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Abstract In this article, we elaborate further on the ΛCDM
“tension”, suggested recently by the authors Lusso et al.
(Astron Astrophys 628:L4, 2019) and Risaliti and Lusso
(Nat Astron 3(3):272, 2019). We combine Supernovae type
Ia (SNIa) with quasars (QSO) and Gamma Ray Bursts (GRB)
data in order to reconstruct in a model independent way the
Hubble relation to as high redshifts as possible. Specif-
ically, in the case of either SNIa or SNIa/QSO data we
find that the current values of the cosmokinetic parame-
ters extracted from the Gaussian process are consistent with
those of ΛCDM. Including GRBs in the analysis we find a
tension, which lies between 2σ and 3σ levels respectively.
Finally, we find that at high redshifts (z > 1) the correspond-
ing cosmokinetic parameters significantly deviate from those
of ΛCDM, hence the possibility of new Physics is not pre-
cluded by the present analysis.

1 Introduction

Since the discovery of the accelerated expansion of the Uni-
verse from the Supernovae type Ia (SNIa) data [3,4], the
combined analysis of various cosmological probes, includ-
ing those of Cosmic Microwave Background (CMB) [5–
7], Baryon Acoustic Oscillation (BAO) [8–14] and cosmic
chronometers [15] confirms the aforementioned dynamical
result, namely that currently the Universe accelerates. How-
ever, the physics of cosmic acceleration is still a mystery,
hence the aim in these kind of studies is to provide an expla-
nation regarding the underlying mechanism which triggers
such a phenomenon.

In the framework of homogeneous and isotropic Universe,
the accelerated expansion can be described by considering
either an exotic matter with negative pressure [16–22] or
a modification of gravity [ f (R) theories and the like, 23–
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27]. Among the large family of dark energy and modified
gravity models, the simplest case is the spatially flat ΛCDM
model for which cold dark matter (CDM) and baryonic matter
coexist with the cosmological constant. From the theoretical
viewpoint, the ΛCDM model suffers from the well known
problems, namely the coincidence and the expected value of
the vacuum energy density [28–31].

On the other hand, despite the fact that the ΛCDM model
is found to be in a very good agreement with the majority
of cosmological data [7], nonetheless the model seems to be
currently in tension with some recent measurements [32–35],
related with the Hubble constant H0 and the present value of
the mass variance at 8h−1Mpc, namely σ8. Moreover, Lusso
et al. [1] using a combined Hubble diagram of SNIa, Quasars,
and gamma-ray bursts (GRBs) found a ∼ 4σ tension between
the best fit cosmographic parameters with respect to those of
ΛCDM (see also [2,36]). In the light of the latter results, a
heated debate is taking place in the literature and the aim of
the present article is to contribute to this debate.

Here, we focus on a model-independent parametrization
of the Hubble diagram using the Gaussian process, and inves-
tigate its performance against the latest Hubble diagram data.
Notice that in this case we need to introduce a kernel func-
tion with some hyperparameters which can be optimized in
order to fit the data. For more details concerning model-
independent methods we refer to [37–40]. The structure of
the paper is as follows. In Sect. 2, we introduce the concept of
the Gaussian process and we present the corresponding ker-
nel functions that we shall use in the current work. In Sect. 3,
we discuss the observational data and the procedure of our
analysis, while in Sect. 4 we provide our results. Finally, in
5, we summarize our results and we draw our conclusions.

2 Model independent method-Gaussian process

We consider that the universe is a self-gravitating fluid,
endowed with a spatially flat homogeneous and isotropic

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-8221-2&domain=pdf
http://orcid.org/0000-0001-5423-8223
mailto:Mehrabi@basu.ac.ir
mailto:svasil@academyofathens.gr


632 Page 2 of 8 Eur. Phys. J. C (2020) 80 :632

geometry. In this context, there are two main approaches
in order to investigate cosmological data e.g. the luminosity
distance. In the first case we impose a cosmological model,
hence we estimate the form of the luminosity distance. Then
we fit the model to data in order to place constraints on the
corresponding parameter space. This is a model-depended
method is a sense that different models provide different
forms of luminosity distance. Another avenue is to utilize a
model independent method in reconstructing the Hubble dia-
gram through the observational data [37–40]. In this approach
we do not need to know apriori the underlying cosmological
model. One of the most popular model independent method
is the Gaussian process (GP), hence in the present article
we test the performance of GP against the available Hubble
diagram data.

Briefly, the main steps of the method are the following.
Having a data set D

D = {(xi , yi )|i = 1, . . . , n}, (1)

our aim is to reconstruct in a model independent way a func-
tion f (x) which describes the data. In this case at any point
x , the value f (x) is a Gaussian random variable with mean
μ(x) and variance Var(x). Moreover, the function values at
any two different points are not independent from each other,
hence the covariance function cov( f (x), f (x̃)) = k(x, x̃)
describes the corresponding correlations. Therefore, having
an observational data set (xi , yi ) and considering a kernel
function k(x, x̃), it is straightforward to compute the value
of function and its covariance (for more detail see [41]). Con-
cerning the functional form of the kernel, there is a wide range
of possibilities. In the current work we restrict our analysis
to the following parametrizations:

k(x, x̃) = σ 2
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(4)

Notice that (3) and (4) are the so called Matern (ν = 7/2
and ν = 9/2) formulas respectively. It is worth noting that
the family of Matern kernels is a generalization of kernel (2)
and it is widely used in multivariate statistical analysis. In

this case the absolute exponential kernel is parameterized by
an additional parameter ν. If ν goes to infinity then the kernel
reduces to Eq. (2), while in the case of ν = 1/2 the kernel
becomes equivalent to the absolute exponential kernel. Also
σ f and l are two hyperparameters which can be constrained
from the observational data. Since the kernel function plays a
role in reconstructing f (x) (in our case comoving distance),
we have decided to use the aforementioned kernels in order
to test whether the choice of the kernel can affect the amount
of the so called ΛCDM cosmokinetic tension.

Here we use the GAPP code [41] in order to reconstruct
f (x) and its derivatives. Specifically, f (x) and its derivatives
are given by

f (x) ∼ GP(μ(x), k(x, x̃)) (5)

f ′(x) ∼ GP

(
μ′(x), ∂2k(x, x̃)

∂x∂ x̃

)
(6)

f ′′(x) ∼ GP

(
μ′′(x), ∂4k(x, x̃)

∂2x∂2 x̃

)
, (7)

where GP stands for Gaussian process.

3 Observational data and method

The luminosity distance is the ideal tool to investigate the
Hubble diagram. Our aim is to extend the Hubble relation
to as high redshifts as possible, hence in addition to SNIa,
we also consider QSOs and GRBs. In particular, bellow we
briefly present the type of standard candles, used in the sta-
tistical analysis.

– Supernovae (SNIa): we utilize the “Pantheon” compi-
lation of SNIa data [42]. This sample contains 1048
spectroscopically confirmed SNIa in the redshift range
0.01 < z < 2.26.

– Quasars (QSOs): Furthermore, we use the sample of
1598 QSOs as collected by [2,43]. The redshift inter-
val of the current data is 0.04 < z < 5.1. Notice that, in
our analysis we use bin-averaged version of QSOs data.

– In addition to the above data, we use a compilation of
162 GRBs [44–46] in the range of 0.03 < z < 9.3.
Unlike SNIa, QSOs and GRBs are observed up to very
high redshifts (z > 3) at which the distance modulus is
more sensitive to the cosmological parameters [47].

The evolution of the distance modulus is given by μ(z) =
5logDL(z) + 25, hence

DL(z) = 10(μ(z)−25)/5, (8)
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where DL(z) is the luminosity distance from which the nor-
malized comoving distance1 is written as

D(z) = H0

c

DL(z)

1 + z
. (9)

Notice that H0 is the Hubble constant and c is the speed of
light.

Based on the above, we compute the normalized comov-
ing distance data points and then we use them in order to
reconstruct the form of D(z) as well as its derivatives. As a
matter of fact knowing D(z) and its derivatives, it is straight-
forward to compute the Hubble function H(z) as well as its
first and second derivatives, namely

H(z) = H0

D′(z)
, (10)

H ′(z) = −H0
D′′(z)
D′(z)2 , (11)

H ′′(z) = H0

[
2D′′(z)2

D′(z)3 − D′′′(z)
D′(z)2

]
. (12)

Moreover using the error propagation we obtain

δH(z) = H0
δD′(z)
D′(z)2 , (13)

δH ′(z) = H0

[
δD′′(z)
D′(z)2 − 2D′′(z)δD′(z)

D′(z)3

]
, (14)

δH ′′(z) = H0

[
δD′′′(z)
D′(z)2 − 2D′′′(z)δD′(z)
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−4D′′(z)δD′′(z)
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]
. (15)

Notice that in above formula, we use the same H0 which
has been used to obtain the normalized distance in Eq.
(9) and for those quantities with more than one term in
uncertainty, we use square root of all terms. For example,
for δX = δa + δb + δc + · · · , the total uncertainty is
δX = √

(δa)2 + (δb)2 + (δc)2 + · · ·.
Following the same notations we compute the deceleration

and jerk parameters as well as the corresponding uncertain-
ties. As a function of D(z), these parameters are:

q(z) = −(1 + z)
D′′(z)
D′(z)

− 1, (16)

j (z) = (1 + z)2

[
− D′′′(z)

D′(z)
+ 3

(
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)2
]
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(17)

and as a function of H(z),

q(z) = (1 + z)
H ′(z)
H(z)

− 1, (18)

1 For the rest of the paper D(x) plays the role of f (x).
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+ 1.

(19)

In the case of ΛCDM model, namely H(z) = H0E(z) =
H0[Ωm0(1 + z)3 + ΩΛ0]1/2 the cosmokinetic parameters
become qΛ(z) = 3

2Ωm(z)−1 and jΛ(z) = 1, where Ω(z) =
Ω0(1 + z)3/E(z)2 and Ωm0 + ΩΛ0 = 12.

Lastly, we remind the reader the basic steps of our method
(see Sect. 2). First the normalized distances D(z) data are
given as input to the GAPP code [41]. Second we recon-
struct the functional form of D(z) and finally we compute
the rest of the cosmological quantities. During the process
we consider that the aforementioned data-sets can be treated
as statistically independent measurements. This assumption
is a rather strong statement given that for example the SNIa,
QSO and GRB data are sensitive to luminosity distances and
there might be spatial overlap between the various probes,
hence this could lead to correlations that might affect the
statistical analysis. While this is an important point, unfortu-
nately at the moment there is no standard way to account for
it given the lack of the full correlation matrix among the dif-
ferent samples. Therefore, following standard lines we have
assumed that the different data-sets are uncorrelated. Within
this framework, the corresponding parameter space is given
by (H0, q0, j0).

4 Results and discussion

In this section, we discuss the main results of our analysis.
Specifically, in Table 1 we provide an overall presentation of
the cosmographic parameters at the present epoch. In the left
panel of Fig. 1 we present the evolution of the reconstructed
D(z) and its derivatives when using the Gaussian kernel and
SNIa data. As expected D′(z) decreases as a function of z,
hence due to Eq. (10) the Hubble parameter is an increasing
function. In the right panel of Fig. 1 we plot the cosmokinetic
parameters H(z)/(1+ z), q(z) and j (z) as a function of red-
shift. Moreover in the case of Marten kernels ν = 7/2 and
ν = 9/2 the aforementioned parameters are shown in Fig.
2, respectively. We observe that the evolution of the kinetic
parameters are almost the same with those of Gaussian ker-
nel.

However, when combined SNIa with other probes, such
as GRBs, the situation becomes different. Indeed, for
SNIa/GRBs we plot in Fig. 3 D(z) and its derivatives versus
redshift using the Gaussian (left panel) and Matern ν = 7/2
(right panel) kernels. For both cases we observe that in the
evolution of the corresponding derivatives appears oscilla-
tions. It is easy to check that the first derivative of D(z)

2 For the ΛCDM model we utilize Ωm0 = 0.3.
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Fig. 1 Left panel: Reconstruction of D(z), data points and its first, second and third derivatives. Right panel: Reconstruction of D(z), the Hubble
function, deceleration and jerk parameters as a function of redshift for SNIa data only with the Gaussian kernel

Fig. 2 Left panel: The cosmokinetic parameters as a function of redshift using Matern (ν = 7/2) kernel for SNIa only data. Right panel: The
cosmokinetic parameters as a function of redshift using Matern (ν = 9/2) kernel for SN only data

Fig. 3 Left panel: The reconstruction of D(z) and its derivatives as a function of redshift using Gaussian kernel by considering SNIa and GRBs.
Right panel: The same plot using Matern (ν = 7/2) kernel and the same data set
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Fig. 4 Left panel: The reconstruction of D(z) and its derivatives as a function of redshift using Gaussian kernel by considering SNIa and QSOs.
Right panel: The same plot using Matern (ν = 7/2) kernel and the same data set

Table 1 Cosmokinetic
parameters at present time for
different data sets and kernels

Data set Kernel Gaussian Matern ν = 7/2 Matern ν = 9/2

SNIa H0 = 70.00 ± 0.38 H0 = 69.98 ± 0.46 H0 = 69.98 ± 0.42

q0 = −0.558 ± 0.04 q0 = −0.567 ± 0.06 q0 = −0.561 ± 0.05

j0 = 0.84 ± 0.16 j0 = 0.98 ± 0.36 j0 = 0.89 ± 0.23

SNIa+GRBs H0 = 69.92 ± 0.72 H0 = 70.49 ± 0.85 H0 = 70.28 ± 0.77

q0 = −0.62 ± 0.15 q0 = −0.79 ± 0.20 q0 = −0.73 ± 0.17

j0 = 2.26 ± 1.1 j0 = 3.21 ± 2.1 j0 = 2.80 ± 1.4

SNIa+QSOs H0 = 70.17 ± 0.35 H0 = 70.13 ± 0.45 H0 = 70.15 ± 0.40

q0 = −0.59 ± 0.03 q0 = −0.58 ± 0.06 q0 = −0.59 ± 0.05

j0 = 0.96 ± 0.13 j0 = 0.99 ± 0.33 j0 = 0.95 ± 0.21

SNIa+GRBs+QSOs H0 = 70.86 ± 0.42 H0 = 70.22 ± 0.69 H0 = 70.12 ± 0.63

q0 = −0.72 ± 0.05 q0 = −0.66 ± 0.14 q0 = −0.62 ± 0.11

j0 = 1.62 ± 0.2 j0 = 1.98 ± 1.2 j0 = 1.55 ± 0.81

crosses the zero line several times, hence the cosmokinetic
parameters diverge at these points. Notice that utilizing the
Matern ν = 9/2 kernel the results remain unaltered. We
argue that although GRBs may help to reconstruct the cos-
mic expansion up to z ∼ 10, however there are practical
difficulties in achieving this goal in the case of Gaussian pro-
cess.

Moreover, the results of SNIa/QSO combination are pre-
sented in Fig. 4 and Table 1. In this case, we observe that
D(z) slowly decreases prior to z ∼ 3, hence a small oscilla-
tion appears at that redshift. Furthermore, we find that both
Gaussian and Matern kernels provide similar results and in
contrast to SNIa/GRB case, here the first derivative of the
D(z) does not cross the zero line at 1 σ level.

Lastly, we combine SNIa, GRBs and QSOs in order to
compute the reconstructed comoving distance for all kernels.
As an example in Fig. 5 we plot the evolution of D(z) and the
corresponding derivatives in the case of Matern ν = 7/2 ker-
nel. Again we verify that there are epochs which are located

at large redshifts and for which D′(z) crosses the zero line
(similar behavior is found for the other kernels).

Now we focus on Table 1 which shows the cosmokinetic
parameters at the present time for various data and kernels
explored in this study. Considering only the traditional stan-
dard candles (SNIa), we find that the Hubble constant is close
to 70Km/s/Mpc regardless the form of kernel, while q0 and
j0 are consistent (within 1σ ) with those of ΛCDM. Combin-
ing SNIa and GRB data, we find that the value of H0 does not
change significantly and it remains close to 70Km/s/Mpc.
In the case of Gaussian kernel, the current value of the decel-
eration parameter is in agreement with that of ΛCDM at 1
σ level. For the Matern’s kernels the extracted value of q0

is marginally consistent with ΛCDM with q0 < qΛ,0. Con-
cerning j0, our results are similar to those of [1], however the
corresponding uncertainties are larger (by a factor of 2.5–4)
than those of [1], implying that the extracted jerk parame-
ters are consistent with the the predictions of ΛCDM at 2σ

level. Combining SNIa and QSO datasets, we find that for all

123



632 Page 6 of 8 Eur. Phys. J. C (2020) 80 :632

Fig. 5 Left panel: The reconstruction of D(z) and its derivatives as a function of redshift using Gaussian kernel for all data set. Right panel: The
same plot using Matern (ν = 7/2) kernel and the same data set

Fig. 6 Left panel: Reconstruction of q(z) using different data sets and considering the Gaussian kernel. Right panel: Reconstruction of j (z). In
the case of ΛCDM model we use Ωm0 = 0.3 (see solid black lines)

kernels the cosmokinetic parameters (q0, j0) are in a good
agreement (with 1σ ) with those of ΛCDM model.

Finally, in the case of the Gaussian kernel the combina-
tion SNIa/QSOs/GRBs indicates that the extracted values of
q0 and j0 are ∼ 3σ away from those of ΛCDM. However,
the opposite situation holds in the case of Matern’s kernels,
namely both q0 and j0 are consistent (due to large uncer-
tainties) with the predictions of ΛCDM. In a nutshell, for
the usual standard candles (SNIa data) and for the combi-
nation SNIa/QSOs we find that the cosmokinetic parame-
ters (q0, j0) extracted from the Gaussian process are consis-
tent with ΛCDM. However, including GRBs in the anal-
ysis we find a tension of the ΛCDM model which lies
between 2 and 3 σ levels respectively. Moreover, the com-
bined SNIa/QSO/GRB analysis shows that the choice of the
kernel function might affect the amount of tension. Indeed
in the case of Matern’s kernels we produce cosmokinetic
parameters which are consistent with those of ΛCDM, while

using the Gaussian kernel it seems that the ΛCDM model is
in tension with the measurements (q0, j0).

4.1 Cosmokinetic parameters at high redshits

Apart from (q0, j0) it is useful to study the cosmokinetics
parameters at high redshifts. For the Gaussian kernel we
plot in Fig. 6 the evolution of q(z) and j (z) in the case
of SNIa (blue dashed line), SNIa/QSO (green dot-dashed)
and SNIa/QSO/GRBs (magenta dotted curve). For compar-
ison we also plot qΛ(z) and jΛ(z) (see solid lines). Since
D

′
(z) may cross the zero line prior to z ∼ 2 we prefer to

focus on 1 < z < 2. Obviously, a strong deviation from
the ΛCDM predictions is observed in the case of SNIa/QSO
and SNIa/QSO/GRBs. We also checked that this result per-
sists regardless the form of the kernel. Although the situ-
ation regarding the cosmokinetic tension is not so clear in
the present epoch, at high redshifts there is a clear indica-
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tion that such a tension really exists. Especially, the jerk
parameter clearly points to this direction, hence the possi-
bility of having new Physics is not excluded by the present
analysis. Notice that, our results are in agreement with those
of [1,2] who found that the deviation from the flat ΛCDM
becomes strong at high redshifts (z > 1). Combining our
model-independent parametrization of the Hubble Diagram
with those of [1,2] we conclude that the deviation from the
concordance ΛCDM model is due to new Physics.

5 Conclusion

It is well known that the concordance ΛCDM model fits
accurately the current cosmological data [7], nonetheless it
has been proposed that the model is not without its problems.
Indeed there are indications that the ΛCDM model is in ten-
sion with some important measurements [32,33], namely the
Hubble constant H0 and the present value of the mass vari-
ance at 8h−1Mpc, namely σ8. In this context, Lusso et al.
[1] using a combined Hubble diagram of SNIa, Quasars, and
Gamma-Ray Bursts (GRBs) found a ∼ 4σ tension between
the best fit cosmokinetic parameters with respect to those
of ΛCDM (see also [2]). Whether the above tensions are
the result of yet unknown systematic errors or indicate some
underlying new Physics is still an open issue. Therefore, on
this subject an intense debate is taking place in the literature
and the aim of the present work is to contribute to this debate.

In particular, we combined the traditional standard candles
(SNIa data) with other extragalactic sources (Quasars and
GRBs) to reconstruct, in a model independent way, the Hub-
ble diagram to as high redshifts as possible and to compute
the corresponding cosmokinetic parameters at the present
epoch, namely deceleration q0 and jerk j0 parameters. Using
only the SNIa data we found that the cosmokinetic param-
eters (q0, j0) extracted from the Gaussian process are con-
sistent with those of ΛCDM. Also in the case of SNIa/QSO
combination, we found that for all kernels the cosmokinetic
parameters are in a very good agreement (with 1σ ) with those
of ΛCDM model.

On the other hand combining SNIa with Quasars and
GRBs we revealed some tension, which lies between 2σ and
3σ levels, depending on the kernel choice. Finally, focusing
our analysis on high redshifts (z > 1) we found that the corre-
sponding cosmokinetic parameters significantly deviate from
those of ΛCDM. Overall the combination of the present work
with those of [1,2] provide a complete investigation of the so
called ΛCDM “tension”. The three works, which are model
independent, clearly suggest that the discrepancy between
the Hubble diagram data (especially for z > 1) and the pre-

dictions of the concordance ΛCDM model is the result of
some underlying new Physics.
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