-chiral (positive-helicity) antifermions λ̃α̇(p) =
λ̃α̇
p, while right-chiral (negative-helicity) Weyl spinors of

massless outgoing fermions and antifermions of momentum
p are denoted by λα(p) = λα

p and λα(p) = λp,α respec-
tively.

Explicit representations of the (massless) Weyl spinors are
for example,

λα
p ↔ 〈p| = 1

√
p+

(
p⊥ , −p+)

,

λp,α ↔ |p〉 = 1
√
p+

(
p+
p⊥

)
, (A.10)

λ̃p,α̇ ↔ [p| = 1
√
p+

(
p+ , p⊥∗)

,

λ̃α̇
p ↔ |p] = 1

√
p+

(
p⊥∗

−p+
)

, (A.11)

where we used light-cone coordinates20,

p± = p0 ± p3 , p⊥ = p1 + i p2 , p⊥∗ = p1 − i p2 .

(A.12)

The Weyl spinors are related to each other by Hermitian
conjugation,

|p〉† = [p| and |p]† = 〈p| , (A.13)

or in case of the components (λp,α)∗ = (λ̃p,α̇) and (λ̃α̇
p)

∗ =
(λα

p) for α = α̇ = 1, 2, which is easily confirmed for the
explicit representations in Eqs. (A.10) and (A.11).

We recall from (3.11) that spinor indices of two-component
Weyl spinors are raised and lowered by the Levi-Civita ten-
sor,21

λp,α = εαβλβ
p , λ̃p,α̇ = εα̇β̇ λ̃β̇

p ,

λα
p = εαβλp,β , λ̃α̇

p = εα̇β̇ λ̃p,β̇ , (A.14)

as is easily seen for the representations in Eqs. (A.10) and
(A.11) using (3.10).

We also recall the antisymmetric Lorentz invariant spinor
inner products, Eqs. (3.12) and (3.13),

〈i j〉 = λα
i λ j,α = εαβλi,βλ j,α = −εβαλi,βλ j,α

= −λi,βλ
β
j = −〈 j i〉 , (A.15)

[i j] = λ̃i,α̇ λ̃α̇
j = εα̇β̇ λ̃

β̇
i λ̃α̇

j = −εβ̇α̇λ̃
β̇
i λ̃α̇

j

= −λ̃
β̇
i λ̃ j,β̇ = −[ j i] . (A.16)

Using the explicit representations of the Weyl spinors in
Eqs. (A.10) and (A.11), we have

〈i j〉 = λα
i λ j,α = 1

√
p+
i p+

j

(
p⊥
i p+

j − p⊥
j p

+
i

)
,

[i j] = λ̃i α̇ λ̃α̇
j = 1

√
p+
i p+

j

(
p+
i p⊥∗

j − p+
j p

⊥∗
i

)
, (A.17)

consistent with [i i] = 〈 j j〉 = 0 and 〈i j〉∗ = −[i j] = [ j i].
20 We have p+ p− = (p0 + p3)(p0 − p3) = (p0)2 − (p3)2 and
p⊥ p⊥∗ = (p1 + i p2)(p1 − i p2) = (p1)2 + (p2)2. Furthermore, p2 =
p+ p− − p⊥ p⊥∗

, i.e. for p2 = 0 we have p+ p− = p⊥ p⊥∗
.

21 We recall from (3.10) that the Levi-Civita or ε tensor is defined as
ε12 = −ε21 = ε21 = −ε12 = 1, or in matrix notation as εαβ = εα̇β̇ ↔(

0 1−1 0

) = iσ 2 and εαβ = εα̇β̇ ↔ (
0 −1
1 0

) = −iσ 2. With our definition

of the ε-tensor we have that εαβεβγ = δ
γ

α and εα̇β̇ εβ̇γ̇ = δα̇
γ̇ , and that

e.g. εαβλ
β
p = −εβαλ

β
p = −λ

β
pεβα , etc.
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We also state the Schouten identities

〈i j〉〈kl〉 + 〈ik〉〈l j〉 + 〈il〉〈 jk〉
= 〈i |

(
| j〉〈kl〉 + |k〉〈l j〉 + |l〉〈 jk〉

)
= 0 , (A.18)

[i j] [kl] + [ik] [l j] + [il] [ jk]
= [i |

(
| j] [kl] + |k] [l j] + |l] [ jk]

)
= 0 , (A.19)

which are a consequence of the fact that any three two-
component spinors are linearly dependent.

For the spinor transformations, we use the common nota-
tion ( jL , jR) for representations of the Lorentz algebra, cor-
responding to the representations of the mutually commuting
generator combinations

NL = 1

2
(J − iK) , (A.20)

NR = 1

2
(J + iK) , (A.21)

where J and K denote the generators of rotations and boosts
respectively and where

[NL ,i ,NR, j ] = 0 . (A.22)

For left-chiral spinors λ̃α̇
p in the ( jL , jR) = (1/2, 0) repre-

sentation, we have J = −iK = σ/2, i.e. NL = σ/2 and
NR = 0. Under Lorentz transformations they transform as

λ̃α̇
p → (�L)α̇

β̇
λ̃β̇
p with �L = e(−iθ+η)·σ/2 , (A.23)

where θ and η denote rotation angles and boost parameters.
For right-chiral spinors λp,β in the ( jL , jR) = (0, 1/2) rep-
resentation, we similarly have J = iK = σ/2, i.e. NL = 0
and NR = σ/2. Under Lorentz transformations they change
as

λp,β → (�R) α
β λp,α with �R = e(−iθ−η)·σ/2. (A.24)

A.3 Four-vectors and bispinors

We recall from Sect. 3.2, that using the τ matrices, any four-
vector pμ can be mapped to Hermitian 2 ×2-matrices, or
bispinors,

(A.25)

(A.26)

for which we have again used the light-cone coordinates in
(A.12).22

Raising and lowering spinor indices on the τ matrices is
done by

τ̄
μ

αβ̇
= εαγ εβ̇η̇τ

μ,η̇γ , τμ,α̇β = εα̇γ̇ εβητ̄
μ
ηγ̇ , (A.27)

which is easily confirmed for the explicit matrix representa-
tions in Eqs. (A.2) and (A.3). The raising and lowering of
spinor indices on a four-vector pμ in the bispinor represen-
tation follows by contracting the above with pμ,

p̄αβ̇ = εαγ εβ̇η̇ p
η̇γ , pα̇β = εα̇γ̇ εβη p̄ηγ̇ , (A.28)

which may easily be confirmed for the explicit representa-
tions in Eqs. (A.25) and (A.26).

We recall from Sect. 3.2 that if a momentum p is mass-
less, i.e. light-like, the corresponding momentum bispinors
can be expressed as outer products, or dyads, of Weyl
spinors,

(A.29)

(A.30)

This is easily confirmed for the explicit representations
of the Weyl spinors in Eqs. (A.10) and (A.11), com-
paring to the explicit representation of the momentum
bispinors in Eqs. (A.25) and (A.26), and using the condi-
tions for the light-cone coordinates in the massless case,
i.e. p+ p− = p⊥ p⊥∗

if p2 = 0. If a momentum p is
expressed as a linear combination of light-like momenta pi ,
then

(A.31)

(A.32)

22 We repeat, the slash notation here is not to be confused with the
Feynman slash notation, denoting contractions with Dirac matrices.
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With the above, and the properties of the spinor inner prod-
ucts, it is easy to see that the Weyl spinors obey the Weyl
equations,

pμσ α̇β
μ λp,β = √

2pα̇βλp,β
p2=0= λ̃α̇

pλ
β
pλp,β = 0 ,

λα
p p

μσ̄μ,αβ̇ = √
2λα

p p̄αβ̇

p2=0= λα
pλp,αλ̃p,β̇ = 0 , (A.33)

pμσ̄μ,αβ̇ λ̃β̇
p = √

2 p̄αβ̇ λ̃β̇
p

p2=0= λp,αλ̃p,β̇ λ̃β̇
p = 0 ,

λ̃p,α̇ p
μσ α̇β

μ = √
2λ̃p,α̇ p

α̇β p2=0= λ̃p,α̇ λ̃α̇
pλ

β
p = 0 , (A.34)

or

(A.35)

(A.36)

and that for massless particles i and j , with si j = (pi +
p j )

2 = 2pi .p j , the spinor inner products satisfy

si j = 2pi .p j = 2pi,μ p j,νTr
(
τμτ̄ ν

) = √
2pα̇β

i

√
2 p̄ j,βα̇

= λ̃α̇
i λ

β
i λ j,β λ̃ j,α̇ = λ

β
i λ j,β λ̃ j,α̇ λ̃α̇

i = 〈i j〉[ j i] . (A.37)

Using Eqs. (A.29) and (A.30), we have

[k|/pi |l〉 = [ki]〈il〉, 〈k| /̄pi |l] = 〈ki〉[il] for p2
i = 0 .

(A.38)

Assuming a set of outgoing massless external momenta pi ,
and using momentum conservation, i.e.

∑
i pi = 0, gives

∑

i

[ j i]〈ik〉 =
∑

i �= j,k

[ j i]〈ik〉 = 0 ,

∑

i

〈 j i〉[ik] =
∑

i �= j,k

〈 j i〉[ik] = 0 . (A.39)

Using λα
i τ̄

μ

αβ̇
λ̃

β̇
j = λ̃ j,δ̇τ

μ,δ̇γ λi,γ (see (4.8)), or equivalently

〈i |τ̄ μ| j] = [ j |τμ|i〉 (see (4.9)), and τ
α̇β
μ τ̄

μ
γ η̇ = δ

β
γ δα̇

η̇ (see
(4.3)), this implies

[i |τμ| j〉[k|τμ|l〉 = [ki]〈 jl〉 ,

〈i |τ̄ μ| j]〈k|τ̄μ|l] = [ jl]〈ki〉 ,

[i |τμ| j〉〈k|τ̄μ|l] = [il]〈k j〉 . (A.40)

For completeness, we also repeat the expressions for the
polarization vectors of massless vector bosons from Sect. 3.3.
The polarization vectors can be written in terms of Weyl
spinors and τ matrices,

ε
μ
−(pi , r) =

λα
i τ̄

μ

αβ̇
λ̃

β̇
r

λ̃i,γ̇ λ̃
γ̇
r

= 〈i |τ̄ μ|r ]
[ir ] ,

ε
μ
+(pi , r) =

λα
r τ̄

μ

αβ̇
λ̃

β̇
i

λ
γ
r λi,γ

= 〈r |τ̄ μ|i]
〈ri〉 , (A.41)

ε
μ
−(pi , r) = λ̃r,α̇τμ,α̇βλi,β

λ̃i,γ̇ λ̃
γ̇
r

= [r |τμ|i〉
[ir ] ,

ε
μ
+(pi , r) = λ̃i,α̇τμ,α̇βλr,β

λ
γ
r λi,γ

= [i |τμ|r〉
〈ri〉 , (A.42)

where pi is the vector boson momentum and r is an arbi-
trary, light-like reference momentum satisfying pi · r �= 0.

To get from (A.41) to (A.42) we have used λα
i τ̄

μ

αβ̇
λ̃

β̇
j =

λ̃ j,δ̇τ
μ,δ̇γ λi,γ (see (4.8)). With the above, and the proper-

ties of massless spinors and bispinors, as stated before, it is
easily confirmed that

(
ε
μ
−(pi , r)

)∗ = ε
μ
+(pi , r) , as well as

ε
μ
±(pi , r)pi,μ = 0 and ε

μ
±(pi , r)rμ = 0. Contracting (A.41)

with τ , (A.42) with τ̄ , and using (A.7), we may write the
polarization vectors in the bispinor representation in terms
of outer products, or dyads, of Weyl spinors,23

ε
β̇α
− (pi , r) = ε

μ
−(pi , r)τ

β̇α
μ = λ̃

β̇
r λα

i

λ̃i,γ̇ λ̃
γ̇
r

= |r ]〈i |
[ir ] ,

ε
β̇α
+ (pi , r) = ε

μ
+(pi , r)τ

β̇α
μ = λ̃

β̇
i λα

r

λ
γ
r λi,γ

= |i]〈r |
〈ri〉 , (A.43)

ε̄−,βα̇(pi , r) = ε
μ
−(pi , r)τ̄μ,βα̇ = λi,β λ̃r,α̇

λ̃i,γ̇ λ̃
γ̇
r

= |i〉[r |
[ir ] ,

ε̄+,βα̇(pi , r) = ε
μ
+(pi , r)τ̄μ,βα̇ = λr,β λ̃i,α̇

λ
γ
r λi,γ

= |r〉[i |
〈ri〉 .

(A.44)

A.4 Tables with QED and QCD conventions and Feynman
rules

We collect here spinor notation conventions, as well as
chirality-flow Feynman rules for QED and QCD.

23 We could have equally well contracted (A.41) with τ̄ and (A.42)
with τ , using Eqs. (A.8) and (A.9), respectively.
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Table 1 The QED “Rosetta Stone” translating the chirality-flow notation to widely-used spinor-helicity notations. For more information see
Sects. 3.1 (external fermions), 3.3 (external vector bosons), 5.1 (vertices) and 5.2 (propagators)

Table 2 The QCD “Rosetta Stone” translating the chirality-flow notation to widely-used spinor-helicity notations. Vμ1μ2μ2
3 ≡ Vμ1μ2μ2

3 (p1, p2, p3)

is given in (5.7). For more information, in particular on the various forms of the four-gluon vertex, see Sect. 5.1 (vertices) and 5.2 (propagators)
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