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Abstract Double parton distribution functions (dPDFs),
entering the double parton scattering (DPS) cross section,
are unknown fundamental quantities encoding new interest-
ing properties of hadrons. Here, the pion dPDFs are inves-
tigated within different holographic QCD quark models in
order to access their basic features. Results of the calculations
obtained within the AdS/QCD soft-wall approach, have been
compared with predictions of lattice QCD evaluations of the
pion two-current correlation functions. The present analysis
confirms that double parton correlations, affecting dPDFs,
are very important and not direct accessible from generalised
parton distribution functions and electromagnetic form fac-
tors. The comparison between lattice data and quark model
calculations unveils the relevance of the contributions of high
partonic Fock states in the pion. Nevertheless, by using a
complete general procedure, results of lattice QCD have been
used, for the first time, to estimate the mean value of the so
called σe f f , a relevant experimental observable for DPS pro-
cesses. In addition, the results of the first calculations of the
ρ meson dPDFs are discussed in order to make predictions.
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1 Introduction

In the last few years, great attention has been devoted to
theoretical and experimental studies of multiple parton inter-
actions (MPI), due to the large demand of detailed descrip-
tion of hadronic final states required at the LHC [1–3]. The
inclusion of MPI in experimental analyses is fundamental for
the research of New Physics, being MPI a source of back-
ground. The simplest case of MPI is the double parton scat-
tering (DPS) [4,5], where two partons of an hadron simulta-
neously interact with other two partons of the other colliding
hadron. As discussed in a recent review [6], the measure-
ments of DPS processes are mandatory to access unknown
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double parton correlations (DPCs) in the proton. Moreover,
the DPS cross section depends on a new quantity called dou-
ble parton distribution functions (dPFDs) which encode the
probability of finding two partons, with given flavors, longi-
tudinal momentum fractions (x1, x2) and relative transverse
distance d⊥ [1,7,8]. If measured, dPDFs would therefore rep-
resent a novel tool to access the three-dimensional hadron
structure [9,10]. In fact, dPDFs provide new fundamental
information, complementary to those obtained by using gen-
eralised parton distribution functions (GPDs) [11]. However,
for the moment being, no data for the proton dPDFs have
been so far collected. Furthermore, dPDFs are non perturba-
tive objects in QCD not directly accessible from the theory. It
is therefore useful to estimate them at low momentum scales
(∼ �QCD), for example by using quark models [12–15].
In addition to several general analyses on dPDFs [7,9,16–
19], a lattice QCD investigation on two-current correlations
in the pion has been published very recently [20]. In the
present analysis, we take advantage of the lattice data, to
test quark model predictions for the pion dPDFs. The cal-
culations of the latter have been shown for the first time in
Ref. [21] and then within the Nambu–Jona–Lasinio (NJL)
model [22–24]. In particular, by following the line of Ref.
[21], we consider here AdS/QCD soft-wall quark models.
Let us mention that the mean value of σe f f , sensitive to
dPDFs, has been already calculated within an holographic
QCD model for the proton target [25]. The models here used
are inspired by the so called AdS/CFT correspondence [26–
28], which relates a supersymmetric conformal field theory
with a classical gravitational one in an anti-de-Sitter space.
In the so called bottom-up approach, one implements funda-
mental properties of QCD by generating a theory in which
conformal symmetry is asymptotically restored [29–33]. Let
us mention that this approach has been successfully applied
to access non perturbative features of QCD, for example the
description of the spectrum of glueballs, hadrons, form fac-
tors (ffs) and different kind of parton distribution functions
(PDFs) [34–45]. In the present investigation we discuss the
calculations of the pion dPDFs and their first moments within
the AdS/QCD approach. Comparisons with lattice outcomes
will test the predictive power of these models and provide
new fundamental constraints for their future improvements.
In the last part of the present investigation, predictions for
the ρ dPDFs will be shown for the first time. The paper is
organised as follows.

In Sect. 2 the formalism to describe dPDFs and related
quantities within the Light-Front (LF) approach is shown. In
Sect. 3 a brief recapitulation of the main lattice evaluation of
moments of dPDFs [20] will be presented. In Sect. 4 details
on the adopted AdS/QCD models will be discussed. In Sect. 5
numerical calculations of dPDFs and related quantities will
be shown, also including the comparisons with lattice data.
In Sect. 6 the first study of the ρ dPDFs is presented.

2 Meson double PDF within the light-front approach

In this formal section, the main strategy to obtain a suit-
able expression of the mesonic dPDFs, for quark model
calculations, will be presented. In particular, the essential
steps of this procedure have been previously developed in
Refs. [21,46] and they are here summarised. In particular
we consider the Light-Front (LF) approach [47,48] together
with the LF wave function representation of the hadronic
state [49,50]. In this scenario, the meson (M) state |M, P〉,
with momentum Pμ, can be decomposed in a coherent sum
over partonic Fock states. The relative contribution of a given
Fock state to the meson is encoded in the so called LF wave
function (w.f.) ψ . The latter contains all non-perturbative
information on the meson structure. Of course, the LF w.f.
cannot be evaluated from first principles, i.e. the QCD. In this
scenario, constituent quark models represent suitable tools to
evaluate the w.f. and then to explore basic non perturbative
features of different kind of distributions, such as parton dis-
tribution functions, form factors and dPDFs. Indeed, all these
quantities can be described in terms of the LF wave function.
In the present analysis we focus our attention on dPDFs.
As already mentioned, these quantities encodes novel infor-
mation on the hadron structure which cannot be obtained
through one-body functions such as generalised parton distri-
butions and transverse momentum dependent PDFs (TMDs).
Since the main purpose of this investigation is the compar-
ison between quark model calculations with those obtained
within the lattice frame work [20], here we consider the unpo-
larized dPDFs which depend on the Dirac matrix γ μ. The
double PDFs can be formally defined through a light-cone
correlator [7]:

Fq1q2(x1, x2,k⊥)

= P+

4

∫
d2y⊥e−iy⊥·k⊥

∫
dy−

∫
dz−1 dz

−
2

× e−i x1P+z−1 −i x2P+z−2

(2π)2

〈M, 0|Oq1(0, z1)Oq2(y, z2)|M, 0〉
∣∣∣z1⊥=z2⊥=0

y+=z+1 =z+2 =0
, (1)

where, for generic 4-vectors y and z, the operator Oq(y, z)
for the quark of flavor q reads:

Oq(y, z) = q̄

(
y − 1

2
z

)
γ +q

(
y + 1

2
z

)
, (2)

and q(z) is the LF quark field operator. In order to find a suit-
able expression of the dPDF, we consider the Fock decom-
position of the mesonic state [49,50] and keep only the |qq̄〉
contribution [21]. In fact, for the moment being, an explicit
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expression for the LF wave function of, e.g., the |qq̄qq̄〉 state,
is not available. Therefore, the meson state reads:

|M,P⊥〉 =
∑
h,h̄

∫
dx1 dx2√

x1x2

d2k1⊥d2k2⊥
2(2π)3 δ(2)

× (k1⊥ + k2⊥)|x1,k1⊥ + x1P⊥, h〉|x2, k2⊥ + x2P⊥, h̄〉
× δ(1 − x1 − x2)ψ

M
h,h̄

(x1, x2,k1⊥,k2⊥). (3)

Here, h and h̄ represent the parton helicities, xi = k+
i /P+

and ki⊥ the quark longitudinal momentum fraction and its
transverse momentum, respectively, and Pμ is the meson 4-
momentum. The light cone components of a generic 4-vector
are defined by l± = l0±l3. In Eq. (3), ψM

h,h̄
(x1, x2,k1⊥,k2⊥)

is the LF meson wave-function, whose normalisation is cho-
sen to be

1

2

∑
h,h̄

∫
dx1dx2

d2k1⊥d2k2⊥
16π3 δ(1 − x1 − x2)δ

(2)

× (k1⊥+k2⊥)|ψM
h,h̄

(x1, x2,k1⊥,k2⊥)|2 = 1. (4)

The w.f. ψM
h,h̄

(x1, x2,k1⊥,k2⊥) determines the structure of
the state. The direct expression of the dPDF in terms of the
above quantity can be obtained by following the procedure
developed in Refs. [15,21,46]. In the Appendix 1, details on
the convention for the quark-antiquark field operator and anti-
commutation relations, between creation-annihilation oper-
ators [34], are shown. Finally, the meson dPDF reads:

Fq1q̄2(x1, x2,k⊥) = 1

2

∑
h,h̄

∫
d2k1⊥
2(2π)3 ψM

h,h̄
(x1, x2, k1⊥,−k1⊥)

× ψ∗M
h,h̄

(x1, x2,k1⊥ + k⊥,−k1⊥ − k⊥)δ(1 − x1 − x2)

= f M2 (x1,k⊥)δ(1 − x1 − x2). (5)

In the above expression, q1 and q̄2 are the flavors of the
constituent quarks. Due to momentum conservation, x2 =
1 − x1 and k2⊥ = −k1⊥; thus we define ψh,h̄(x1,k1⊥) =
ψπ

h,h̄
(x1, 1 − x1,k1⊥,−k1⊥) for brevity.

Since as already mentioned, the comparison with lat-
tice data is fundamental in the present investigation, we are
mainly interested in moments of dPDFs, i.e. the integrals
over x1 and x2 of Eq. (5). Thus f M2 (x1,k⊥) in Eq. (5), is
the quantity that will be calculated within constituent quark
models:

f M2 (x,k⊥) =
∫ 1

0
dx2 Fq1q̄2(x, x2,k⊥)

= 1

2

∑
h,h̄

∫
d2k1⊥
2(2π)3 ψM

h,h̄
(x,k1⊥)ψ∗M

h,h̄
(x,k1⊥ + k⊥). (6)

As shown in Refs. [15–17], dPDFs evaluated at k⊥ = 0 are
related to the PDF. Here and in the following, the meson
PDFs are specified by the subscript “1” , i.e. f M1 (x). As one
might notice, if only a two-body Fock state is considered in
Eq. (3), the dPDF would be essentially an unintegrated PDF.
In the proton case, where the |qqq〉 state is the dominant one,
the above feature is not valid. In this analysis we make use of
different quark models to identify general non perturbative
features of dPDFs. Therefore, the following ratio is studied
[14,15] to emphasise the role of correlations between the x
and k⊥ dependence:

rk(x, k⊥) = f M2 (x, k⊥)

f M2 (0.4, k⊥)
; (7)

in fact, if a factorised ansatz for dPDFs were valid, for exam-
ple f M2 (x, k⊥) ∼ f2,x (x) f2,k⊥(k⊥), then the ratio rk(x, k⊥)

would not depend on k⊥. For details on the calculations of
this quantity, in the proton case, see Refs. [9,14,15,51]. Let
us remind that this kind of ansatz is often used in experimen-
tal analyses.

In closing this section, we note that the dPDFs depend
on two momentum scales. Therefore, in order to make useful
predictions, the perturbative QCD evolution of dPDFs should
be properly included in the analyses. Moreover, as shown in
several papers, see e.g. Refs. [15,57], the evolution proce-
dure can reduce the impact of x1 − x2 correlations. However,
since the pQCD evolution equations of dPDFs do not involve
the k⊥ dependence, correlations between x and k⊥ can be rel-
evant also at high energy scales. Such a conclusion has been
discussed in Ref. [21] for the pion, and in Refs. [9,51] for
the proton. Furthermore, since for the moment being we are
mainly interested in the first moment of dPDFs, we take both
scales equal to the hadronic one. For evolution effects in the
pion dPDFs see Ref. [21].

2.1 Moments of dPDFs

As already mentioned, in the present study we are mainly
interested on the first moment of the pion dPDF. Results of
the calculations of this quantity will be compared to that
obtained within the lattice [20]. The physical interpretation
of the first moment of dPDFs is here discussed. As shown
in Refs. [9,10,52], the latter can be interpreted as a double
form factor. This quantity, usually called effective form factor
(eff), can be defined as follows:

F2(k
2⊥) =

∫ 1

0
dx1

∫ 1−x1

0
dx2 Fq1q2(x1, x2,k⊥) . (8)

For unpolarized dPDFs, the eff does not depend on the direc-
tion of k⊥. The above definition is general and also valid for
many-body systems. Moreover, one should notice that the
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normalisation of the LF wave function relies in the condi-
tion: F2(0) = 1. Physically, the latter ensures that the Fourier
Transform (FT) of the eff can be interpreted as the probability
of finding two partons with a given transverse distance d⊥.
This quantity is indeed the conjugate variable to k⊥. Let us
stress that a pre-factor in Eq. (8), depending on the kind of
hadron, could appear according to the dPDF sum rules [16].
In the meson case, where only a qq̄ state is considered, the
eff reads:

F2(k
2⊥) =

∫ 1

0
dx f2(x,k⊥)

= 1

2

∑
h,h̄

∫ 1

0
dx

∫
d2k1⊥
2(2π)3 ψh,h̄(x,k1⊥)

× ψ∗
h,h̄

(x,k1⊥ + k⊥). (9)

The above quantity will be calculated in the next sections and
compared with that extracted from the lattice QCD [20].

2.2 An approximation in terms of one body quantities

In order to phenomenologically estimate the magnitude of
the DPS cross section in proton-proton collisions, an approx-
imate relation between GPDs and dPDFs is often assumed
in experimental analyses [53,54]. In fact, by introducing a
complete set of states in the correlator (1) and keeping only
the mesonic contribution, one gets

Fq1q̄2(x1, x2,k⊥)

∼ P+

4

∫
d2y⊥e−iy⊥·k⊥

∫
dy−

∫
dz−1 dz

−
2

∫
dP ′+d2P′⊥
2(2π)3P ′+

e−i x1P+z−1 −i x2P+z−2

(2π)2

× 〈M, 0|Oq1(0, z1)|M,P′⊥〉
〈M,P′⊥|Oq̄2(y, z2)|M, 0〉

∣∣∣z1⊥=z2⊥=0

y+=z+1 =z+2 =0
. (10)

By using the strategy already discussed in the previous sec-
tion, one finally finds:

Fq1q̄2(x1, x2,k⊥) ∼ Hq1(x1,k⊥)Hq̄2(1 − x2,−k⊥) , (11)

where Hq(x,k⊥) = Hq(x, ξ = 0,k⊥), is the meson GPD at
zero skewness (see Refs. [55,56] for useful reports on GPDs).
Let us mention that the above expression has been tested, in
the proton case, by using a LF quark model [57]. The integral
over x2 of Eqs. (5) and (11) leads to

f M2 (x,k⊥) ∼ f M2,A(x,k⊥) = HM (x,k⊥)FM (k⊥), (12)

where FM (k⊥) is the standard e.m. form factor of the meson
M. We denote the meson dPDF, evaluated within the above
ansatz, as f M2,A. The difference between the full calculation
of the dPDF and its approximation can be interpreted as the
sign of the presence of correlations not encoded in one-body
quantities, such as GPDs and ffs. A dedicated numerical sec-
tion about the impact of correlations in dPDFs will follow.
Let us mention that an approximated expression of the first
moments of the dPDF can be also obtained. In this case, the
integration over x of the expression (12) leads to:

F2(k
2⊥) ∼

∫ 1

0
dx H(x,k⊥)F(k2⊥) = F(k2⊥)2. (13)

A similar ansatz has been tested in the lattice investigation
of Ref. [20]. In Eq. (13), the relation between the GPDs and
ffs has been used [55]:

F(k2⊥) =
∫ 1

0
dx H(x,k⊥) (14)

The above form factor can be described in terms of the LF
wave function. For a meson described by the first Fock state,
one gets the following expression [34,58,59]:

F(k2⊥)=
∫ 1

0
dx

∫
d2k⊥
16π3 ψ∗(x,k⊥)ψ(x,k⊥+(1−x)k⊥),

(15)

where k⊥ = |k⊥|. The approximation Eq. (13) will be numer-
ically tested by means of holographic quark models.

2.3 The effective cross section

In this section, the so called effective cross section, σe f f [8],
a relevant observable for DPS studies, is introduced. This
quantity is defined as the ratio of the product of two single
parton scattering process cross sections to the DPS one with
the same final states. Usually σe f f is extracted from data by
using model assumptions, such as the factorisation of dPDFs
in terms of PDFs. Experimental analyses, for proton-proton
collisions, have been already compared with quark model
calculations of σe f f [9,25,52,60,61]. Let us mention that in
Ref. [25] an AdS/QCD soft-wall model for the proton has
been used to calculate this quantity. The common feature,
pointed out in Refs. [9,25,52,60], is the dependence of σe f f
on the longitudinal momentum fractions carried by the act-
ing partons. This behaviour is interpreted as the effects of
non trivial double parton correlations. Although no experi-
mental analyses for the extraction of σe f f for meson-meson
collisions are available, in the present investigation the above
quantity will be evaluated to make predictions for DPS pro-
cesses involving mesons. Let us mention that for the pion
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case, the estimate of σe f f , shown in Ref. [21], has been used
in the experimental investigation of Ref. [62]. The general
definition of this quantity is [63]:

σe f f = m

2

σ
pp′
A σ

pp′
B

σ
pp
double

. (16)

m is a process-dependent combinatorial factor: m = 1 if
A and B are identical and m = 2 if they are different.

σ
pp′
A(B) is the differential cross section for the inclusive process
pp′ → A(B) + X . As a first approximation for experimen-
tal analyses, σe f f is considered rather independent from the
flavors of the partons, the final states of the processes and the
experimental kinematic conditions. However, recent studies
on quarkonia production suggest that this ansatz might be
violated [64]. Due to the lack of experimental data for meson-
meson DPS processes, in the present study we calculate the
mean value of σe f f in order to discuss its geometrical inter-
pretation [10]:

σ e f f = 1∫
d2k⊥
(2π)2 F

π
2 (k⊥)Fπ

2 (−k⊥)

. (17)

Let us mention that if double parton correlations could be
neglected, then σe f f = σ e f f . Anyhow, the above expression
encodes unknown non perturbative insight on the hadronic
structure, such as the geometrical information on the system.

2.3.1 On the geometric interpretation of σ e f f

As already pointed out in the previous section, due to the lack
of experimental information on double parton scattering pro-
cesses, in particular for meson targets, calculations on σ e f f

could be relevant to make predictions, such as the one of Ref.
[62]. In this scenario, the interpretation of σe f f , in terms of
geometrical properties of the incoming hadron, is fundamen-
tal. To this aim, in this section, we explore an intuitive relation
between σ e f f and the mean partonic distance between two
partons acting in a DPS process. This study has been dis-
cussed in detail in Refs. [9,10]. The procedure is somehow
similar to that applied in the case of elastic processes, where
the e.m. form factor, extracted from the relative cross sec-
tion, can be related to the charge/magnetic radius. However,
since σ e f f depends on the integral over k⊥ of the product
of two effs (17), a direct extraction of the eff is precluded.
Nevertheless, basic probabilistic properties of the FT of this
quantity allow to relate σ e f f to the main partonic transverse
distance between two partons 〈d2⊥〉. The effective form factor
[52], for a generic system, can be indeed defined as follows:

F2(k⊥) =
∫

d2d⊥ eik⊥·d⊥ρ(d⊥), (18)

being ρ(d⊥) the two-body density of the system for two par-
ticles whose distance in the transverse plane is d⊥. Thanks
to this relation, one finds:

〈d2⊥〉 
 −4
dF2(k⊥)

dk2⊥

∣∣∣∣
k⊥=0

. (19)

The above expression, first introduced in Ref. [10] and
applied in the Lattice QCD analysis of Ref. [20], is a gen-
eralisation of the standard relation between the mean square
radius of the the proton and its relative form form factor. Let
us remark that we are considering unpolarized quarks in an
unpolarized hadron; thus the eff depends on |�k⊥|. Details on
this relation can be found in Ref. [10]. Due to this connection
between the effective form factor and the mean distance of
two partons, one can relate σ e f f (17) to the above quantity.
Here and in the following we refer to σ e f f as the geometrical
effective cross section. The latter is indeed a process inde-
pendent constant depending only on the functional behaviour
of the eff. In Ref. [10], the relation between the numerical
value of σ e f f and the partonic distance has been properly
understood. Here the main outcome of Ref. [10] is shown.
By considering the definition of σ̄e f f (17) and the probabilis-
tic interpretation of the FT of the eff, one can show that the
main partonic distance (19) lies in a range depending on σ̄e f f
as follows:

σ̄e f f

3π
≤ 〈d2⊥〉 ≤ σ̄e f f

π
(20)

Such a result is extremely useful to get some information
on the geometrical structure of an hadron once some data
on σe f f are collected. Since in the present analysis the mean
partonic distance will be calculated within quark models and
compared to that obtained from the lattice QCD, the above
inequality (RC) will be tested. Let us remind that in the pro-
ton case the RC inequality has been verified by using all
quark models and ansatz of dPDFs at our disposal [9,10].
Furthermore, in the pion case, the above relation has been
also validated by the NJL model [23].

3 Lattice analysis of moments of dPDFs

In this section, we briefly recall the main formalism intro-
duced in Ref. [20]. Here, the expectation for the two-current
distribution, a quantity related the first moment of the pion
dPDF, has been evaluated within the lattice framework. In
momentum space, this quantity reads:

M(q2) =
∫

d3y ei �y·�q〈π, p|O(y)O(0)|π, p〉
∣∣∣
y0=0

. (21)
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The main differences with respect to the light-cone derivation
of the dPDF are: (i) the gamma matrix considered in Eq. (21)
is γ 0, instead of γ + in Eq. (2); (ii) the distance between the
quark field operators y is chosen along the condition y0 = 0,
instead of y+ = 0, see Eq. (1). However, as discussed in the
Appendix 1, kinematic corrections, due to the choices of the
gamma matrix and the separation condition, can be neglected
in the infinite momentum frame (IMF), i.e. the natural ref-
erence system where a partonic description of hadrons can
be provided. Therefore numerical comparisons, between lat-
tice and quark models calculations, are allowed in this frame.
However, one of the main consequences of the conditions i
and i i is the frame dependence of numerical evaluations of
Eq. (21) within the lattice approach [20]. In this framework,
moments of dPDFs depend upon the the pion momentum �p.
This feature will be explicitly relevant in the analysis of the
approximation (13). In the next section, the comparisons of
the double parton correlations effects, highlighted in the anal-
ysis of Ref. [20], with those addressed in constituent quark
model calculations, will be presented. To this aim the lattice
data, we are interested for, are here shown. For simplicity, all
distributions will be evaluated in momentum space.

3.1 The pion form factor

The standard electromagnetic (e.m.) ff, necessary to test
the approximation (13), has been directly fitted from lattice
results. The expression reads:

FL(Q2) = 1[
1 + Q2

M2

]n , (22)

where the parameters leading to a good fit with lattice data
are: M = 0.872 ± 0.016 GeV and n = 1.173 ± 0.069 (con-
figuration A) or M = 0.777±0.012 GeV and n = 1 (config-
uration B) [20]. As one can observe in the left panel of Fig. 1,
differences between the two configurations are minimal. In
the present investigation, the A configuration has been used
as benchmark for further comparisons.

3.2 Effective form factor

As already pointed out, the first moment of a dPDF is the
eff (8). However, within the lattice framework, one finds that
M(0) = −2mπ , thus, following the procedure of Ref. [20],
the eff is properly defined as follows

F2L(q) ≡ M(q)

−2mπ

= 1[
1 + 〈d2〉q

2

6n

]n , (23)

here the parameter n is the same of that of FL of Eq. (22).
Let us stress that the FT of the above expression has the
probabilistic interpretation shown in Eq. (18). In fact, within
the above functional form, the 3-dimensional mean distance
between the two partons is:

√〈d2〉 = 1.046 fm [20]. Let us
remark that since fort the moment being only unpolarised
quarks in the unpolarised pion, then w.r.t. the definition
Eq. (19), 〈d2〉 = 3/2〈d2⊥〉. As deeply discussed in Ref. [20],
the quantity M(q2), has been numerically evaluated in the
pion rest frame, i.e. �p = 0. However, as previously men-
tioned, a comparison between lattice data and quark model
calculations of dPDFs is possible in the IMF (see discussion
in Ref. [20]). Thus in order to proceed with the present study,
it is necessary to realise that the IMF can be approximately
mimicked in the kinematic regions where q2 << m2

π . We
recall that in the lattice QCD analysis [20] the pion mass is
fixed to be mπ = 0.3 GeV.

3.3 An approximation for the moment of dPDFs in lattice
QCD

As mentioned in Sect. 2.2, a direct measure of the impact
of unknown DPCs is the discrepancy between the eff and its
approximation in terms of the e.m. form factor, see Eq. (13).
To this aim, the procedure discussed in Sect. 2.2 has been
considered also in the lattice analysis [20]. However, since in
this framework frame dependent effects appear, the following
result is obtained:

F2L(Q2)∼ (mπ + Eq)
2

4mπ Eq

[
FL(2mπ Eq−2m2

π )
]2 = F̄L(q)2.

(24)

As already explained [20], the above result comes from the
procedure discussed in Sect. 2.2 but using the lattice con-
ditions described in the first part of Sect. 3. In particular,
the above expression has been obtained in the pion rest
frame, i.e. �p = 0 [20]. As one can see, the approxima-
tion (24) is different from that derived within the light-cone
formalism, see Eq. (13). However, it is remarkable that in
the IMF the standard expression Eq. (13) is recovered from
Eq. (24). In fact, by replacing the pion energy at rest with
that of a moving target with an extremely large momentum
�p: mπ → Ep = √

m2
π + p2, one gets:

F2L(Q2) ∼ F̄L(Q2)2 = FL(Q2)2, (25)

for q2 << p2. This is exactly the result found by following
the standard strategy discussed in Sect. 2.2, see Eq. (13).
Let us remark that such a conclusion can be also reached by
imposing q2 << m2

π (see Discussion on Ref. [20]). A direct
consequence of this approximation is the relation between
the mean partonic distance and the mean pion radius. In fact
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Fig. 1 Left panel: the pion e.m. form factor evaluated within the lat-
tice framework, see Eq. (22). Full black line for the configuration A
and dashed blue line for the configuration B. Right panel: comparison

between the lattice eff (23) (full black line) and its approximation (24)
(dashed blue line). Dotted green lines stand for the approximation (24)
evaluated in the IMF, see Eq. (25)

by using that:

〈r2〉 = −6
dFL(Q)

dQ2

∣∣∣∣Q2=0 = −6
d F̄L(Q)

dQ2

∣∣∣∣
Q2=0

, (26)

and by considering the relations Eqs. (24-25) between the eff
and the e.m. ff, one finds that 〈d2〉 ∼ 2〈r2〉. Numerical values,
obtained within the lattice techniques [20], for 〈d2〉 and 〈r2〉,
immediately show that

√〈d2〉 = 1.046 �= √
2〈r2〉 = 0.85

fm. As one can observe, correlations effects prevent a simple
relation between these two quantities. Let us stress that since
both 〈d2〉 and 〈r2〉 depends on the small Q2 behaviour of
effs and ffs, they are rather independent on the chosen frame.
Such a feature has been confirmed by numerical calculations
of each sides of Eq. (26), see Ref. [20]. In addition, details on
the impact of DPCs can be obtained by comparing both sides
of Eqs. (24–25) as a function of Q2. As one can see in the
right panel of Fig. 1, the presence of correlations prevents a
simple description of the eff in terms of standard ff. See the
difference between the full line (left hand side of Eq. (24))
and the dashed line (right hand side of Eq. (24)). However,
in the lattice framework, DPCs mix with frame dependent
effects, thus, in the right panel of Fig. 1 we also plot the right
hand side of Eq. (25) i.e. the approximation in the infinite
momentum frames (dotted lines). The comparison between
dotted and dashed lines, provides a numerical estimate of
the region where frame dependent effects are minimal. One
can observe that calculations obtained in the pion rest frame
are close to those obtained in the IMF up to q2 < m2

π , as
expected. From this check one can deduce that a comparison,
between lattice data and predictions of holographic QCD
models, are allowed for q2 < 0.07 GeV2. Before closing
this section, the explicit expression of the pion eff (23) has
been used to evaluate the geometrical effective cross section:
σ̄e f f = 26.3 mb. Since this result correspond to the case
of pions in their rest frame, this numerical result is rather

useless for experimental analyses. On the contrary, 〈d2〉 is
almost frame independent. In fact, this quantity depends on
the behaviour of the eff at k⊥ ∼ 0 (see Discussion in Ref.
[20]). Therefore, by inverting the RC inequality (20), one can
estimate a range of possible σ e f f once the value of 〈d2〉 is
established:

2π

3
〈d2〉 ≤ σ e f f ≤ 〈d2〉3π . (27)

From the above expression, an allowed range of σ e f f , valid
also in the IMF, can be estimated. Starting from the lattice
data 〈d2〉 = 1.046 fm2, one gets:

22.9 [mb] ≤ σ e f f ≤ 68.7 [mb]. (28)

The relevance of the above result relies on its frame indepen-
dence. Indeed, while the eff, extracted by Lattice collabora-
tion depends on a given frame, the value of 〈d2〉 does not. In
fact, as one might notice in Eq. (19), this quantity depends on
the small k2⊥ behaviour of the effective form factor. Therefore,
〈d2〉 is related to kinematic regions where frame dependent
effects are relatively small. Thanks to this feature, one might
conclude that the inequality (28) is frame independent too.
In this scenario, even if a direct experimental prediction from
lattice data cannot be safely obtained, thanks to the above pro-
cedure an hint on the amount of σe f f can be provided. Let
us stress that for the moment being such a quantity is related
to an hypothetical DPS process involving pions. From this
general results of the lattice QCD, one can conclude that the
mean value of σe f f for a pion-pion collision is bigger then
that extracted in proton–proton collisions. Since, as shown in
Eq. (16), σe f f estimates the ratio between the DPS process
to the product of two SPS processes, the result Eq. (28) can
be physically interpreted as a suppression of the DPS contri-
bution, w.r.t. the SPS one, bigger in pion then in the proton.
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This outcome could guide future phenomenological analyses
of DPS off mesons.

4 The pion dPDF within the holographic QCD

In this section, details on the constituent quark models
adopted to investigate basic feature of pion dPDF will be
presented. In particular, we are interested in the mesonic
wave function calculated by using different Light-Front holo-
graphic QCD models. The first w.f. described in this section
has been introduced in Ref. [34]. The pion dPDF has been
evaluated for the first time within this model in Ref. [21].
However, since the aim of this analysis is to provide a first
comparison with lattice data, the pion wave function has been
also evaluated by improving that of Ref. [34]. To this aim,
we also considered the model where dynamical spin effects
have been taken into account [44]. In addition, in order to
include other fundamental phenomenological effects, such
as the Regge trajectory of the x-dependence of PDFs, the
model of Ref. [36] has been also adopted.

4.1 Pion in AdS/QCD I: the original version

In this section, we discuss the calculation of the pion dPDF
evaluated within the model described in Refs. [34,35]. Since
the w.f. obtained in this scenario can be considered as the
starting point for any further implementations, here and in
the following, we refer to it as the “original” model. Indeed,
it can reproduce basic properties of the meson spectroscopy
and structure functions. In momentum space representation,
the pion wave function reads [34]:

ψπo(x,k1⊥) ∝ 4π

κo
√
x(1 − x)

e
− k21⊥

x(1−x)2κ2
o , (29)

being κo = 0.548 GeV fixed to reproduce the Regge
behaviour of the mass spectrum of mesons. Moreover, in
order to include a dependence on the quark masses, the wave
function has been written in terms of the invariant mass [35]:

M2 =
∑
i

m2
i + ki⊥2

xi
= m2 + k1⊥2

x(1 − x)
, (30)

where m = m1 ∼ m2, x = x1, x2 = 1 − x1 and k2⊥ =
−k1⊥. In this scenario the pion wave function now reads:

ψπo(x,k1⊥) = Ao
4π

κo
√
x(1 − x)

e
− k21⊥+m2

o

x(1−x)2κ2
o . (31)

The mass parameter is usually chosen to be mo ∼
0.33 GeV [65]. The constant Ao is fixed by the following

normalisation condition:

∫ 1

0
dx

∫
d2k1⊥
16π3 |ψπo(x,k1⊥)|2 = 1. (32)

Within this approach the dPDF expression for the pion can
be analytically found [21]:

f πO
2 (x,k⊥) = A2

oe
− 4m2

o+k2⊥
4κ2
o x(1−x) . (33)

4.2 Pion in AdS/QCD II: dynamical spin effects in
holographic QCD

In Ref. [44], dynamical spin effects have been included into
the holographic pion wave function in order to predict the
mean charge radius of the pion and its ff without includ-
ing high Fock states in the meson expansion (3). To account
these contributions, let us promote the function appearing in
Eq. (31) as an helicity dependent quantity, i.e.

ψπs(x,k⊥) = Shh̄(x,k⊥)ψπo(x,k⊥). (34)

Without going into details, let us discuss only the main out-
comes of Ref. [44]. The spin operator reads:

Shh̄(x,k⊥) =
[
Am2

π + B

(
momπ

x(1 − x)

)]
(2h)δ−hh̄

+ B

[
mπk⊥ei(2h)θk⊥

x(1 − x)

]
δh,h̄, (35)

where k⊥ = k⊥eiθk⊥ . The original model, described in the
previous section is restored for B = 0 and A = 1/m2

π , i.e.:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Shh̄(x,k⊥)
A=1/m2

π−→
B=0

1√
2
(2h)δ−hh̄

∑
h,h̄

|Shh̄ |2 = 1
(36)

Where the last condition ensures the normalisation of the
pion wave function. Let us call the dPDF evaluated within the
present model, f π AB

2 , where A and B can assume different
values. By following Ref. [44], we consider two configura-
tions, i.e. A = B = 1 and A = 0, B = 1. In particu-
lar, the w.f. entering Eq. (34) is the same of that obtained
within the original model discussed in the above section,
see Eq. (31). However, in order to recover phenomenolog-
ical predictions, the parameter entering the w.f. Eq. (31) is
κ0 = 0.523 GeV [44]. Also in this case, analytic expressions
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for dPDFs can be found:

f π11
2 (x,k⊥) = 0.0415248

x2(1 − x)4 e
0.91398 k2⊥+0.39813

x(x−1)

×
[
−12.7551 k2⊥(1 − x)2 + x6 − 4x5

−12.6698x4 + 52.0095x3

−49.4534x2 + 7.5576x + 5.55612
]

, (37)

for the case where A = B = 1 and

f π01
2 (x,k⊥) = − 0.64739

(x − 1)x2(x − 1)3

× e
0.91398 k2⊥+0.39813

x(x−1)
[
0.91398 k2⊥(1 − x)2 + x4

−3x3 + 2.60187x2 − 0.203741x − 0.39813
]
,

(38)

for the case where A = 0 and B = 1. Here and in the fol-
lowing we refer to this model as the “dynamical spin model”.

4.3 Pion in AdS/QCD III: a universal wave function

In this last part of this section, a new and promising pion
wave function, obtained from the holographic correspon-
dence, will be presented [36]. In this case, the basic idea
is to consider the most general analytic structure of GPDs,
obtained within holographic QCD, and then incorporate the
Regge trajectories for small x in PDFs. In this procedure,
the mathematical structure preserves the poles of the ff in
the physical region. Here and in the following we indicate
this model as the “Universal model” (UM). Let us here just
remind the main outcomes of Ref. [36]. Within this model,
the effects of two Fock states in the hadron expansion (3) are
considered: the valence configuration |qq̄〉 and the |qq̄qq̄〉
contribution. These two different states are addressed with
the index τ = 2 and τ = 4, respectively. A remarkable result
shown in [36] is that nucleon and pion PDFs, GPDs and
ffs can be described within the same model. Of course, free
parameters are chosen to describe ffs, PDFs and hadron spec-
troscopy at the same time. The w.f., related to a given τ state
can be effectively expressed as follows:

ψτ
e f f (x,k⊥) = 8π

√
qτ (x) f (x)

1 − x
Exp

[
2 f (x)

(1 − x)2 k
2⊥
]
, (39)

where here qτ (x) is the τ contribution to the pion PDF. The
analytical structure of this quantity is fixed by the holographic
QCD approach:

qτ (x) = 1

Nτ

[
1 − w(x)τ−2

]
w(x)−

1
2 w′(x), (40)

where:

w(x) = x1−x e−a(1−x)2
(41)

f (x) = 1

4λ

[
(1 − x) log

(
1

x

)
+ a(1 − x)2

]
(42)

Nτ = √
π�(τ − 1)/�(τ − 1/2). (43)

Thanks to this choice the Regge trajectory is correctly repro-
duced. Moreover, the parameters a and λ have been phe-
nomenologically fixed by fitting the mesonic mass spectrum
and the e.m. form factor. Results are found for a = 0.531
and κ = √

λ = 0.548 GeV. In Ref. [36], the authors fixed
the weight of the two Fock states, γ , contributions by using
the pion moment of PDFs:

f πU
1 (x) = (1 − γ )qτ=2(x) + γ qτ=4(x) . (44)

In particular γ = 0.125 [36]. Let us point out that the wave
function of the τ = 4 state is computed only to calculate
PDFs. Thus, the dependence of the latter upon the other two
particle momenta is integrated out. Thanks to all these ingre-
dients, the pion dPDF, f πU

2 (x, k⊥), can be evaluated. In the
next section numerical results will be discussed. Let us men-
tion that this model represents an important improvements
w.r.t. the original one. Indeed, in this scenario the Regge
behaviour at small x has been properly included together with
pole structure of the form factor. In addition, let us remark
that a contribution of higher Fock states to the hadron PDF
has been effectively incorporated. As it will be discussed later
on, such a feature is quite relevant in the present analysis.

5 Numerical results

In this section, numerical results of the calculations of dPDFs,
within holographic models, will be presented. In particular,
we will mainly focus on quantities which allows to qualita-
tively estimate the impact of non perturbative double parton
correlations, not directly accessible via one-body distribu-
tions.

5.1 Calculation of dPDFs

In the left panel of Fig. 2, Fig. 3 and the left panel of Fig. 4, we
show the calculations of the pion dPDFs (6) for fixed differ-
ent values of k⊥. In the cases of the original and dynamical
spin models, the shape of these quantities are symmetric,
reflecting the symmetry between x and 1 − x , see left panel
of Figs. 2 and 3. The different behaviour, observed in the case
of the universal model, is related to the implementation of
the Regge trajectory at small x . A common feature shared by
all these models is the decreasing shape w.r.t. the increasing
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Fig. 2 Left panel: dPDFs evaluated within the original model [34] and addressed for different values of k⊥. Full black line k⊥ = 0 GeV, dashed
orange line k⊥ = 0.2 GeV, dot-dashed blue line k⊥ = 0.5 GeV and dotted brown line k⊥ = 0.6 GeV. Right panel: same of the left panel for the
ratio Eq. (7)

Fig. 3 Double PDFs of the pion evaluated within the dynamical
spin effects model [44] for different values of k⊥. Full black line
k⊥ = 0 GeV, dashed orange line k⊥ = 0.2 GeV, dot-dashed blue

line k⊥ = 0.5 GeV and dotted brown line k⊥ = 0.6 GeV. Left panel
for the A = B = 1 configuration. Right panel for the A = 0, B = 1
configuration

Fig. 4 Same of Fig. 2 but for the universal model of Ref. [36]. In the left panel, the quantity x f πU
2 (x, k⊥) is plotted

of k⊥. Such a result is directly related to the behaviour of the
relative eff. Details on the evaluation of the latter quantity
are presented later on this section. As shown for the pro-
ton case [15,57], the impact of DPCs effects is enhanced
for dPDFs depending on x1 − x2 with x1 and x2 which are
almost independent and bound by x1 + x2 ≤ 1. However, for
a meson, where only the two body Fock state contribution
is considered in Eq. (3), the dPDF depends only on x1 = x
and x2 = 1 − x due to momentum conservation [21]. For

the moment being, a full expression for the LF wave func-
tion corresponding to, e.g. a |qq̄qq̄〉, is not available. In fact,
let us remind that, in the UM, such a contribution is included
only to describe PDFs, thus a possible non trivial dependence
of the dPDF on x1, x2 and x3 is not addressed. In this sce-
nario, the most relevant sign of DPCs is given by studying
the x − k⊥ dependence of dPDFs. In particular, an unfactor-
ized dependence of dPDFs, w.r.t. the x and k⊥, represents
a possible signals of double parton correlations. We recall
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Fig. 5 The ratio rk(x, k⊥), Eq. (7) evaluated for for different values of k⊥. Full black line k⊥ = 0 GeV, dashed orange line k⊥ = 0.2 GeV,
dot-dashed blue line k⊥ = 0.5 GeV and dotted brown line k⊥ = 0.6 GeV. Left panel for the A = B = 1 configuration. Right panel for the
A = 0, B = 1 configuration

here that in order estimate the impact of these effects, the
ratio f π

2 (x, k⊥)/ f π
2 (x = 0.4, k⊥) is evaluated as a function

of x for different values of k⊥. One should notice that if cor-
relations were neglected, then the latter quantity would be
constant w.r.t. variations of k⊥. As one can see in the right
panel of Fig. 2 and in Fig. 5, correlations are very strong
for the original and dynamical spin models. However, as one
can observe in the right panel of Fig. 4, the impact of DPCs,
encoded in the UM, is less relevant w.r.t. the other models.
This feature is related to the poor general knowledge of these
effects. In any case, for all models here considered, the fac-
torisation in the k⊥ and x dependence is not fully supported.

5.2 The pion form factor

Since the main purpose of the present study is to compare lat-
tice data with holographic quark model calculations, here we
show results for the pion e.m. form factor. This quantity has
been extensively investigated from a theoretical and experi-
mental point of view [20,34,36,44,66]. To this aim, we con-
sider the pion ff evaluated within the lattice techniques in the
A configuration. As one can see in the left panel of Fig. 6,
the AdS/QCD approach is able to reproduce the essential
behaviour of the pion ff. In particular, the original model [34]
fits the ff in the small Q2 region, while the dynamical spin
and universal ones [36,44] provide an impressive agreement.
However, by comparing the values of the mean pion radius,
one can conclude that the model which includes dynamical
spin effects reproduce very well experimental data [67], see
Table 1.

5.3 The effective form factor of the pion

Here we show the first comparison between the calculations
of the eff within AdS/QCD inspired models and that from lat-
tice QCD, see Eq. (23). Let us first discuss some differences
between the pion ff and eff. As discussed in Refs. [9,52],

in the proton case, the two objects are completely different.
In particular the eff involves two particle correlations and
depends on k⊥, i.e. the momentum unbalance between the
first and the second parton in the initial and final states. In
the e.m. form factor, q⊥ represents the exchanged momentum
between the initial and final state of a given parton. However,
in the mesonic case, if one considers only the |qq̄〉 contri-
butions, the formal expression of the eff (9) and the e.m.
(15) one are extremely similar (see Ref. [21] for details on
this topic). In addition, k⊥ represents the conjugate variable
to d⊥, i.e. the transverse distance between the two partons,
while q⊥ is the conjugate variable to r⊥, i.e. the transverse
distance of a parton w.r.t. the centre of the hadron. In the
right panel of Fig. 6, results of the calculations of F2π (Q2)2

has been shown. We remind that this combination of two effs
enters the expression of σ e f f , see Eq. (17), and encodes the
hadron geometrical properties which affect this experimental
observable. Thus, in the right panel of Fig. 6, we highlighted
the main discrepancies, between lattice and model calcula-
tions, which also affect the mean value of σe f f . As one can
see, only the original model is able to reproduce the eff in
the allowed kinematic region. Let us stress again that the
comparison is well motivated only for Q2 < m2

π . In the for-
ward region, frame dependent effects are important but not
included in the LF formalism. It is fundamental to point out
that, while in the lattice framework there are no truncation of
the meson Fock state, in all AdS/QCD models, but the UM
one, only the first |qq̄〉 contribution is included. Thus the
dPDF is restricted to be considered as an unintegrated PDF
where the momentum conservation unambiguously fixes the
relation between x1 and x2 = 1 − x1. In this scenario, lattice
data of the first moment of dPDFs of the pion represent a
reach starting point to understand in details the contribution
of high Fock states in the meson expansion Eq. (3). Thanks to
this analysis, further implementations of holographic models
could include two-body effects based on the lattice data [20].
As one can see in Table 2, the lattice calculation of 〈d2〉 is
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Table 1 Values of the pion mean radius, Eq. (26), obtained within the lattice and the models based on the the AdS/QCD approach. Experimental
data are from Ref. [67]

Original model Dynamical spin A = B = 1 Universal model Lattice (A) Lattice (B) Experiment [67]

√〈r2〉 [fm] 0.524 0.673 0.644 0.600 0.621 0.67 ± 0.01

Fig. 6 Left panel: the pion form factor evaluated within the lattice
framework (full black line), the original model (dotted blue line), the
dynamical spin model (dashed green line), in the A = B = 1 configu-

ration, and the universal model (dot-dashed red line). Right panel, same
of the left panel for the square of the eff F2π (Q2)2

Table 2 Values of the 3D mean partonic distance in the pion, Eq. (19), obtained within the lattice and the model based on the the AdS/QCD
approach

Original model Dynamical spin A = B = 1 Universal model Lattice (A)

√〈d2〉 [fm] 0.968 1.207 0.767 1.046 ± 0.049

comparable to that obtained within the original model. On the
contrary, the UM largely underestimates the mean partonic
distance.

5.4 Calculation of σ e f f

Here we discuss a possible prediction for an ideal DPS pro-
cess involving two pions. Due to the lack of data and exper-
imental analyses, we focus on the mean value σe f f (17).
In this scenario, only geometrical properties affecting σe f f
have been taken into account. The evaluation of this quan-
tity within the lattice framework would be extremely valu-
able in order to guide future experimental analyses. How-
ever, as extensively discussed in the previous sections, lat-
tice data have been obtained in the pion rest frame. There-
fore a direct phenomenological prediction cannot be safely
obtained. However, one can evaluate the mean value of σe f f
by changing the higher extreme value of the integral in
Eq. (17). In fact, for k⊥ < mπ , frame dependent effects
are small. For the purpose of the present investigation, in
Table 3, we have reported the results of the calculations of

σ e f f . As one can observe in the first row, up to mπ , the
original model predicts a σ e f f very close to that obtained
from the lattice. Let us remind that the full value of σ e f f ,
evaluated within this model, has been used in the experi-
mental analysis of Ref. [62]. This result is completely coher-
ent with the comparison between the eff evaluated within
the lattice QCD and the original model. From just a math-
ematical point of view, we also displayed the calculation of
σ e f f in the full range of k⊥. As one can observe, the uni-
versal model provides a good fit with lattice results. How-
ever, let us stress again that in this case, frame dependent
effects, preventing a clear comparison between lattice and
holographic calculations, cannot be neglected. The full eval-
uation of σe f f is anyhow relevant to verify the validity of the
RC inequality (20). As one can observe in Table 4, the latter
perfectly works for all models and lattice calculations. Let
us stress again that the relation between the mean value of
σe f f and the mean distance between two partons has been
obtained in a complete general manner in Ref. [10]. There-
fore, the validation of the RC inequality, in model indepen-
dent frameworks, such as the lattice QCD, is extremely pre-
cious.
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Table 3 Values of σ e f f obtained within different pion models and the
lattice approach, by taking into account only geometrical effects. In the
first row σ e f f has been evaluated by performing the integral in Eq. (17)

from 0 to k⊥ ∼ mπ . In the second row, the full calculation of σ e f f has
been performed

Original model Dynamical spin A = B = 1 Dynamical Spin A = 0, B = 1 Universal model Lattice

σ
0 to mπ

e f f [mb] 76.2 89.4 90.7 67.3 77.7

σ e f f [mb] 38.3 60.9 62.6 22.2 26

Table 4 Check of the validity of the RC inequality (20) in 3-dimension

Model

√
σ e f f

3π

3

2
[fm]

√〈d2〉 [fm]

√
σ e f f

π

3

2
[fm]

Original 0.781 0.968 1.352

Dynamical Spin 0.980 1.207 1.697

Universal 0.594 0.767 1.029

Lattice 0.647 1.046 1.121

5.5 Comparison between two-body distributions and the
product of one-body functions

In this last part of this section, devoted to the study of the
pion dPDFs, we discuss the validity of Eqs. (12) and (13).
Let us start with the comparison between f π

2 (x,k⊥) and its
approximation f π

2,A(x,k⊥), i.e. the product of the pion GPD
and its form factor, see Eq. (12). Since the dPDFs of nucle-
ons and mesons are basically unknown, in order to estimate
the magnitude of DPS cross section, the approximation (10)
is often used. In this framework, model calculations can be
used to test the validity of this ansatz. Here we consider the
same strategy developed in Ref. [21], i.e. we directly com-
pare f π

2 (x,k⊥) and f π
2,A(x,k⊥) by remarking their differ-

ences. In Figs. 7 and 8, distributions have been evaluated for
three different values of k⊥ as functions of x . As one can
see, in all model calculations, but the UM case, the shape
of dPDFs is symmetric, at variance of the product of ffs and
GPDs. Such a feature can be explained by considering that
GPDs and form factors depend on the transverse momen-
tum: k1,⊥ ± (1 − x)k⊥, see Eq. (15). Such a dependence,
produces an asymmetry in the x distribution, not present in
dPDF, see Eq. (6). Moreover, since in the GPDs the momen-
tum unbalance in the wave function is multiplied by the pre-
factor 1 − x < 1, the GPD goes to zero slower then the
dPDF [21]. The last feature is partially discussed in Ref. [10]
for the proton case. Furthermore, one should notice, that for
the original and dynamical spin models the approximation
Eq. (12) underestimates the full calculation of the dPDF, at
the variance of the universal case. In order to compare the
impact of DPCs described within the lattice QCD and holo-
graphic models, the following quantity will be also evaluated:

�(Q2) = F2π (Q2) − Fπ (Q2)2. (45)

In order to minimise frame dependent effects, we will focus
on the region where Q2 < m2

π . As one can see, if the approx-
imation Eq. (13) holds in some kinematic region, then the
above quantity would be small. In Fig. 9 the calculations of
the �(Q2) function are displayed. As one can observe, in
the allowed region of Q2, the original and dynamical spin
models can almost reproduce the behaviour of DPC effects.
In any case, one should notice that there is no model able
to reproduce both the effective and the e.m. form factors
at the same time with the same precision. In fact, both the
dynamical spin and universal models, fit very well data on
the e.m. form factor but fail in the description of the eff.
On the contrary, the original model can qualitatively repro-
duce both the effective and e.m. form factors only in the
small Q2 region. The main outcome of this analysis is the
evident need of the inclusion of more Fock states in the pion
expansion (3) necessary to include all possible DPCs in order
to describe both the e.m. and effective form factors. Let us
stress that since the universal model effectively takes into
account the |qq̄qq̄〉 state, it is suitable to deeply investigate
the impact of non trivial DPCs in the pion. Further stud-
ies on the top of that, beyond the present analysis, are on
going.

5.6 Parameter dependence of the results

In this final section about the pion target, a short discus-
sion about the parameter dependence of the main results will
be presented. In particular the form factor, the eff and the
function �(Q2) will be evaluated by changing the model
parameters in order to improve the agreement with lattice
data.
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Fig. 7 Full lines represent the pion dPDF Eq. (6) and dotted lines stand
for the approximation Eq. (12). Quantities are evaluated for three val-
ues of k⊥: k⊥ = 0 GeV black lines, k⊥ = 0.2 GeV orange lines and

k⊥ = 0.5 GeV blue lines. The bands stand for the difference between
the full calculation of the dPDF and its approximation. Left panel for
the original model of Ref. [34]. Right panel for the UV of Ref. [36]

Fig. 8 Same of Fig. 7 but for the dynamical spin model of Ref. [44]. Left panel for the configuration A = 0, B = 1. Right panel: for the
configuration A = B = 1

Fig. 9 The quantity �(Q2) (45). Full black line stands for lattice data
[20], dotted yellow line for the calculation performed within the univer-
sal model [36], dashed green line represent the result of the evaluation
within the original model [34] and dot-dashed red for the dynamical
spin model [44] in the A = B = 1 configuration

5.6.1 The Original model

As already mentioned, the the meson wave function eval-
uated within this model depends on two parameter κ and

m0. Indeed, as shown in Ref. [29] the value of κ smoothly
depends on the observable one needs to fit. In fact, κ obtained
from the form factor is basically smaller then that obtained
by fitting the spectrum. In particular, κ lies in the range
0.35 ≤ κ ≤ 0.59 GeV. Therefore here we present a selected
collection of results, previously shown, as functions of κ . As
one can see Fig. 10, the variation on κ could allow to provide
a good description of the form factors and the eff. There-
fore, a good agreement with lattice data could be obtained
by adding a theoretical error on κ . One can interpret such an
uncertainty as an attempt to include two-body effects in the
wave function of the first Fock state. In this scenario, the mean
radius and the main distance read:

√〈r2〉 = 0.625 ± 0.135
fm and

√〈d2〉 = 1.17 ± 0.28 fm, respectively. The lattice
and experimental results are included into the found ranges.
Moreover, as one can see in Fig. 11, the double parton cor-
relations, emphasised by the function (45), are well repro-
duced. However the changes in κ will produce modifica-
tions of the PDFs and a different description of the spec-
trum.
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Fig. 10 Left panel: the pion form factor evaluated with the original model. The band stands for the results obtained by varying κ: 0.35 ≤ κ ≤
0.59 GeV. Dotted lines represents the result for κ = 0.548 GeV. Right panel: same of the left panel for the quantity F2π (Q2)2

Fig. 11 The function Eq. (45) evaluated with the original model. The
band stands for the results obtained by varying κ: 0.35 ≤ κ ≤ 0.59 GeV

5.6.2 The universal model

In the case of this model, use has been made of different
parameters in order to properly fit several observable, i.e.
a, λ and γ , see Eqs. (40, 41) and (42). In Figs. 12 and 13, the
previous calculations of the form factor, eff, PDF and � will
be compared with those obtained within another choice of the
parameters, i.e. a = 1.4,

√
λ = 0.51 GeV and γ = 0.01.

As one can see in Fig. 12, within this combination, both the
form factor and the eff qualitatively reproduce the lattice data.
The function �(Q2) is also closer to that evaluated within
the lattice QCD w.r.t. that shown in Fig. 9. However, as one
can see in the right panel of Fig. 13, the price for this choice
of the parameters is a relevant change of the shape of the
PDF. Therefore one might expect a relevant loss of agree-
ment between PDF data and model calculations; in particu-
lar in the high x region. Since one of the motivation for the
choice of original values of a, λ and γ is also the excellent
fit with PDF [36], one might conclude that a good strategy
to explain lattice data, on DPCs, would be a further study on
higher Fock states in the meson expansion. In this scenario,

the universal model is potentially very promising being the
only one which effectively includes the q̄qqq̄ contribution. A
detailed investigation on the LF wave function ψq̄qqq̄ guided
by these lattice data would open a new window on the meson
structure.

6 The ρ meson within AdS/QCD

In this section, we introduce and calculate the dPDFs of the
ρ meson. This is the first analysis of DPS involving a vec-
tor meson. However, in the future moments of the ρ dPDFs
could be accessed via lattice techniques. Here we consider
possible predictions provided by AdS/QCD based models.
In order to evaluate the ρ w.f., the procedure developed in
Refs. [37,68,69] has been adopted. In particular, for the three
polarisation of the ρ meson, the wave function is built from
that of the pion. In this case, the input will be the w.f. Eq. (31).
In this case, the normalisation constant will depend on the ρ

polarisation. In Ref. [69] the parameters have been chosen to
describe several observable for both the ρ and the φ mesons.
In particular κo = 0.54 GeV and mo = 0.14 GeV (con-
figuration A). In the present work we propose and motivate
the use of another combination of the parameters. In particu-
lar those used to calculate the pion w.f. (31), i.e. κ0 = 0.548
and mo = 0.33 GeV (configuration B), will be considered. A
detailed analysis on this choice will be provided. Let us men-
tion that a good comparison with the moments of ρ PDFs,
evaluated within the lattice QCD, is obtained within the B
configuration. The ρ w.f., built from that of the pion, reads
as follows:

�L
h,h̄

(x, b⊥)

= 1

2

(
1 + m2

f − �2

m2
ρx(1 − x)

)
φL(x, ζ )δh,h̄ (46)
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Fig. 12 Left panel: the pion form factor evaluated with the univer-
sal model. The blue dashed lines represent the calculation obtained by
setting a = 1.4,

√
λ = 0.51 GeV and γ = 0.01. Dotted lines repre-

sents the result for the standard values of the parameters a, λ and γ ,
see Sect. 5.6.2 for details. Right panel: same of the left panel for the
quantity F2π (Q2)2

Fig. 13 Same of Fig. 12 but left panel: for the �(Q2) function. Right panel: for the pion PDF

�T=±
h,h̄

(x, b⊥) = ±
[
ie±iθ (

xδ±h,∓h̄ − (1 − x)δ∓h,±h̄

)

∂b⊥ + m f δ±h,±h̄

] φT (x, ζ )

2x(1 − x)
. (47)

Where here and in the following, we denote with �λ

h,h̄
(x, b⊥)

the ρ meson wave function in coordinates space for λ = L , T
polarisation and quark-antiquark helicities h and h̄, respec-
tively. Moreover, ζ is the usual variable introduced in the
AdS/QCD framework, i.e. ζ = √

x(1 − x)b⊥. The symbol
�2 ≡ 1

b⊥ ∂b⊥ + ∂2
b⊥ . The gaussian like function, appearing

in Eqs.(46, 47), describes the scalar part of the meson w.f. in
AdS/QCD (31):

φλ(x, ζ ) = Nλ

√
x(1 − x)e− κ2

o ζ2

2 e
− m2

o
2κ2
o x(1−x) . (48)

In Eq. (47), b⊥eiθ is the complex form of the vector b⊥.
The normalisation condition of the ρ w.f. is the following:

∑
h,h̄

∫
dx d2b⊥

∣∣�λ

h,h̄
(x, b⊥)

∣∣2 = 1 . (49)

The normalisation constant, Nλ appearing in Eq. (48),
depends on the polarisation [37]. From the above expres-
sions, the dPDF for a given polarisation can be obtained as
follows:

f ρ,λ
2 (x, k⊥) =

∑
h,h̄

∫
d2b⊥eik⊥·k⊥

∣∣�λ

h,h̄
(x, b⊥)

∣∣2

= 2π
∑
h,h̄

∫
db⊥ b⊥ J0(b⊥k⊥)

∣∣�λ

h,h̄
(x, b⊥)

∣∣2
.

In the transverse polarisation case, since dPDFs are diag-
onal distributions in coordinate space, the main quantity we
need to evaluate is the following one:

∑
h,h̄

∣∣∣�T
h,h̄

(x, ζ )

∣∣∣2 = |φT (x, ζ )|2
4x2(1 − x)2

[
2m2

f + κ4
ρζ 2x(1 − x)(x2 + (1 − x)2)

]
.

(50)
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Fig. 14 Left panel: the calculation of fρ (51) as a function ofm0 and κ (the red diagonal plane). The blue horizontal planes represent the uncertainty
obtained from sum rules [71,72]. Right panel: same of the left panel but for f ρ

⊥ (52)

6.1 Numerical results

Here we show the numerical predictions for the dPDFs and
effs of the ρ mesons. Since this is the first analysis about
this topic, the ρ moments of PDFs have been used to moti-
vate the choice of the free parameters appearing in Eq. (48).
To this aim, we compare the calculations of these quanti-
ties, obtained within the AdS/QCD approach, with those
addressed by the lattice QCD [70]. Furthermore, also for
this hadron, the role of DPCs in dPDFs and in effs will be
investigated. In addition, we have also calculated the mean
value of σe f f in order to provide a first prediction for this
experimental quantity. Thus, for the moment being, only the
geometrical contributions have been taken into account in the
meson σe f f .

6.2 The parameters entering the ρ wave functions

In Refs. [37,68,69] the parameters appearing in Eq. (48) have
been properly chosen to reproduce the diffractive cross sec-
tion for the ρ and φ meson productions. Within the A config-
uration, also the decay constants are well reproduced. In the
present analysis, we propose to use the parameters of the B
configuration, in order to have a good agreement with lattice
data of the ρ moments of PDFs. To this aim, we first show the
different predictions for the decay constants, obtained within
different combination of the two free parameters κ and m0.
We consider the following expressions:

fρ =
√

Nc

π

∫ 1

0
dx

[
1 + m2

o − �2
b

x(1 − x)M2
ρ

]
�L(x, b)

∣∣∣
b=0

(51)

f ⊥
ρ =

√
Nc

2π
mo

∫ 1

0
dx

∫
db μJ1(μb)

�T (x, b)

x(1 − x)
, (52)

Table 5 Predictions for the ρ decay constants

Approach Configuration fρ [MeV] f ⊥
ρ [MeV]

LF holography A 211 95

B 204 150

Sum rules [71] 198 ± 7 152 ± 9

Sum rules [72] 206 ± 7 145 ± 9

where �λ(x, b) = ∑
h,h̄ �λ

h,h̄
(x, b), b = |b⊥| and μ =

1 GeV. In Fig. 14, the above quantities are displayed as a
function of the parameters m0 and κ , respectively. As one
can observe a good comparison with the sum rules [71,72] is
obtained for a limited choice of the parameters. Here below
we compare in details the results obtained within the A and B
configurations. In fact, the former leads to good comparisons
with data on diffractive ρ production, while in the latter the
same parameters entering the original model for the pion have
been used. Let us recall that the w.f. of the original model
represents the dynamical input used to evaluate the ρ w.f., see
Eq. (48). Therefore within the B configuration the ρ eff can
be calculated from the pion model which better reproduce
the lattice data [20] w.r.t. the other models. In addition let
us mention that within the B configuration κ = 0.548 GeV,
i.e. the same value adopted in both the original and universal
pion models, thus reflecting the universal condition for the
breaking of the conformal symmetry. As one can observe in
Table 5, the results of the calculations of fρ and f ⊥

ρ , within
the A and B configurations, are very similar and comparable
to those of Refs. [71,72].

6.2.1 Comparison with lattice QCD

Here we discuss the comparison between the moments of
the ρ PDFs, evaluated within the holographic model [37,
68,69], with those obtained within the lattice QCD [70]. Let
us remind that for the moment being their are no analyses of
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Fig. 15 Calculations of moments of the ρ structure function Eq. (54).
Round black points for lattice results. Squared red points for model
calculations obtained within the holographic model of Refs. [37,68,69]
and including variations of 0.35 ≤ κ ≤ 0.6 GeV

dPDF moments for the ρ meson. Thus, in order to investigate
to what extent the adopted model could be compared to lattice
predictions, here we only consider moments of the following
structure function:

F1(x) =
∑
q

Q2
q

1

3

(
f ρT
1,qq̄(x) + f ρL↑

1,qq̄ (x)
)

, (53)

where here q is the quark flavor with charge Qq , f ρT
1,qq̄(x) is

the ρ PDF with transverse polarisation and f ρL↑
1,qq̄ (x) is the

PDF of the ρ meson longitudinally polarised and evaluated
for a quark with positive helicity. Since, in the holographic
model, the latter quantity does not depends on the spin ori-
entation, nor the flavor of the quarks, the above structure
functions can be rewritten in terms of PDFs for unpolarised
quarks:

F1(x) =
∑
q

Q2
q

1

3

(
f ρT
1 (x) + f ρL

1 (x)

2

)
. (54)

In Ref. [70], the following quantity has been calculated:

an = 2
∫ 1

0
dx xn−1F1(x). (55)

As one can observe in Fig. 15, the first moment of the ρ PDF
is almost stable. Lattice data on a2 and a3 are contained inside
the error bar which reflects variations of the model param-
eters. Further improvements of the model are beyond the
purpose of the present analysis. However the other moments
are well reproduced and in particular in the B configuration
one gets: a2 = 0.161 and a3 = 0.102 which are admitted by

the theoretical error of lattice data. In further analyses, imple-
mentations of the ρ w.f. to improve the comparison with the
lattice outcomes will be available. For example, one can use
the pion wave function evaluated within the models of Refs.
[36,44] as input of the procedure.

6.3 Calculations of dPDFs, effs and σ e f f

In the present section, we show and discuss the results of
numerical evaluations of ρ dPDFs, effs and σ e f f in the B
configurations of the parameters entering Eq. (48). The above
quantities have been calculated for the longitudinal and trans-
verse polarisations separately. As for the pion case, in Fig. 16,
we display the ρ dPDFs for the two possible polarizations:
left panel for the longitudinal polarisation and right panel
for the transverse one, respectively. As one might notice, the
k⊥ behaviour of the distributions is similar to that obtained
for the pion evaluated within the original models, see left
panel of Fig. 2. Such a result is coherent with the choice
of the scalar w.f. entering Eqs. (46) and (47). Moreover, in
the transverse polarisation case, the distribution has two pro-
nounced peaks. In addition, as one can see in Fig. 17, a pos-
sible factorisation between the x and k⊥ dependence is vio-
lated, thus reflecting the presence of correlations. The amount
of these effects is slightly different from those addressed in
the right panel of Fig. 2 obtained within the original model.
This feature is related to the presence of derivatives w.r.t. b⊥
in Eqs. (46) and (47). Thus, the overall dependence on k⊥
of the ρ dPDFs is somehow different from that of the pion.
The main interpretation of the present outcome is that the
procedure, used to generate the ρ w.f., introduces additional
correlations. Moreover, the mean value of the effective cross
section reads: σ e f f = 27.8 mb for the longitudinal case and
σ e f f = 54.7 mb for the transverse one. In order to provide
a proper interpretation to these results, let us remark that
the original model, used as input for the above calculations
(46-47), qualitatively fits the Lattice data. Therefore it is rea-
sonable to expect that also predictions for the ρ could be real-
istic. Thereby one can conclude that the DPS cross section is
dominated by the longitudinal component of the ρ meson. In
fact, we recall that the most σe f f is small the most the DPS
contribution is big with respect to the SPS case, see Eq. (16).
In Fig. 18 the eff of the ρ meson, obtained by disentangling
the two polarisation contributions, is shown. Full line repre-
sents the transverse polarisation and dotted line stands for the
longitudinal one. By using Eq. (19), from the eff the mean
partonic distance between two partons in the ρ has been cal-
culated:

√〈d2〉 = 0.826 fm and
√〈d2〉 = 1.159 fm, for

the longitudinal and transversal polarizations, respectively.
One should notice that in the former case the mean distance
is lower then that evaluated for the pion target within the
same original model [34], at the variance of the transversely
polarised case, see Table 1. Since, the original model pre-
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Fig. 16 Same of Fig. 3 for the ρ meson. Left panel for longitudinal polarisation. Right panel for transverse polarisation

Fig. 17 Same of Fig. 5 for the ρ meson. Left panel for longitudinal polarisation. Right panel for transverse polarisation

Fig. 18 The effective form factor Eq. (9), evaluated for the ρ system.
Full black line for the transverse polarisation and dotted blue line for
the longitudinal one

dicts a mean value of 〈d2〉 in agreement to that of the the
lattice QCD, one might expect that valence quarks in the ρ

meson are closer to each other then in the pion case if the
the ρ is longitudinally polarised. This feature represents an
extreme interesting prediction directly related to the non-
perturbative structure of the ρ meson. Let us also show that
the RC inequality (20) perfectly works also for the ρ meson
described within the holographic approach, see Table 6.

7 Conclusions

Double parton distribution functions are new fundamental
quantities encoding information on the three dimensional
partonic structure of hadrons. Double PDFs enter the dou-
ble parton scattering cross section for which theoretical
and experimental analyses are ongoing. However, for the
moment being, only proton–proton and proton–ion collisions
are investigated from an experimental point of view. Never-
theless, lattice data on distributions related to the first moment
of the pion dPDFs are now available. These quantities encode
double parton correlations which cannot be accessed via one-
body functions such as standard form factors. This conclu-
sion is qualitatively coherent with the quark model analy-
ses for the proton target. The main purpose of the present
study is to compare lattice QCD predictions of the effective
form factor with quark model calculations. In particular, here
we have considered AdS/QCD soft-wall inspired pion mod-
els for which phenomenological implementations are also
included. Double PDFs have been calculated by showing
their full dependence on the longitudinal momentum fraction
and the transverse momentum unbalancek⊥. Ratios sensitive
to DPCs have been calculated and results show that DPCs are
relevant. An important comparison between dPDFs and their
approximations in terms of GPDs and form factors have been
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Table 6 Check of the validity of the RC inequality (20) in 3-dimension for the ρ meson

ρ Meson

√
σ e f f

3π

3

2
[fm]

√〈d2〉 [fm]

√
σ e f f

π

3

2
[fm]

Longitudinal polarisation 0.665 0.826 1.15

Transverse polarisation 0.933 1.58 1.62

also investigated. Holographic model predictions shows that
even if the pion is described by considering only the first |qq̄〉
state, dPDFs cannot be described in terms of one-body func-
tions. Such a conclusion is consistent with previous studies
of the proton dPDFs. Let us stress here that such an approxi-
mation is largely used in phenomenological analyses of DPS
processes. In order then to provide useful predictions, an esti-
mate of the experimental observable σe f f has been provided
via quark models and lattice QCD. These results have been
properly interpreted in terms of geometrical properties of the
pion partonic structure by verifying the RC inequality. Fur-
thermore, moments of dPDFs, i.e. the effective form factors,
have been calculated within the adopted quark models and
then compared with lattice data for the first time. Despite the
limited region in Q2, which minimises the impact of frame
dependent effects, one can conclude that for the moment
being the absence of a complete evaluation of high Fock
states in the pion expansion prevents a simultaneous descrip-
tion of the electric-magnetic and effective form factors. Nev-
ertheless, the original AdS/QCD model almost matches the
lattice eff and qualitatively reproduces the impact of double
parton correlations. On the contrary, even if the other models
provide an impressive description of the e.m. form factor,
they fail in the evaluation of the eff. These first comparisons,
between lattice and quark model analyses, point to the neces-
sity of an accurate description of the contributions of high
Fock states in the pion. The main conclusion is that lattice
data can be used to add new constraints on future imple-
mentations of holographic models. Let us mention that for
the moment being, the only model which already effectively
includes a qq̄qq̄ contribution is the universal one. Therefore
the latter is very promising and suitable to describe both one-
body quantities and DPCs in the meson at the same time; thus
shedding a new light on the parton structure of the pion. From
another perspective, even if the frame dependence of the lat-
tice eff prevents to get a phenomenological value of σe f f , the
RC inequality has been inverted in order to provide a range
of frame independent values of σ e f f starting from the 〈d2〉
addressed by lattice QCD. Such a procedure leads to a value
of σ e f f , for a pion-pion collision, which is bigger then to
the proton–proton case. This conclusion is directly obtained
from lattice QCD data and could guide future experimental
and theoretical analyses. In the final part of this investigation,
predictions for dPDFs and effs of the ρ meson have been dis-

cussed for the first time. The main outcome of this analysis is
that the impact of DPCs change with the meson polarisation.
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Appendix 1

In this section we discuss some details on the derivation of
the dPDFs expression in terms of the LF wave function. In
particular, we make use of the lattice conditions discussed in
Sect. 3. Let us remind that the correlator matrix we need to
evaluate is defined with quark field operators separated by a
distance yμ with y0 = 0. Moreover, γ 0 is the gamma matrix
considered in the dPDF correlator. In this section we show
in which kinematic conditions, frame dependent effects, due
to the lattice conditions, are minimised. To this aim, let us
recall the main ingredients of the procedure. In particular,
we have used the convention described in the Appendix A
of Ref. [34]. The quark field operators, defined in terms of
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light-cone coordinates, reads:

q(x) =
∑
λ

∫
l+>0

dl+d2l⊥√
2l+(2π)3

[
bλ(l)uq(l, λ)e−il·x + d†

λ(l)vq(l, λ)eil·x
]
, (56)

where the anticommutation relation for the spinors reads:

{
bλ(l), b

†
λ′(l ′)

}
=

{
dλ(l), d

†
λ′(l ′)

}

= (2π)3δ(l+ − l ′+)δ(2)(l⊥ − l′⊥)δλλ′ . (57)

Furthermore, the one particle state is:

|l, λ〉 = √
2l+b†

λ(l)|0〉, (58)

with the normalisation:

〈l, λ|l ′, λ′〉 = 2(2π)3l+δ(l+ − l ′+)δ(2)(l⊥ − l′⊥)δλ,λ′ . (59)

Moreover, for unpolarized dPDFs, the following relations
are usually the relevant ones:

ū↓(l)γ +u↓(k) = ū↑(l)γ +u↑(k) = 2
√

(l+k+)

ū↓(l)γ +u↑(k) = ū↑(l)γ +u↓(k) = 0, (60)

where in the above equation uσ (k) = uq(k, σ ). Now, for γ 0

one gets:

ū↓(l)γ 0u↓(k) =
√

(l+k+) + (lx + ily)(kx − iky)√
l+k+

ū↑(l)γ 0u↑(k) =
√

(l+k+) + (lx − ily)(kx + iky)√
l+k+

ū↓(l)γ 0u↑(k) = −ū↑(l)γ 0u↓(k) ∼ 0. (61)

The last relation is 0 since in the IMF the term m/P+ can
be neglected as well as for the γ + case. The first line of the
above equation is similar to that obtained within the light-
cone treatment case, but the main difference is the presence of
the transverse components of the quark momenta. However,
by using momentum conservation, Eq. (61) can be written in
terms of k+ = P+x1 and l+ = x̄1P+:

√
l+k+ + (lx + ily)(kx − iky)√

l+k+

= P+√
x1 x̄1 + (lx + ily)(kx − iky)

P+√
x1 x̄1

. (62)

Since, by using the standard LF procedure discussed in
Sect. 2, the dPDF does not depends on the meson frame,

the P+ dependence is completely simplified. Such a proce-
dure leads to rewrite the correction due to the choice of γ 0

as follows:

Oγ ∝ (lx + ily)(kx − iky)

(P+)2 . (63)

In the IMF such a contribution is suppressed. Let us remind
that for a bound confined system, the w.f. goes to zero for
l⊥ and k⊥ very large. The other source of difference between
the calculation performed within the lattice condition w.r.t.
the standard light-cone case, comes from the choice of the
the quark field separation, i.e. y0 = 0, instead of y+ = 0,
see Eqs. (1) and (21). By working in the lattice conditions,
one needs to evaluate:
∫

dyz e
y(k1−k̄1)

= ey⊥·(k1⊥−Nk1⊥)

∫
dy−ey−(k+

1 −k̄+
1 )ey

+(k−
1 −k̄−

1 )

= ey⊥·(k1⊥−Nk1⊥)

∫
dy− ey

−(k+
1 −k̄+

1 −k−
1 +k̄−

1 ) , (64)

where we have used that for y0 = 0 one gets yz = y+ =
−y−. We recall that k and k̄ are the momentum of partons
in the hadron in the initial and final states, respectively. Thus
from Eq. (64), we get:

δ(k+
1 − k̄+

1 − k−
1 + k̄−

1 ) = 1

P+ δ(x1 − x̄1 − Oy), (65)

where Oy represents the corrections due to the choice of
y0 = 0 w.r.t. y+ = 0. One can show that this quantity reads:

Oy = m2 + k2⊥
2(P+)2x1

− m2 + k̄2⊥
2(P+)2 x̄1

. (66)

In this case the correction is proportional to 1/(P+)2. In the
IMF such a contribution is small. Thus, from only a kinematic
point of view, the light-cone expression of dPDFs is similar
to that obtained within the lattice framework in the IMF. In
closing we stress that also in the analysis of Ref. [20], the
authors claim that the standard expression (13), which relates
the eff to the product of one-body quantities, is restored for
q2 << m2

π .
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