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Abstract We investigate a regular black hole model with
a de Sitter-like core at its center. This type of a black hole
model with a false vacuum core was introduced with the hope
of singularity-resolution and is a common feature shared by
many regular black holes. In this paper, we examine this claim
of a singularity-free black hole by employing the thin-shell
formalism, and exploring its dynamics, within the Vaidya
approximation. We find that during gravitational collapse, the
shell necessarily moves along a space-like direction. More
interestingly, during the evaporation phase, the shell and the
outer apparent horizon approach each other but, unless the
evaporation takes place very rapidly, the approaching ten-
dency is too slow to avoid singularity-formation. This shows
that albeit a false vacuum core may remove the singularity
along the ingoing null direction, there still exists a singularity
along the outgoing null direction, unless the evaporation is
very strong.

1 Introduction

One of the most challenging problems in fundamental
physics remains the appearance of classical singularities
within the cores of black holes [1]. Singularity theorems in
general relativity (GR) [2] generically leads to such regions
where the classical notions of spacetime stop being mean-
ingful. The general consensus is that, near Planckian curva-
tures, a theory of quantum gravity should supersede classical
GR thereby resolving the singularity. For instance, in a vast
array of quantum cosmological models [3,4], one finds that
the curvature invariants reach a maximum, without blowing
up to infinity, due to the appearance of quantum gravity cor-
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rections. In the context of black holes, one is then led to ask
the natural question: which one of the assumptions of the
singularity theorems [5] – (1) the existence of an apparent
horizon, (2) global hyperbolicity, or (3) the null energy con-
dition – is violated so as to bypass them? However, in order to
understand exactly how a specific quantum gravity approach
violates one of these three assumptions [6–8], we need to fur-
ther assume that the quantum theory allows for an effective
spacetime approach. This can be understood as follows: It is
entirely possible that singularity-resolution is a completely
‘quantum’ process which requires solving the Wheeler de-
Witt equation [9], or some regularized version of it [3,4], for
the wave function and thereby evaluate physical observables
from it. However, derivation of effective spacetimes is the fur-
ther assumption that one can choose suitable semiclassical
states within the quantum theory and calculate the expecta-
tion values of relevant geometric operators such that one can
regard the an effectively classical geometry near the singu-
larity, with quantum gravity effects appearing as corrections
to the classical field equations. If such an effective geometry
removes the singularity, one is left with a so-called a regular
black hole model [10]. Although such a nonsingular effec-
tive description is not guaranteed to appear even if a quantum
gravity theory exists, in the absence of a full description of
any such fundamental quantum gravity approach, such reg-
ular black hole models are useful first examples to examine
if classical paradoxes can get resolved in such cases.

The information loss paradox is one such problem which
arises as a consequence of the classical singularity men-
tioned above. In order to understand this and other such prob-
lems, it is useful to investigate the dynamical causal struc-
tures of regular black hole models by studying the effective
quantum gravitational completion of the evaporating space-
time [11,12]. For such black holes, the first condition – the
existence of an apparent horizon – is necessary in order to
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construct the formation of an asymptotically Schwarzschild
spacetime, therefore leaving us no way to avoid this. A pop-
ular next choice has been to violate the null energy con-
dition [13], but this typically comes with its own plethora
of problems [14]. Interestingly, there do exist regular black
hole models which satisfy the null energy condition [10–
12]. The essential point of these models is the violation of
global hyperbolicity [15], perhaps the most conservative of
the three options. This implies that the center of the black hole
is time-like and there should exist a Cauchy horizon render-
ing the center to be regular. Nevertheless, even on choosing
this option, the existence of the Cauchy horizon leads to the
problem of instability and mass inflation of the inner hori-
zon [16–18].

Even apart from the inner horizon issue, there still remains
a problem. If the black hole spacetime is dynamical, the vio-
lation of global hyperbolicity becomes subtle. In principle,
both the formation and evaporation processes can be well
controlled by the given initial data for a classical black hole.
However, for regular black holes with a Cauchy horizon,
one wonders if the regularity of the solution comes at the
cost of having a truly dynamical description? In other words,
are such regular black holes only toy models which can-
not to be extended to modeling realistic black holes? If it is
not to be the case, what is then ‘effectively’ violated among
the three assumptions of the singularity theorem? A naive
answer is that if the black hole spacetime is dynamical, due
to the Hawking radiation, the null energy condition is vio-
lated. Hence, we are led back to this option in order not to
have formation of a singularity even in the case of dynamical
(regular) black holes. Eventually, one may obtain a closed
apparent horizon with an entirely regular and time-like cen-
ter [12]. This is a general belief exhibited in the vast literature
on regular black holes.

In this paper, we critically revisit this interpretation about
regular black holes. In order to see the internal structures in
detail, we need a way to dynamically probe these structures.
However, if the model is an effective model and only the static
solution is known, there is no unambiguous and justified way
to generalize such internal structures to the dynamical case.
In order to avoid this difficulty, we assume that there is an
evaporating black hole, where the outside is Schwarzschild
and the inside is a dS-like core. Note that the dS-like core
at the center is a very generic properties of a wide variety
of regular black holes in the literature [10–12]. Once we
assume the dS core, in principle we can introduce the field
theoretical model [19,20] and estimate the dynamics of the
transient region by numerical methods [21] or through other
similar approximations.

Building on this hypothesis, we may go one step further
by assuming that (1) the outside is Schwarzschild and inside
is dS, (2) the intermediate region is described by energy-
momentum tensors which satisfy the dynamical Einstein’s

equation (as opposed to just having a metric ansatz), and
(3) the space-time is globally hyperbolic (at least, up to
the numerically calculated domain). For simplicity, and to
keep the calculations tractable, we assume that the energy-
momentum tensor will be approximated by thin-shells. This
allows us to investigate quite generic, field-theoretically jus-
tifiable regular black hole dynamics. As an unexpected con-
clusion, we correct some naive expectations of regular black
hole models and point out overlooked issues in the typical
causal structures of an evaporating regular black hole1. This
lets us better formulate the following question: What is the
genuine condition to obtain closed apparent horizons?

This paper is organized as follows. In Sec. 2, we describe
mathematical details of the model. In Sec. 3, we obtain and
analyze numerical solutions. In Sec. 4, we comment on the
limitation of the thin-shell description and possible genuine
quantum gravitational modifications. Finally, in Sec. 5, we
summarize and discussion about possible future research
directions.

2 The model

In this section, we describe the regular black hole system
modeled by a thin-shell, where inside the shell is de Sitter (dS)
and outside the shell is Schwarzschild. In order to introduce
radiation and make the system dynamical, we choose the
Vaidya metric outside the shell where the mass parameter
can vary with time. The reason for choosing such a model
is so that we recover an asymptotically flat spacetime for
large areal radius r , whereas the dS core ensures the flatness
condition at the center. On the other hand, choosing the thin-
shell formalism ensures that the model retains its proximity
of interpreting the results in terms of field-theoretic models
of black hole evaporation. Indeed, a major improvement of
this type of a setup, when compared with similar dynamical
regular black hole models, lies in its goal of connecting it to
realistic evaporation scenarios.

2.1 Metric ansatz

As mentioned, in order to investigate dynamical properties
of regular black holes, we consider a thin-shell, the region
exterior to which is given by

ds2+ = −
(

1 − 2m(V )

r

)
dV 2 + 2dVdr + r2d�2 , (1)

whereas the interior is described as

ds2− = −
(

1 − r2

�2

)
dv2 + 2dvdr + r2d�2 . (2)

1 Other problems with regular black hole models have also been pointed
out in the literature; see, e.g. [22].
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The outside region is described by a Vaidya spacetime
whereas V and v denote incoming null coordinates for out-
side and inside of the shell, respectively. The mass depends
on the time as parametrized by m(V ) and � denotes the Hub-
ble radius of the internal de Sitter space. We consider that the
shell is located at r = R(v), and from Israel’s boundary con-
dition, the two metrics ds2− and ds2+ must be smoothly con-
tinuous at the shell. By introducing a new coordinate z, [23]

r =
{
R + z

V ′ (z > 0) ,

R + z (z ≤ 0) ,
(3)

so that the position of the thin-shell in terms of this new
coordinate is given at z = 0. Here, prime denotes a derivative
with respect to v. In terms of these variables, the spacetime
metric looks as follows, which is continuous across the shell:

ds2 = −
[((

1 − 2m

R + z/V ′

)
V ′2 + 2z

V ′′

V ′ − 2V ′R′
)

�(z)

+
((

1 − (R + z)2

�2

)
− 2R′

)
(1 − �(z))

]
dv2

+2dvdz +
(
R + z

V ′ �(z) + z (1 − �(z))
)2

d�2 . (4)

Continuity of the induced metric on the thin-shell leads to
the following equation

R′ = (1 − R2/�2) − (1 − 2m/R)V ′2

2(1 − V ′)
. (5)

2.2 Field equations

We adopt the formalism of Chen, Unruh, Wu and Yeom [23].
By differentiating both sides of the Eq. (5), we get

R′′ = (1 − V ′2(1 − 2m/R) − R2/�2)V ′′

2(1 − V ′)2

+−2V ′(1 − 2m/R)V ′′ − 2RR′/�2 − V ′2(−2m′/R + 2mR′/R2)

2(1 − V ′)
.

(6)

On the other hand, from the Einstein’s equation, one can write
the Einstein tensor as Gμν

bulk + δ(z)Gμν
shell. Due to spherical

symmetry, the non-zero components of the Einstein tensor
are

Gvv
shell = 2(V ′ − 1)

RV ′ , (7)

Gθθ
shell = − 2

R�2 −
(
RV ′2 − mV ′2 − RV ′ + V ′′R2

R4V ′

)
. (8)

The first component is related to the tension of the shell and
the second component is related to the tangential stress of the

shell. If the Einstein equations are satisfied at the junction
surface, then the continuity of not only the metric itself but
also the first derivative of the metric is guaranteed.

By imposing the zero tangential stress condition, we can
simplify all the equations of motion that describe dynamical
behavior of the thin shell. On imposition of the zero tangential
stress condition, i.e. assuming that the thin-shell is composed
of dust, we impose

Gθθ
shell = 0 , (9)

or, equivalently

V ′′ = V ′2m − RV ′2 + RV ′ − 2R3V ′/�2

R2 . (10)

Therefore, we end up with two second order differential equa-
tions for R′′ and V ′′, which we go on to solve numerically.

3 Dynamics of the regular black hole core

3.1 Numerical solutions

In order to find numerical solutions, we first need to postulate
a specific form form(v) – we consider that the mass increases
from zero to m0 during the time 0 ≤ v ≤ v0. After this time,
the black hole begins to evaporate following the Hawking
formula (or, at least, some Hawking-like formula). Our ansatz
takes the form [24,25]

m′(v) = πm0

2v0
sin

π

v0
v 0 ≤ v ≤ v0 , (11)

= − α

m2 V
′ v0 ≤ v , (12)

where α is a constant that is proportional to the number of
fields that contribute to Hawking radiation and m(0) = 0.
Note that althoughm′ is discontinuous but there is no physical
or mathematical problem for further investigations. The first
part of this ansatz is just our mathematical choice, but the
qualitative details will not depend on the form of m′ for v ≤
v0. In any case, it is easy to further refine the ansatz so as to
make m′ continuous.

We need four more free parameters R(0), R′(0), V (0),
and V ′(0), where V (0) is a parameter we are free to choose.
One of the other three parameters will be fixed by satisfying
Eq. (5). For consistency and convenience, we choose 0 ≤
R(0) ≤ � and, in the process, ensure that there is no horizon
at the beginning of the collapse.

Figures 1, 2, and 3 illustrate typical numerical results.
Qualitatively, one can categorize that Figs. 1 and 2 corre-
spond to the strong Hawking radiation case (the large α limit)
while Fig. 3 corresponds to the weak Hawking radiation case.
On the other hand, Figs. 1 and 3 correspond to the initially
stationary shell R′(0) = 0 while Fig. 2 corresponds to the
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Fig. 1 Numerical solution for m0 = 5, � = 5, v0 = 10, α = 50,
R(0) = 3, R′(0) = 0, and V (0) = 0. Upper left: the shell trajectory
(black thick curve), where the red curve is the (putative) outer appar-
ent horizon (R = 2m) and the blue dashed curve is R = �; this outer
apparent horizon is only meaningful if it is outside the shell. Upper

right: ρ(v), where the shell is time-like if ρ > 0 and space-like if
ρ < 0. Lower left: V (v) increases and approaches to a finite value as
v goes to infinity. Lower right: R − � approaches to zero and hence the
shell approaches to the horizon of the inside de Sitter space

dynamical case (R′(0) < 0), where all other initial condi-
tions are the same as those of Fig. 1.

3.2 Analysis: before evaporation

We point out several interesting points during the collapsing
phase (v ≤ v0):

• At the beginning of collapse, the apparent horizon is
completely inside the thin shell. Consequently, for the
matter collapse, there is no apparent horizon up to a cer-
tain critical mass. This kind of initial condition is a typi-
cal assumption of the regular black hole picture [11,12];
however, in the existing literature, authors did not assume
a physical false vacuum bubble with collapsing matter.
Rather, they extrapolated a limit of this scenario to con-
sider a regular black hole solution with a de Sitter-like
core. In this sense, our setup is more physical compared
to previous literature.

• Above the critical mass, the apparent horizon grows out-
side the shell.

• In the beginning of this dynamical phase, the thin shell is
time-like. In order to measure the signature of the shell,

one can assume d� = 0 and divide by dVdv both sides
of Eq. (1). Since the sign of the metric is related to the
signature of the shell, one can measure this by calculating
the quantity

ρ ≡ −R′ + 1

2

(
1 − 2m

R

)
V ′ , (13)

where if ρ > 0, the shell is time-like and if ρ < 0, the
shell is space-like. During the gravitational collapse, the
shell becomes space-like and approaches r = �.

• By comparing Figs. 1, 2, and 3, one can see that these
behaviors do not sensitively depend on the choice of the
initial conditions.

We note an interesting observation that the shell can
become space-like during the gravitational collapse. Such
a space-like, or tachyonic, distribution of the shell can be
interpreted an acausal transition of matter which is indeed
very harmful if information is attached to the shell [23]. On
the other hand, if it is just interpreted as a gradient of some
field, then it is not at all surprising that there appears a such a
space-like distribution of the field and one can still do a sen-
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Fig. 2 Numerical solution for m0 = 5, � = 5, v0 = 10, α = 50, R(0) = 3, R′(0) = −100, and V (0) = 0. Due to the choice if R′, the shell can
cross r = � surface. In this case, there appear outer and inner apparent horizons
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Fig. 3 Numerical solution for m0 = 5, � = 5, v0 = 10, α = 5, R(0) = 3, R′(0) = 0, and V (0) = 0. The other results are similar to the previous
result, but now the apparent horizon is way outside the shell

123



713 Page 6 of 9 Eur. Phys. J. C (2020) 80 :713

Fig. 4 Causal structure for the most natural initial conditions, where inside (left) is de Sitter space, outside (right) is Vaidya metric, and the thick
black curve is the location of the shell. Only the yellow colored region for left and the green colored region for right are physical

sible analyses of the dynamics [26,27]. Indeed, such a space-
like distribution was originally expected albeit this fact was
not much emphasized in the literature. Recently, effective
black-to-white hole models have been severely constrained
by considering effects of the thin-shell turning space-like
[28]. If we start from a static solution, the modified effective
matter inside the horizon must be space-like. As one natu-
rally extend the solution to the dynamical case, it is necessary
that the intermediate matter turns into space-like distribution
at some instant [29]. This is the novelty of our work which
has been not been rigorously investigated up to now.

Finally, we summarize the causal structure of both inside
and outside the shell in Fig. 4.

3.3 Analysis: during evaporation

At the end of the gravitational collapse, there are two types
of solutions:

Type 1: If α is very large (Figs. 1 and 2), then the apparent
horizon can shrink quickly so that the black hole
disappears. After the black hole loses its mass below
the critical mass, there remains an outgoing time-
like shell (Fig. 5). This is qualitatively consistent
with [12] and [21].

Type 2: If α is small (Fig. 3), then the shell approaches the
null direction and within a finite coordinate time
V , the parameter v reaches to infinity as the shell
approaches to the cosmological horizon of the inter-
nal de Sitter space. Hence, we need to choose a new
coordinate time for the extension.

Fig. 5 The causal structure of the rapidly evaporating black hole

Even though our coordinate system breaks down, there is
a reasonable way to extend the geometry. Since (1) the space-
time outside the shell is the same as Schwarzschild and (2) the
shell approaches the null direction, the causal past of the shell
will be determined by the usual black hole spacetime (black
dashed box of Fig. 6. By consistently pasting Figs. 4 and 6,
we obtain the entire spacetime of dynamical regular black
holes in the weak Hawking radiation limit (Fig. 7). This is in
keeping with expectations from numerical calculations [21].

Finally, we come to the case of the ‘rapid’ evaporation
of black holes. The lifetime of a black hole is of the order
of t ∼ M3/α, where M is the mass of the black hole and
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Fig. 6 Causal structure of an evaporating Schwarzschild black hole

Fig. 7 The final result for the entire spacetime. The black dashed box
corresponds to the causal past of the thin-shell which gives the same
causal structure of Fig. 6

α is a constant which is proportional to the number of mat-
ter fields that contribute to Hawking radiation. If α is large
enough, a black hole can evaporate even before the formation
of the singularity since the time scale for the latter is approx-
imately τ ∼ M . If two time scales t and τ are the same
order, i.e., t ∼ τ , or equivalently, α ∼ M2, then one can say
that the black hole evaporates before a singularity is even
formed. Figures 1 and 2 illustrate such cases, although this
limit is not semiclassical in typical scenarios [30]. Therefore,
one may alternatively say, rather conservatively, that semi-

classical regular black holes with a dS core should have a
singularity as shown in the causal structure (Fig. 6).

4 Quantum geometry corrections

It is natural to speculate how our analysis would change if
one includes quantum gravity corrections beyond assuming
a regular core as was done above. In order to discuss some of
the typical corrections which arise in the effective spacetime
of regular black holes from the underlying quantum geome-
try, let us focus on the specific case of loop quantum gravity.
In this case, nonperturbative corrections from the theory arise
in the form of having bounded (extrinsic) curvature due to
regularization of the phase space in terms of SU(2) holon-
omy matrix-elements. The typical behavior of black holes in
loops is that one transitions from a black to white hole geom-
etry, at a transition surface deep inside the core of the black
hole. The field variables in this case do not satisfy Einstein’s
equations but are rather subject to effective equations which
include several nonperturbative corrections. The details of
this process are unimportant for our purposes and we shall
only focus on a few qualitative features of such regular black
holes.

Solving the vacuum effective equations in loop quantum
gravity gives rise to regular static solutions which go beyond
GR. However, in order to compare the resulting solutions
with their classical counterparts, a common practice is to
rewrite the quantum geometry corrections to the Einstein’s
equations in terms of an ‘effective’ stress energy tensor.
In this way, the non-vanishing of the Einstein tensor, con-
strued as this effective stress energy tensor (perhaps, of some
anisotropic fluid), can then be compared with the vacuum
solution of GR which in this case is given by Schwarzschild
metric. The typical LQG solutions [31–36] lead to the viola-
tion of the strong energy condition [37] in the deep quantum
regime. Near the transition surface, this violation leads to
large departures from GR and makes the curvature invariants
approach an upper maximum value. However, this quantum
geometry stress energy component can be seen to die down
quickly as one approaches the horizon and becomes negli-
gibly small outside it. Thus, singularity resolution in these
models leads to an effective metric such that the strong energy
condition is violated in a large neighborhood of the transition
surface from black to white holes, even for static solutions.

Although, thus far, only static black hole solutions have
been studied in loop quantum gravity, it would be interest-
ing to speculate how such nonperturbative corrections would
affect the dynamical situation. As we have seen in this work,
in order to have singularity resolution in a dynamical regular
black hole, one requires (perhaps, unnaturally) rapid evap-
oration as can be seen in Fig. 7. Since Hawking radiation
implies a negative energy contribution, in effect one requires

123



713 Page 8 of 9 Eur. Phys. J. C (2020) 80 :713

sufficiently violating the energy conditions in order to evade
singularities. This is precisely where the loop quantum grav-
ity effects might come in handy. For such regular black holes,
the dynamical evaporation might not need to be similarly
strong due to addition negative energy flux due to quantum
geometry effects coming from within the cores. The main
idea would be that nonperturbative quantum effects would
ameliorate the need for very rapid evaporation of regular
black holes in order to have complete singularity resolution.
These types of solutions would be studied in future within
the thin shell formalism.

5 Conclusion

In this paper, we investigated a regular black hole model
which has a dS-like core. In regular black holes, there should
be a transient region that connects from the outside black
hole to the regular center. In order to describe the transient
region consistently, we need a model that can include field
theoretical dynamics. (Such a field theoretical construction
has largely been ignored in the literature thus far.) If the center
is akin to dS space, then, in principle, one can mimic the
model with such a field theoretical structure. In this work,
we have used the thin-shell approximation and considered
dynamics of the shell by using the Vaidya metric. Due to this
technical improvement, we can regard the transient region
dynamically with justifiable methods.

This results in revealing several interesting aspects. Dur-
ing the gravitational collapse phase, the shell can move along
the space-like direction. During the black hole evaporation
phase, the shell and the outer apparent horizon will approach
each other, but unless the evaporation is very rapid, the
approaching tendency is too slow. Therefore, it is reason-
able to conclude that although a false vacuum core may
remove singularity along the incoming null direction, there
still exists a singularity along the outgoing null direction,
unless the evaporation is very strong. Therefore, we can con-
clude that the effective modification of the core region is
not enough to explain the resolution of the singularity in a
genuinely dynamical scenario. We need something more to
explain singularity-resolution in the out-going null direction
within the semiclassical approximation, when the evapora-
tion rate is reasonably slow. The closed apparent horizon is
indeed relied on these subtle assumptions that need more
justifications.

In future work, there may be two ways to generalize this
model:

1. Non-zero tangential stress: Note that the physical param-
eters (e.g., tension and tangential stress) of the shell
should come from the detailed origin of the field and the
underlining potential structure that form the shell. How-

ever, in our formalism, the tension is geometrically deter-
mined via Einstein’s equations. The important assump-
tion is the zero tangential stress condition; if we do not
insist on this condition any longer, then there can be other
possibilities. Therefore, it is reasonable to revisit the van-
ishing tangential stress condition. One straightforward
possibility to generalize this would be to choose

Gθ
θ shell = wGv

vshell , (14)

where w is the equation of state.
2. Internal structure: There may be some variations of the

internal geometry rather than assuming a pure de Sitter
core, e.g., adopting the Hayward model or further such
modifications. Although unlikely, this may help in regu-
larizing the mass inflation instability.

Eventually, if one can build a regular black hole model which
can justify its dynamics based on field theoretical calcula-
tions, it shall be successful in resolving the singularity prob-
lem, at least within the semiclassical approximation. On the
other hand, if such an endeavor is proven to be impossible,
then we need to take an alternate route to explain the singu-
larity issue, for instance, by introducing the wave function
and going beyond effective spacetimes. We leave all of these
interesting issues for future investigations.
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