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Abstract In this paper we explore the state parameter
behaviour of the interacting viscous dark energy in f (T )

gravity. Using constant deceleration parameter we investigate
the cosmological implications of the viscosity and interaction
between the dark components (energy and matter) in terms of
Redshift. So doing, the viscosity and the interaction between
the two fluids are parameterized by constants δ and ξ respec-
tively. In the later part of the paper, we explore some bulk
viscosity models describing Little Rip and Pseudo Rip future
singularities within f (T ) modified gravity. We obtain gravi-
tational equations of motion for viscous dark energy coupled
with dark matter. Solving these equations, we found analytic
expressions for characteristic properties of these cosmolog-
ical models.

1 Introduction

Since the accelerated phase of universe expansion has been
discovered by cosmological measurements obtained from
SNe Ia, WMAP, SDSS and X-ray [1–14], many cosmologists
have done huge efforts to explain this strange phenomenon.
An exotic fluid with a large negative pressure named dark
fluid would be the origin of this accelerated expansion. So,
many models have been proposed and explored as �CDM
model which is the simplest model named cosmological con-
stant. Besides this model, other models have been inves-
tigated (quintessence phantom, Tachyon, holographic dark
energy, K-essence and Chaplyging gas) but unfortunately
most of them do not permit to achieve the goal. Accord-
ing to the astrophysical observations, it has been mentioned
that the cosmic medium is not a perfect fluid. So, various
viscous fluids have been introduced to satisfy an inhomoge-
neous equation of state. Many authors have explored cosmo-
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logical viscous fluid effects on the dynamical evolution of the
universe. Brevik et al. have considered inflation produced by
two coupled fluids in the Friedmann–Robertson–Walker uni-
verse. They have used an inhomogeneous equation of state
for the fluid to investigate different cosmological models for
describing inflation [15]. Viscous Cosmology presenting var-
ious problems has been investigated by many authors [16–
32]. Some alternative theories like f (T ) and f (R) expecting
to explain accelerated expansion of the universe, have been
explored in references [33–37]. Possible avoidance of finite-
time singularities from viscosity in f (T ) gravity have been
investigated [38]. In reference [39], authors have studied the
interacting cosmological viscous fluid with infinite-time sin-
gularities solutions in f (R) gravity and found interesting
results. In this paper, we follow the same step but in area
of modified f (T ) gravity. From the constant deceleration
parameter q we construct the scale factor that is expressed
in terms of redshift. We then define the EoS for the dark
energy in two cases. We first do not consider the interaction
between viscous dark energy and dark matter, and secondly
the interacting parameter is taking into account. We also
study the bulk viscosity solutions from gravitational equa-
tion established from Freedmann–Robertson–Walker equa-
tions and viscous dark energy equation of state. We found that
the bulk viscosity and the thermodynamic parameter present
some corrections, in the EoS for the dark energy.

The paper is organised as follow: In Sect. 2, we present the
formalism of f (T ) gravity and motion equations. In Sect. 3,
we investigate the behavior of the evolution of universe filled
with viscous dark energy coupled or not with dark matter. The
Sect. 4 is devoted to analyse some bulk viscosity models of
two future singularities (Little and Pseudo Rip) in the frame-
work of f (T ) gravity. The paper is ended by a conclusion
and remarks in Sect. 4.
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2 Motion equations in f (T ) theory

The modified theory of gravity based on the torsion scalar is
the one for which the geometric part of the action is an alge-
braic function depending on the torsion. In the same way as in
the Teleparallel gravity, the geometric elements are described
using orthonormal tetrads components defined in the tangent
space at each point of the manifold. In general the line ele-
ment can be written as

ds2 = gμνdx
μdxν = ηi jθ

iθ j , (1)

where we define the following elements

dxμ = e μ
i θ i θ i = ei μdx

μ. (2)

Note that ηi j = diag(1,−1,−1,−1) is the metric related to
the Minkowskian spacetime and the {eiμ} are the components
of the tetrad which satisfy the following identity

e μ
i ei ν = δμ

ν , e i
μ eμ

j = δij . (3)

The connection used in this theory is the one of Weizen-
bock’s, defined by

�λ
μν = e λ

i ∂μe
i
ν = −ei μ∂νe

λ
i . (4)

Once the previous connection assumed, one can then express
the main geometric objects; the torsion tensor’s components
as

T λ
μν = �λ

μν − �λ
νμ, (5)

which is used in the definition of the contorsion tensor as

Kμν
λ = −1

2

(
Tμν

λ − T νμ
λ + T νμ

λ

)
. (6)

The above objects (torsion and contorsion) are used to define
a new tensor S μν

λ as

S μν
λ = 1

2

(
Kμν

λ + δ
μ
λ T

αν
α − δν

λT
αμ

α

)
. (7)

The torsion scalar is defined from the previous tensor and the
torsion tensor as

T = T λ
μνS

μν
λ (8)

Let’s write the action for the modified f (T ) theory with
matter as follows

S =
∫

d4xe

[
T + f (T )

2κ2 + L(matter)

]
, (9)

where e ≡ det[ei μ] = √−g denotes the determinant of the
tetrad, and g the determinant of the space-time metric and
f (T ), the algebraic function of T torsion.

Making the functional variation of the action (9) with
respect to the tetrads, we get the following equations of

motion

S νρ
μ ∂ρT fT T +

[
e−1ei μ∂ρ

(
ee μ

i S νλ
α

) + T α
λμS

νλ
α

]

× fT + 1

4
δν
μ f = κ2

2
T ν

μ , (10)

where T ν
μ denotes the stress tensor such that

T ν
μ = (ρ + p) uμu

ν − pδν
μ, (11)

ρ and p being the energy density and the pressure of ordi-
nary content of the universe respectively and uμ, the four-
velocity such that uμuμ = 1. Still with the considered sig-
nature (+,−,−,−), we assume the line element for the flat
Robertson-Walker universe as

dS2 = dt2 − a2(t)dx2, (12)

where a(t) is the universe scalar factor. Therefore, the torsion
scalar is performed gives:

T = −6H2. (13)

From (10) to (12), one gets the following gravitational field
equations:

6H2 + 12H2 fT + f = 2κ2ρ, (14)

2
(

2Ḣ + 3H2
)

+ f + 4
(
Ḣ + 3H2

)
fT

−48H2 Ḣ fT T = −2κ2 p. (15)

Here the “dot” denotes the derivative with respect to the cos-
mic time t , H = ȧ(t)/a(t), the Hubble parameter and ρ and
p , the matter energy-density and pressure, respectively. fT
and fT T are the derivatives of f (T ) with respect of torsion T
respectively. By assuming that κ2 = 1, the above Eqs. (14),
(15) are written as:

3H2 = −6H2 fT − 1

2
f + ρ, , (16)

−2Ḣ − 3H2 = 1

2
f + 2

(
Ḣ + 3H2

)
fT + 2H ḟT + p.

(17)

Since the effective energy density and effective pressure take
the form:

3H2 = ρe f f , (18)

−2Ḣ − 3H2 = pef f , (19)

the energy density and pressure of dark energy are defined
as:

ρDE = −6H2 fT − 1

2
f, (20)

pDE = 1

2
f + 2

(
Ḣ + 3H2

)
fT + 2H ḟT . (21)
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3 Dynamical evolution of the universe filled with dark
fluids

In Ref. [39], the authors have used viable f (R)-gravity rep-
resenting a realistic scenario for the dark energy epoch. This
model describes the late-time cosmological evolution of the
Universe filled with dark matter. Many authors have studied
this model and found interesting results [40–42]. In f (T )

modified gravity, power-law models have been explored and
reconstructed describing the evolution scenarios of Universe
[43–46]. In the following, we will consider f (T ) power-law
model to investigate Universe dynamics by using constant
deceleration parameter.

f (T ) = e(−T )h (22)

where e = 1−�mo
2n−1 (6H2

o )(1−n) and h are parameters. From

the decceleration parameter q = − aä
ȧ2 , the scale factor take

the form [47,48]:

a(t) =
[
(1 + q)

(
1

k
t + l

)] 1
1+q

(23)

where q is assumed to be a constant deceleration parameter.
k and l are constants of integration. In terms of redshift, this
scale factor takes the form:

a(t) = 1

1 + z
, wi th z = 1

[
(1 + q)

( 1
k t + l

)] 1
1+q

− 1

(24)

We now assume the dark fluid equation of state in the fol-
lowing form [39,49]:

P̃DE = pDE − 3Hδ(ρDE ) (25)

where δ(ρDE ) is the bulk viscosity depending on ρDE in gen-
eral way. Acording to the thermodynamical grounds and in
conventional physics, δ(ρDE ) must be positive, thus the pos-
itive sign of the entropy changes and an irreversible process
would be guarantee [39]. In the following, the dark matter
will be assumed to be a dust, so ωm = 0. We will also con-
sider in the first party of this work, the general form of bulk
viscosity as [53] δ(ρDE ) = δo(ρDE )η, where δo > 0 and η

are constant parameters (Figs. 1, 2).

3.1 Non-coupled dark fluids

The dark energy continuity equation is defined as:

ρ̇DE + 3H(ρDE + pDE ) = 9H2δη
o (ρDE ), (26)

with pDE = ωDEρDE . By Using (20) and taking into acount
(22) and (23), we find the dark energy density as:

ρDE (t) = e.6h
(
h − 1

2

)[
1

k(1 + q)
.

1
( 1
k t + l

)

]2h

, (27)
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Fig. 1 The variations of energy density ρDE of Dark energy is depicted
in the graph. The graphs are plotted for h = 3/2, k = 3/4, e = 5/2

with 24, this dark energy density in terms of redshift, takes
the form:

ρDE (z) = e.6h
(
h − 1

2

)

k2h (z + 1)2h(1+q) . (28)

By following the same steps as previously, we from (21)
to (23), write the dark energy pressure in the form:

P̃DE (t) = 1

6

{

Ak−2h
[
(1 + q)

(
1

k
t + l

)]−2h

−18δ
η
o

k

[
(1 + q)

(
1

k
t + l

)]−1
}

, (29)

we also express the dark energy pressure in terms of redshift,
that is:

P̃DE (z) = 1

6

[
Ak−2h(z + 1)2h(1+q) − 18δ

η
o

k
(z + 1)(1+q)

]
,

(30)

with A=6h
[
12h(−2+q)+e

(
3−4h(1+q) + 4h2(1 + q)

)]
.

Let’s now plot the functions (28), and (30).
One see that, the energy density increases as the decel-

eration parameter diminishes with increasing Redshift. For
q = −1, the energy density of dark energy increases indefi-
nitely. Note that for particular value of h = 1/2, this energy
is null.

In the graph of left hand-side, the pressure increases as
q decreases, but in the ones of right hand-side, the pressure
evolves in the same way as the viscosity parameter (Fig. 3).

We now, from the Eqs. (26) and (27) define the EoS param-

eter of dark energy WDEef f = P̃DE (t)
ρ(t) :

WDEef f (t) = 1

e.61+h
(
h − 1

2

)

[
1

(1 + q)
.

1
( 1
k t + l

)

]−2h

×
{

Ak−2h
[
(1 + q)

(
1

k
t + l

)]−2h

− 18δ
η
o

(1 + q)(kl + t)

}

,

(31)
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Fig. 2 The pressure P̃DE of Dark energy are plotted at left hand-side for variable deceleration parameter q and at right hand-side for variable bulk
viscosity parameter δo. The graphs are plotted for η = 1, h = 3/2, k = 3/4, e = 5/2, q = −0.1 and δo = 1/2 (panel in left hand-side)

that in terms of redshift leads to:

WDEef f (z) = (z + 1)−2h(1+q)

e.61+h
(
h − 1

2

)

×
[
Ak−2h(z + 1)2h(1+q) − 18δη

o (z + 1)1+q
]
.

(32)

The variations of EoS WDEef f for dark energy are
depicted in the above graphs. At the left hand-side, the EoS
parameter is plotted for fixed value of viscosity parameter δo
and variable values of deceleration parameter q. But at the
right hand-side, one sees the function WDEef f plotted for
fixed value of q and variable values of δo. The variations of
WDEef f are plotted for η = 1, h = 3/2, k = 3/4, e = 5/2,
q = −0.1, δo = 2.5 (panel in left hand-side)

We can see that these both EoS parameters evolve in
quintessence phase, then in f (T ) gravity, universe is in accel-
erated expansion phase with high and low redshift. In [53],
the EoS parameter for viscous Dark Energy varies in unstable
phantom region and there is a transition from phantom to the
cosmological constant phase at late time. In f (R) modified
gravity [39], as we approach null redshift, universe seems
to enter phantom phase. The left hand graph, shows that, at
particular point (4,−0.23), the EoS parameter of DE seems
not to be dependent of deceleration parameter q.

3.2 Coupled dark fluids

In this section, we consider an interaction between the dark
energy and dark matter and the corresponding continuity
equations are written as:
{

ρ̇DE + 3H(ρDE + P̃DE ) = −Q,

ρ̇ + 3H(ρ + p) = Q
(33)

One expresses the interaction between the both dark fluids
by the quantity Q (Fig. 4). In order to ensure that the second
law of thermodynamics is fulfilled, the interaction parameter
Q must be positive [50–52]. In the same way like [53], one

writes the interaction parameter in the form:

Q = Hξρ, (34)

where ξ is an interaction constant. From (33), (34), one
obtains:

ρ = ρo

(
a

ao

)ξ−3(1+ω)

, (35)

and in terms of redshift, it takes the form:

ρ(z) = ρo

(
1 + z

1 + zo

)3(1+ω)−ξ

. (36)

The Eqs. (27) and (36) permit to obtain the EoS parameter
for interacting dark energy as:

WDEef f (t)

=
Ak−2h

[
(1 + q)

(
1
k t + l

)]−2h − 18δ
η
o

(1+q)(kl+t)

6

[
3

[(1+q)(kl+t)]2
−

(
1

(1+q)(kl+t)

) ξ−3(1+ω)
1+q

ρoa
−ξ+3(1+ω)
o

] ,

(37)

and the other expression of this dark energy EoS parameter
in terms of redshift is written as:

WDEef f (z)

= Ak−2h (z + 1)2h(1+q) − 18δ
η
o

k (z + 1)(1+q)

6

⎡

⎣ 3
k2 (z + 1)2(1+q) −

(
(z+1)(1+q)

k

) ξ−3(1+ω)
1+q

ρoa
−ξ+3(1+ω)
o

⎤

⎦

.

(38)

In the left panel, one sees that with interaction parame-
ter, the EoS of both non-viscous and viscous dark energy
approach the cosmological constant region (WDEef f = −1)
for low values of redshift. But in the panel at the right hand-
side, the EoS parameter has the same behavior as the one
in [53] because a comparative analysis of these both panels
shows that the parameterWDEef f of non-viscous dark energy
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Fig. 3 The variations of EoS WDEef f for dark energy is depicted in the above graphs
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Fig. 4 The variations of EoS parameterWDEef f of viscous dark energy
for fixed value of ξ and for δo are respectively depicted in the graph at
left-hand side and in the graph at right-hand side. The graphs are plotted

for η = 1, h = 3/2, k = 3/4, e = 5/2, q = −0.1, ρo = 0.9, ao = 1,
ω = 0, ξ = 2 and δo = 1.5 (panel in right hand-side)

(δo = 0) is only varying in quintessence region whereas with
high interaction (ξ > 2) WDEef f starts from quintessence
region, crossing the phantom divided line (PDL), and evolves
to phantom region. The opposite phenomenon is observed in
f (R) gravity [39], where the interaction alleviates the EoS
parameter of dark energy from phantom region (for high red-
shift) to quintessence region (for low redshift) that evolves
to the phantom region.

4 Viscous fluids models describing future singularities

We investigate in this area, the gravitational equation of
motion that gives some bulk viscosity models describing
some future singularities. Here, we are interested by Little
Rip and the Pseudo Rip future singularities.

4.1 Little Rip

The characteristic of Little Rip singularity is an increasing
energy density ρ with time, that needs an infinite time to

appear. Thus, in this case, the EoS parameter ω < −1, and
ω → −1 asymptotically [54].

Let’s consider the Hubble parameter increasing exponen-
tially with time [50]

H(t) = Ho exp(γ t), (39)

γ and Ho(Hubble parameter at present time) are positive
constants. Assuming that the dark matter is the dust (p=o),
the Eq. (33) gives:

ρ(H) = ρo exp

(
3 − δ

γ
Ho

)
exp

(
δ − 3

γ
H

)
, (40)

with ρo an integration constant. For δ < 3, it happens that
ρ → 0 when t → ∞. Considering the relations (18), (25)
and the Eq. (33), one finds the gravitational equation of
motion for viscous dark energy coupled with dark matter
as:

6Ḣ H − ρ̇ + 3H
(
2Ḣ fT + 2H ḟT − 3Hδ

) = −Hξρ. (41)
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With (41) and Eq. (21), one obtains the Hubble-dependent
bulk viscosity that is expressed by:

δ(H) = 1

9H

[
(2ξ − 3)ρ + 6γ H

+6(−2h + 3)γ ehH(6H2)h−1
]
. (42)

When t → ∞, then H → ∞ and δ → ∞ if h > 1 or the
bulk viscosity tends to finite value if h < 1.

We now, consider another expression of the Little Rip
model where the Hubble parameter is a double exponentially
increasing with time:

H = Ho exp
(
B e(γ t)

)
, (43)

with Ho, D and γ are positive constants.
Using the Hubble parameter (43) and by solving the grav-

itational equation of motion (33) for dark matter, we find:

ρ(t) = ρo exp

[
(ξ − 3)γ H ln

(
H

Ho

)]
(44)

with ρo the constant of integration (Fig. 5).
Thus, we find from the gravitational equation of motion

(41), for dark energy:

δ(H) = 1

9H

{
(2ξ − 3)ρ + 6γ H

×
[
1 + eh(6H2)h−1 + 12heH2(h − 1)(6H2)h−2

]

× ln

(
H

Ho

)}
. (45)

4.2 Pseudo Rip

In the Pseudo Rip future singularity case, the Hubble param-
eter tends to cosmological constant as t → ∞. Thus, a de
Sitter space is approached by the universe. Let’s now analyse
that model throughout the analysis of the Litte Rip model.

We first assume that the Hubble parameter takes the form:

H = Ho − H1 exp(−λt), (46)

where Ho, H1 and λ are the positive constants, H1 < Ho with
t > 0. This means that H → Ho in the late-time universe.

By solving the gravitational equation of motion (33) and
using the Hubble parameter (49) we obtain:

ρ(t) = ρo exp

[
(δ − 3)

(
Hot − H − Ho

λ

)]
, (47)

with ρo an integration constant.
Using the dark matter density (40) with the power-law

f (T ) model (22) and solving the gravitational (41), the bulk
viscosity is written as

δ(H) = 1

9H
{(2ξ − 3)ρ + 6λ(Ho − H)

×
[
1 + eh(6H2)h−1 + 12heH2(h − 1)(6H2)h−2

]}
.

(48)

As the time evolves till the infinity, the Hubble parameter
tends to the constant value (HO), and the viscosity param-
eter depends on the energy density that evolves in terms of
parameter δ i.e : ρ → o if δ < 3 or ρ → ∞ if δ > 3. Thus,
δ(H) → o for δ < 3 and δ(H) → ∞ for δ > 3 as the times
evolves.

At the end of this section, we will explore a second exam-
ple of cosmological model where the Hubble parameter is
given by [39–56]:

H = xr√
3

[

1 −
(

1 − xo
xr

)
exp

(

− γ̃
√

3

2xr
t

)]

(49)

In the above expression, xo = √
ρo is the present energy,

xr is a finite, and γ̃ is a positive constant. As t → 0, one
have H → xo/

√
3. Note that, in the late-time universe H →

xr/
√

3, and the Hubble parameter tends asymptotically to
the de Sitter solution.

The continuity Eq. (33) leads to the energy density of dark
matter that is:

ρ(H, t) = ρo exp

[
2x2

r
3γ̃

(3 − ξ)

(

1 −
√

3Ho

xr

)]

× exp

{

(ξ − 3)
xr√

3

[

t + 2xr
γ̃
√

3

(

1 −
√

3

xr
H

)]}

,

(50)

where ρo is an integration constant. As t → ∞, one have
ρ → ∞ for ξ > 3 but ρ → o for ξ < 3.

Finally, the following bulk viscosity takes the form:

δ(H) = 1

9H

{
(2ξ − 3)ρ + 6xr√

3

[
1 + eh(6H2)h−1

+12heH(h − 1)(6H2)h−2
] γ̃

√
3

2xr

(

1 −
√

3

xr
H

)}

.

(51)

Also we noticed that when t → ∞ with ξ < 3, one will have
δ(H) be vanished but if ξ > 3, it happens that δ(H) → ∞.
Some corrections have appeared in the bulk viscosity due to
the modified gravity model and the interaction between dark
energy and dark matter (Fig. 6).

5 Conclusion

We have investigated in this work, cosmological behavior of
universe filled with inhomogeneous dark energy coupled or
not with dark matter in f (T ) modified gravity. It has also
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plotted in the graph at the left hand-side (for first model) and in the graph
at the right hand-side (for second model) respectively for the fixed val-
ues λ = 5, Ho = 1, h = 2, e = 12, ρo = 0.9 and λ = 5, Ho = 1,

h = 2, e = 12, ρo = 0.9, xr = 6, γ̃ = 10. In these graphs, we can see
that, the viscosity decreases at the beginning and becomes null as the
time evolves but diverges for increasing time. Note that, the viscosity
is not null for high interaction parameter ξ

been studied, the bulk viscosity evolution describing future
singularities throughout bounce cosmology. The first part of
this work is devoted to analyse the dynamical evolution of
EoS dark energy parameter that shows an universe in accel-
erated expansion. But with the strong interaction between the
dark components, the universe evolves from the quintessence
region to the phantomic ones for decreasing redshift. Note
that in this case, the low interaction makes the universe only
be in accelerated expansion phase as the time evolves. In
comparison with [39], one note that with the lagragian f (T )

in power-law model, the results found are the same as the ones
of [53]. In the second part of this paper, we investigate some
bulk viscosity models solutions from gravitational equation
that describe Little Rip and Pseudo Rip singularities in the
framework of f (T ) gravity. This gravitational equation is a
generalisation of that one found in [56]. We notice some cor-
rections in the bulk viscosity and in the EoS parameter of dark

energy due to the f (T ) modified gravity and the coupling
parameter. The analysis of the Little Rip bulk viscosity solu-
tions shows that it could vanish for low interacting parameter
(ξ) and converge for high value of ξ . In Pseudo Rip case, these
solutions decrease at the beginning and increase at late time.
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