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Abstract We study the τ → ντ A decay, with A an axial-
vector meson. We produce the a1(1260) and b1(1235) res-
onances in the Cabibbo favored mode and two K1(1270)

states in the Cabibbo suppressed mode. We take advantage
of previous chiral unitary approach results where these reso-
nances appear dynamically from the vector and pseudoscalar
meson interaction in s-wave. Actually two different poles
were obtained associated to the K1(1270) quantum numbers.
We find that the unmeasured rates for b1(1235) production
are similar to those of the a1(1260) and for the two K1 states
we suggest to separate the present information on the K̄ππ

invariant masses into K̄ ∗π and ρK modes, the channels to
which these two resonances couple most strongly, predicting
that these modes peak at different energies and have different
widths. These measurements should shed light on the exis-
tence of these two K1 states. In addition, we have gone one
step further making a comparison with experimental results
of three meson decay channels, letting the vector mesons of
our approach decay into pseudoscalars, and we find an overall
good agreement with experiment.

1 Introduction

Tau decays, with about 65 % branching fraction into hadronic
channels [1], (being the τ the only lepton with enough mass
to decay into hadrons), have proved to be a good tool to learn
about strong interactions at low energies [2–5]. In particu-
lar, some of the decay modes have one resonance in the final
state and we are concerned about the production of particular
resonances which stand for a molecular interpretation. Con-
cretely, in this work we are concerned about the production
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of axial vector resonances, A, this is, τ → ντ A. Given that
in the τ → ντqq̄ at the quark level, the quarks are dū for the
Cabibbo favored process, this defines the hadronic state with
isospin I = 1. Hence, we can obtain the a1(1260) (1−(1++))

and the b1(1235) (1+(1+−)). For Cabibbo suppressed pro-
cesses the initial quark state is sū and hence we produce a
state with I = 1/2 and strangeness. This is the K1(1270)

(1/2(1/2+)). An issue we wish to raise in this work is the
fact that the chiral theories for the axial-vector mesons pre-
dict two states for K1(1270) [6,7] and we evaluate the rates
for decay into either state and suggest the way to differen-
tiate the two states in experiment. In chiral unitary theory,
the axial vector mesons are generated from the interaction of
vector mesons with pseudoscalars [6,8,9]. The production
of an axial-vector meson in the tau decay proceeds then in
the following way: all possible pairs of vector-pseudoscalar
are produced and then they are allowed to interact among
themselves, and in this process the resonances are gener-
ated, decaying later on in vector-pseudoscalar pairs or other
channels. From the microscopical point of view this is done
from the original qq̄ pair creation by means of hadronization,
where an extra q̄q pair is created with the quantum numbers
of the vacuum. A technical way to implement this step is
done in Ref. [10] using the 3P0 model [11–13] and we shall
use some results from this work here.

In the literature there are many works dealing with the
production of vector-pseudoscalar in tau decays using differ-
ent approaches. In Refs. [14,15] vector meson dominance is
used while in Refs. [16–23] the Nambu Jona Lasinio model
(NJL) [24] is used. In those works the axial resonances when
suited, are introduced explicitly via amplitudes dictated by
symmetries [14,15] or with explicit coupling to quarks in the
NJL model. This is different to our approach, since what we
do is produce the vector-baryon pairs and then, using chiral
dynamics and coupled channels Bethe Salpeter equations the
pairs are allowed to interact and the interaction generates the
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axial-vector resonances, which are implicit in the scattering
amplitudes used.

The τ → ντa1(1260) has been studied as part of the
τ → ντπ

+π−π−, which has had a wide attention experi-
mentally [25–30]. While the a1(1260) production provides
the main contribution to the process, other mechanisms are
at work when one wishes to get a very good agreement with
experiment [30–41]. Special emphasis in the role of three
body unitarity of the final three pion state is made in a recent
paper [42]. The a1(1260) dominance is seen in the πρ decay
channel with the ρ identified from the ππ mass distribution.

Contrary to the a1(1260) production, which has been
widely studied, the b1(1235) production, to the best of our
knowledge has not been discussed, neither experimentally
nor theoretically. An interesting aspect of the approach we
follow is that, since the vector-pseudoscalar channels pro-
duced and their weights are very well defined in the tau decay,
we can evaluate the production of the different axial-vector
mesons with the same approach. This is our aim here, and
we shall relate the production of the a1(1260), b1(1235) and
the two K1(1270) states. We shall see that the b1(1235) pro-
duction rate is of the same order as the a1(1260) and the two
K1(1270) states are produced with smaller rates, since they
are Cabibbo suppressed by a factor about tan θ2

c � 1/20,
but they have very distinct decay modes, which we pro-
pose to differentiate. The K1(1270) production has also been
reported in the PDG [1,43], but the K1(1270) is identified
by looking at the Kππ mass distribution, which contains
both K ∗π and ρK . According to [7] the two K1(1270) res-
onances couple very differently to these two modes, and we
suggest that the two modes are separated to visualize the two
resonances peaking at different energies and with different
widths. Theoretically, the production of the K1(1270) has
also been addressed in [18,20] from the perspective of the
Nambu Jona Lasinio model, but only one K1 state is consid-
ered there.

In the present work we shall use results of Ref. [10] and
relate the production rates of the four axial vector resonances.
The approach of [10] does not calculate absolute rates but just
ratios between different production channels. Here we follow
the same strategy and relate all the rates with the production
of the a1(1260) resonance. In addition we calculate partial
decay rates into different channels to facilitate the experi-
mental work identifying the production of the b1(1235) and
the two K1(1270) states.

In addition, we have gone one step further and made a
comparison of the results, letting the vector mesons decay
into pseudoscalars, with the three meson decay channels
observed experimentally, finding an overall good agreement
with experiment.
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Fig. 1 a Cabibbo favored τ− decay to quark-antiquark. b Cabibbo
suppressed decay
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Fig. 2 Hadronization of the primary qq̄ pair to produce a vector and
pseudoscalar meson

2 Formalism

2.1 Microscopical formalism for meson meson production

Let us begin with the elementary process at the quark level
for the τ decay, τ → ντdū for the Cabibbo favored mode
and τ → ντ sū for the Cabibbo suppressed mode. They are
depicted in Fig. 1

In order to create a vector and a pseudoscalar meson we
introduce a q̄q pair with the quantum numbers of the vacuum.
This was done in Ref. [10] using the 3P0 model. Before one
looks into the dynamics of the weak decay, it is easy to see
which pairs are created and with which weight. Following
Ref. [10] we write the matrix M for qq̄ ,

M ≡
⎛
⎝
uū ud̄ us̄
dū dd̄ ds̄
sū sd̄ ss̄

⎞
⎠ . (1)

The hadronization of the dū pair is depicted in Fig. 2 and
proceeds as

dū →
3∑

i=1

dq̄i qi ū =
3∑

i=1

M2i Mi1 = (M2)21. (2)

Next we can identify the hadronic states produced with
the physical pseudoscalar and vector mesons associating the
M matrix to the SU (3) matrices containing the pseudoscalar
and vector mesons:

M ⇒ P ≡

⎛
⎜⎜⎝

π0√
2

+ η√
3

+ η′√
6

π+ K+

π− − 1√
2
π0 + η√

3
+ η′√

6
K 0

K− K̄ 0 − η√
3

+ 2η′√
6

⎞
⎟⎟⎠ ,
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which makes use of the standard η and η′ mixing [44], and

M ⇒ V ≡
⎛
⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K ∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K ∗0

K ∗− K̄ ∗0 φ

⎞
⎟⎠ . (3)

Then we get the contributions

(P · V )21 =π−
(

ρ0

√
2

+ ω√
2

)

+
(

− π0

√
2

+ η√
3

+ η′
√

6

)
ρ− + K 0K ∗− ,

(V · P)21 =ρ−
(

π0

√
2

+ η√
3

+ η′
√

6

)

+
(

− ρ0

√
2

+ ω√
2

)
π− + K ∗0K− . (4)

It is important to keep track of the order because the weak
transition has two terms and one of them changes sign when
changing the order of PV to V P . We shall see that this is
directly tied to the G-parity of the states produced. For the
Cabibbo suppressed case we proceed analogously but the
hadronization of sū gives rise to the matrix element (M2)31

with the result

(P · V )31 =K−
(

ρ0

√
2

+ ω√
2

)
+ K̄ 0ρ−

+
(

− η√
3

+ 2η′
√

6

)
K ∗− ,

(V · P)31 =K ∗−
(

π0

√
2

+ η√
3

+ η′
√

6

)
+ K̄ ∗0π− + φK− .

(5)

The next ingredient is the evaluation of the weak interac-
tion operators. The weak interaction is given by the product
of the lepton and quark currents

H = CLμQμ, (6)

where in C, which we take constant, we include weak interac-
tion couplings and radial matrix elements of the quark wave
functions. These matrix elements are smoothly dependent on
the momentum transfer given the small phase space for the
reactions, and then, in ratios of rates in which we are inter-
ested, the factor C cancels. (Actually, the difference in the
weak coupling between the Cabibbo allowed and suppressed
modes will be taken into account later on through the appro-
priate Cabibbo mixing angle, θc). In Eq. (6), LμQμ is the
leptonic current

Lμ = 〈ūν |γ μ − γ μγ5|uτ 〉, (7)

Table 1 Weights h′
i (h̄′

i ) of the different I = 1, G = −1, V P compo-
nents for the M0 (Ni ) amplitudes

ρ0π− ρ−π0 K ∗0K− K ∗−K 0

h′
i 0 0 1 1

h̄′
i

√
2 −√

2 -1 1

and Qμ the quark current

Qμ = 〈ūd |γ μ − γ μγ5|vū〉. (8)

We evaluate the matrix elements in the frame where the res-
onance is at rest. There γ5v = u and at these low energies
only γ μ → γ 0 → 1 and γ μγ5 → γ iγ5 → σ i survive and
we get the components

Q0 = 〈χ ′|1|χ〉 ≡ M0 ,

Qi = 〈χ ′|σi |χ〉 ≡ Ni , (9)

with i = 1, 2, 3, where χ , χ ′, are Pauli spinors.
The other point to consider is that, as discussed in [10],

the V P mesons are produced in s-wave, unlike PP modes
which would be produced in p-wave. This forces the dū pair
to be produced in L = 1 to have positive parity at the end.
With the G-parity rule G = (−1)L+S+I (L = 1, I = 1, and
S = 0 for the operator ”1” and 1 for the operator σi ) we see
that M0 carries G-parity positive while Ni carries negative
G-parity.

The direct calculation of matrix elements done in [10]
using Racah algebra to produce the final meson pair with
total angular momentum states |JM〉 and |J ′M ′〉, gives

M0(PV ) = M0(V P) = 1√
6

1

4π
,

Nμ(PV ) = −(−1)−μ 1√
3

1

4π
C(111; M ′,−μ, M ′ − μ) δM0 ,

Nμ(V P) = (−1)−μ 1√
3

1

4π
C(111; M,−μ, M − μ) δM ′0 .

(10)

It is important to keep in mind that Ni changes sign from
the combination PV to V P . This fact is essential to recover
the G-parity conservation in the final state interaction, as we
shall see. With this rule in mind and Eqs. (4) and (5) one
easily finds the weights h′

i , h̄
′
i that multiply the M0 and Ni

operators for each of the coupled channels. These factors are
shown in Tables 1, 2, 3.

As shown in [10], the differential width for PV + V P
production is given by

d�

dMinv(M1M2)
= 2mτ 2mν

(2π)3

1

4m2
τ

pν p̃1

∑ ∑
|t |2 , (11)

123



673 Page 4 of 9 Eur. Phys. J. C (2020) 80 :673

Table 2 Same as Table 1 but for I = 1, G = +1

ωπ− ρ−η K ∗0K− K ∗−K 0

h′
i

√
2 2√

3
1 1

h̄′
i 0 0 −1 1

where pν is the neutrino momentum in the τ rest frame, and
p̃1 the momentum of M1 in the M1M2 center of mass frame,
and

∑ ∑
|t |2 = 1

mτmν

(
1

4π

)2 [(
Eτ Eν + p2

) 1

2
|h′|2i

+
(
Eτ Eν − p2

3

)
|h̄′|2i

]
(12)

where p is the momentum of the neutrino in the rest frame
of M1M2 and Eτ , Eν , the energies of the τ and ντ for this
momentum.

2.2 Final state interaction

As mentioned in the Introduction, the axial-vector resonances
are generated in our approach by the interaction of the mesons
produced in a first step. Thus we have the mechanism shown
in Fig. 3

The dynamics for the WM1M2 vertex has been discussed
above and the new ingredients are the M1M2 loop G function
and the couplings of the A j resonance to the (M1M2)i chan-
nels. The information of the G functions is given in [6,7] and
the couplings are given in Table VII of [6] for the a1(1260)

and the b1(1235) resonances, which are obtained from the
residues at the pole positions of the V P scattering amplitudes
in the proper unphysical Riemann sheets. The couplings for
the two K1 states are given in Table IV in [7]. The position
of the poles can be associated with the mass (real part) and
width (twice the imaginary part) of the resonances and for
the two K1(1270) states found, that we will call K1(A) and
K1(B), they are:

K1(A) : M = 1195 MeV, � = 246 MeV,

K1(B) : M = 1284 MeV, � = 146 MeV.

The first state, K1(A), couples dominantly to K ∗π while the
second one, K1(B), couples mostly to ρK . The couplings in

ντ

M2,i

M1,i

τ
W Ai

Fig. 3 Mechanism for the production of the dynamically generated
axial-vector resonance Ai through the coupled channels M1,i , M2,i , of
pseudoscalar and vector mesons

Table 4 Couplings of the I = 1, G = −1, axial-vector resonance
a1(1260) to the different V P channels

ρ0π− ρ−π0 K ∗0K− K ∗−K 0

gi
1√
2
ga1,ρπ − 1√

2
ga1,ρπ

1√
2
ga1,K ∗ K̄ − 1√

2
ga1,K ∗ K̄

the Tables of Refs. [6,7] are given for the V P isospin states,
which are related to the charge states by

|ρπ; I = 1, I3 = −1〉 =
1√
2
|ρ0π−〉 − 1√

2
|ρ−π0〉

|ρ K̄ ; I = 1/2, I3 = −1/2〉 =

− 1√
2
|ρ0K−〉 −

√
2

3
|ρ− K̄ 0〉

|K̄ ∗π; I = 1/2, I3 = −1/2〉 =
1√
3
|K ∗−π0〉 +

√
2

3
|K̄ ∗0π−〉

|K̄ ∗K + cc; I = 1, I3 = −1,G = +1〉 =
− 1√

2

(
|K ∗−K 0〉 + |K ∗0K−〉

)

|K̄ ∗K − cc; I = 1, I3 = −1,G = −1〉 =
− 1√

2

(
|K ∗−K 0〉 − |K ∗0K−〉

)
(13)

where K̄ ∗K ± cc actually stands for the ±1 G-parity com-
bination 1/

√
2(K ∗ K̄ ± K̄ ∗K ) [6]. With this information

we show in Tables 4, 5, 6 the couplings of a given axial-
vector resonance V P channels in terms of the couplings in
the isospin basis of Refs. [6,7].

Table 3 Same as Table 1 but for
I = 1/2.(θc is the Cabibbo
angle, tan θc = 0.2312)

K ∗−π0 K̄ ∗0π− ρ0K− ρ− K̄ 0 ωK− φK− K ∗−η

h′
i

1√
2

tan θc
1√
2

tan θc
1√
2

tan θc tan θc
1√
2

tan θc tan θc 0

h̄′
i − 1√

2
tan θc − 1√

2
tan θc

1√
2

tan θc tan θc
1√
2

tan θc − tan θc − 2√
3

tan θc
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Table 5 Couplings of the I = 1, G = +1, axial-vector resonance
b1(1235) to the different V P channels

ωπ− ρ−η K ∗0K− K ∗−K 0

gi gb1,ωπ gb1,ρη - 1√
2
gb1,K ∗ K̄ − 1√

2
gb1,K ∗ K̄

The amplitude for the mechanism of Fig. 3 is readily
obtained simply substituting

h′
j → h′′

j =
∑
i

h′
i Gi (MAj )gA j ,i

h̄′
j → h̄′′

j =
∑
i

h̄′
i Gi (MAj )gA j ,i (14)

where i runs over the different coupled channels of each
resonance A j and gA j ,i is the coupling of the A j resonance
to the channel i . The third component of the vectors are easily
taken into account. Indeed, the vector propagator keeps the
same third component in the WPV vertex and the APV
vertex and one must sum over them in the vector propagator.
The vertex AV P is of the type εA · εV [6] and hence one has

∑
V pol.

εi (V )ε j (V )ε j (A) = δi jε j (A) = εi (A) (15)

and then the polarization of the axial-vector meson plays
the same role as the polarization of the vector meson in the
WPV vertex and one evaluates

∑ ∑ |t |2 in the same way
as in Eq. (12).

Taking equal masses for the mesons of the same isospin
multiplet, the G functions are the same for M1M2 indepen-
dent of the charges and then one can see from Tables 1 and
4 that the M0 contribution cancels for the a1 (G = −), (h′

i
coefficient), but not the Ni contribution, (h̄′

i coefficient), as it
should be, since we saw that M0 has positive G-parity and Ni

negative G-parity. Conversely, in the case of the b1 (G = +)
it is the Ni part that cancels, (see Tables 2 and 5), as it should
be. We see now that the change of sign in Ni implied by
Eq. (10) is essential to conserve G-parity in the final state
interaction of the mesons. In the case of the K1(1270) res-
onances there is no well-defined G-parity but the change of
sign implied by Eq. (10) produces particular signs in some
channels, which is important for the interference of the dif-
ferent contributions.

To finish the formalism, for the case of the coalescence
production that we study, meaning production of the reso-
nance independently of its decay, we have only two particles
in the final state and we have the following expression for
the width of the τ → νA decay:

�(τ → νA) = 2mτ 2mν

8π

1

m2
τ

pν

∑ ∑
|t |2 , (16)

where we have to use for
∑∑ |t |2 the same expression as

in Eq. (12) with the substitutions given in Eq. (14) and pν

the momentum of the neutrino in the tau rest frame and p the
momentum of the neutrino in the A rest frame.

3 Partial decay widths

In order to ease comparison with experimental data we will
also estimate the branching ratios to final V P states. In order
to do that, we can multiply the τ decay width into an axial-
vector resonance by its branching ratio into an specific V P
channel,

�(τ → ντ A → ντV P) = �(τ → ντ A)
�(A → V P)

�A
,

(17)

with

�(A → V P) = |gA,V P |2
8πM2

A

q. (18)

where gA,V P are the couplings of the axials to the specific
final V P channel, (see Tables 4, 5, 6).

In order to take into account the finite width of the axial and
the vector mesons, we fold Eq. (17) with their corresponding
mass distributions provided by the spectral functions of the
axial, ρA(sA), and vector meson ρV (sV ),

�(τ → ντ A → ντV P)

= 1

N
∫ (MA+2�A)2

(MA−2�A)2
dsA

∫ (MV +2�V )2

(MV −2�V )2
dsV

· ρV (sV )ρA(sA)�(τ → ντ A → ντV P)(
√
sA,

√
sV )

· �(
√
sA − √

sV − MP )�(mτ − √
sA), (19)

Table 6 Couplings of the I = 1/2 axial-vector resonances K1(A) and K1(B) to the different V P channels. The values of the couplings are different
for both poles

K ∗−π0 K̄ ∗0π− ρ0K− ρ− K̄ 0 ωK− φK− K ∗−η

gi
1√
3
gK1,K̄ ∗π

√
2
3 gK1,K̄ ∗π − 1√

3
gK1,ρ K̄ −

√
2
3 gK1,ρ K̄ gK1,ωK̄ gK1,φ K̄ gK1,K̄ ∗η

123



673 Page 6 of 9 Eur. Phys. J. C (2020) 80 :673

where � is the step function and �A and �V are the axial and
vector mesons total width. In Eq. (19),N is the normalization
of the spectral distribution:

N =
∫ (MA+2�A)2

(MA−2�A)2
dsA

∫ (MV +2�V )2

(MV −2�V )2
dsV ρV (sV )ρA(sA)

(20)

We take for the vector spectral function

ρV (sV ) = − 1

π
Im

{
1

sV − M2
V + iMV�V

}
, (21)

and analogously for the axial-vector one, in spite of the
fact that for the axial-vector case the shape is not really a
Breit-Wigner, but the approximation is good enough given
the uncertainties that we will be obtaining in the results. In
Eq. (19) �(τ → ντ A → ντV P) in the integrand is to be
understood as the �(τ → ντ A → ντV P) explained before
but substituting everywhere MA → √

sA and MV → √
sV ,

(except in the V P loop functions, G, which already had its
own consideration of the finite vector meson widths [6,7]).
The convolution is specially relevant in the case where there
is little phase space for the decay or it is only possible thanks
to the finite width of the particles.

4 Results

We can take one of the branching ratios τ → ντ A to get the
global unknown constant in Eq. (6). For this we take the width
τ → ντa1(1260) which can be estimated using the following
experimental information: Although the τ− → ντπ

+π−π−
decay is well studied experimentally, the separation of the
axial-vector contribution to the rate is not done since there
is interference with non resonant terms. However, if we look
up in the PDG [1,2] we find the information

BR(τ− → ντa1(1260) → ντπ
−γ ) = (3.8 ± 1.5) × 10−4

(22)

Together with the other information used in [1,2] in this anal-
ysis

BR(a1(1260) → γπ−) = (2.1 ± 0.8) × 10−3 (23)

thus gives

BR(τ− → ντa1(1260)) = (18 ± 7) × 10−2, (24)

where we keep the same relative error as in Eq. (22), about
40%, which, according to the analysis of [1,2], already
accounts for the error in Eq. (23). The result of Eq. (23) is

Table 7 Branching ratios (in %) for creation of the different axial-
vector resonances. The τ− → ντa1(1260) is fixed to the experimental
result as reference

Decay channel BR (%)

τ− → ντa1(1260) 18 ± 7 (exp)

τ− → ντ b1(1235) 10 ± 4

τ− → ντ K1(A) 0.63 ± 0.25

τ− → ντ K1(B) 0.65 ± 0.26

in good agreement with the theoretical evaluation in [20] of
14%. Although this formation is not necessary for the eval-
uation done here, concerning the nature of the a1(1260) as a
dynamically generated resonance, evaluations of its radiative
decay have been done assuming that nature of the a1(1260),
and using the formalism of the local hidden gauge approach,
and a qualitative agreement with data is obtained [45,46],
which is improved if some extra genuine component for the
a1(1260) is considered, as done in [47]. Uncertainties from
this source can be accommodated within the large errors that
our results have.

Normalizing our results to the a1(1260) production width
of Eq. (24), Eq. (16) leads to the results shown in Table 7.

In Tables 8 and 9 we show the branching ratios (in %)
for each V P state appearing in the coupled channels in the
process �(τ → ντ A → ντV P).

The results of Tables 8 and 9 are illustrative, indicating
the channels where one expects larger partial decay widths.
In this sense, as usual, the a1(1260) production has to be
searched for in the ρπ mode, and the b1(1235) in the ωπ

mode. We get a branching ratio �(τ− → ντb
−
1 (1235) →

ντωπ−) = (2.3 ± 1.7)%. As we mentioned above, there are
no data for this decay mode but the PDG reports a branching
ratio for τ− → ντωπ− of (1.95 ± 0.06)%. Assuming that
this decay mode is dominated by the b1(1235) one finds good
agreement within errors of these results. It would be most
interesting to see if the ωπ− mass distribution shows indeed
the b1(1235) peak.

As far as the two K1(1270) states is concerned, as in [7]
and other works that studied the separation of these two states
using different reactions [48–50], the suggestion is always
the same: to measure the K ∗π decay mode to see the K1(A)

state and ρK to measure the K1(B) state. So far experiments
look at the K̄ππ invariant mass distribution, which contains
both K ∗π and ρK .

4.1 Comparison with experiment

So far we have made predictions for the production of the
a1(1260), b1(1235) and the two K1(1270) states, using as
input the a1 production rate. We also evaluated the partial
decay rate into different V P channels. In total we present
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Table 8 Branching ratios (in %) for the �(τ → ντ A → ντV P) process for the I = 1 intermediate axial-vector resonances. The results have an
uncertainty of 40%

Decay channel ρ0π− ρ−π0 ωπ− ρ−η K ∗0K− K ∗−K 0

τ− → ντa1(1260) → ντV P 2.7 2.7 – – 0.03 0.03

τ− → ντb1(1235) → ντV P – – 2.3 0.70 0.23 0.23

Table 9 Branching ratios (in %) for the �(τ → ντ A → ντV P) process for the I = 1/2 intermediate axial-vector resonances. The results have an
uncertainty of 40%

Decay channel K ∗−π0 K̄ ∗0π− ρ0K− ρ− K̄ 0 ωK− φK− K ∗−η

τ− → ντ K1(A) → ντV P 0.12 0.23 0.005 0.010 0.007 0 0

τ− → ντ K1(B) → ντV P 0.019 0.037 0.085 0.17 0.012 0 0.007

26 different rates evaluated with just one experimental input.
There is hence plenty of material for experimental confir-
mation in the future. Yet, at present there is also much
experimental information on decays to three pseudoscalar
mesons. It is a very educating exercise to take our decay
channels and allow the vectors to decay into two mesons,
and then compare with the experimental rates for the cor-
responding three meson decay. Let us take one example,
τ → ντπ

− K̄ 0π0. We can get this decay channel from
Table 9 from K ∗−π0 → K̄ 0π−π0, K ∗0π− → K̄ 0π0π−
and ρ− K̄ 0 → π−π0 K̄ 0. Taking into account the Clebsch-
Gordan coefficients that take part in the K ∗ decay into the
two possible Kπ modes, we obtain a branching ratio to
the π− K̄ 0π0 channel of 0.36 × 10−2. Comparison with the
experimental τ → ντπ

− K̄ 0π0 assumes that, indeed, the
decay is mostly governed by the ρ or K ∗ intermediate res-
onant states. We shall make this assumption and compare
the results with experiment for all the decays channels that
we obtain from Tables 8 and 9. When doing this compari-
son we are also assuming that the V P states are created via
an axial vector current. Assuming that V P are created in
s-wave, as we did in [10], leads automatically to this conclu-
sion. In [10] a global analysis of the V P decays convinced
us that the V P and VV cases of tau decay proceeded via s-
wave, unlike the PP decays that proceeded via p-wave and
hence a vector current. The overwhelming dominance of the
axial vector current in the V P production processes has been
also corroborated in explicit calculations using the Nambu-
Jona-Lasinio model in [18,21–23,54,55]. One exception was
found in [56] in the study of the τ− → ντ K ∗0K−. In this
work the vector current was as big as 50% of the axial vector
current which was driven explicitly by the a1 excitation. We
shall come back to this point below.

With these observations we show in Table 10 the results
that we obtain for the three pseudoscalar decay modes (or
pseudoscalar plus ω or φ) that result from the channels we
have evaluated. The comparison has been done with the rates

Table 10 Comparison with available experimental [57] branching
ratios for three pseudoscalar decay modes (or pseudoscalar plus ω or
φ)

Decay channel Experimental BR (%) This work, BR (%)

K−π0π0ντ 0.0585 ± 0.0027 0.046

π− K̄ 0π0ντ 0.3807 ± 0.0124 0.36

K−π0K 0ντ 0.1494 ± 0.0070 0.17

π−K 0 K̄ 0ντ 0.1516 ± 0.0247 0.17

K−π+π−ντ 0.2923 ± 0.0067 0.27

π−K−K+ντ 0.1431 ± 0.0027 0.17

K−π0ηντ 0.00483 ± 0.00116 0.0023

π− K̄ 0ηντ 0.00936 ± 0.00149 0.0047

K−ωντ 0.0410 ± 0.0092 0.019

K−φντ 0.0044 ± 0.0016 0

π−ωντ 1.955 ± 0.063 2.3

B23, B40, B42, B46, B93, B130, B132, B151, B167, B80 and B802

of the HFLAV averages [57]. We have excluded the three pion
decay mode, which as we have discussed in the Introduction
contains many elements and has been widely discussed in
the literature. We find a relatively good agreement in eight
of these decay rates, much better than expected in view of
the admitted 40% uncertainties in the theory. The agreement
is also remarkable given the fact that the results in Table 10
span three orders of magnitude. We get a rate about one half
the experimental one for the case of the K−π0η and the
related one K̄ 0π−η. Here one can argue that the πη system
will combine to produce the a0(980) resonance, increasing
the rate. Hence, getting a smaller number than experiment
is consistent with this observation. Note also that the rate of
the second mode is about double than the first one, some-
thing also obtained in the theory. The K−φ mode is zero in
our approach, and experimentally it is extremely small, three
orders of magnitude smaller than the similar π−ω case. The
K−ω decay mode is then the only remaining case where
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we obtain about half the experimental rate, but the devia-
tion is about 40% counting experimental errors, of the order
of the theoretical uncertainty, and the number is also about
two orders of magnitude smaller than for the related K−ω

decay. Thus, we can claim an overall good agreement with
the experimental branching ratios considering the assump-
tions we made. At this point we come back to the results of
[56], where a large contribution from the vector current was
obtained which is not considered in our approach. In spite
of that we find a very good agreement of our results with
experiment in the rates for K 0K−π0 and K−K+π− decays,
which incidentally have the same strength both in the exper-
iment and the theory. The reason is that in [56] the source
of the axial current is explicitly tied to the a1 excitation, and
the b1 excitation is not explicitly considered. What we see in
Table 8 is that this decay is dominated by the b1 excitation
and the a1 strength accounts for only 13%. Thus, assuming
even 50% contribution of the vector current relative to the a1

contribution, as in [56], only changes in 6% our calculation
of these rates, and hence, the good agreement found is not
surprising.

5 Conclusions

We have studied the reaction τ → ντ A, with A an axial-
vector resonance. We find that for the Cabibbo favored
decay mode, only the a1(1260) and b1(1235) resonances are
produced, but the Cabibbo suppressed mode produces two
K1(1270) resonances which have been predicted before. We
use an approach in which the axial-vector resonances are
dynamically generated from the interaction of pseudoscalar
and vector mesons. For the interaction we use the chiral uni-
tary approach. The unitarization in coupled channels of the
interaction of these channels, with the only input of the low-
est order V P Lagrangians, produces poles for the resonances
from where we extract the residues, and hence the couplings
of the resonances to the different channels, which are basic
ingredients in the present quantitative calculation. The weak
interaction part is handled by a direct evaluation of the weak
matrix elements at the quark level and using the 3P0 model
to hadronize the primary qq̄ pair formed in the tau decay. We
evaluate decay rates relative to one of the decay mode, for
which we take experimental data on the τ → ντa1(1260).
We obtain rates for the b1(1235) production which are sim-
ilar to those of the a1(1260) production and suggest to see
this mode in the τ− → ντωπ− decay. For the case of the two
K1(1270) states we show that they should be looked upon in
different channels, the lower mass state should be seen in the
K̄ ∗π mode, while the K1 state of higher mass should appear
in the ρK decay mode. We note that experiments looking
for this resonance measure so far the K̄ππ invariant mass
that contains both the K̄ ∗π and the ρK modes. A separa-

tion of these two channels should show two different peaks
with a different width, as predicted by the theory and con-
firmed with other experiments [7]. Collecting more statistics
in present facilities and with the advent of planned ones,
the Hefei project in China [51], another one in Novosibirsk
[52], and the Belle II update [53], there will be opportunities
to have a look at the issues discussed here and learn more
about important aspects of Hadron dynamics, in particular
the nature of hadronic resonances.

We also evaluated the rates for the decay products into
three pseudoscalar mesons and found a very good overall
agreement with data. This gives further strength to our pre-
dictions and should be an extra stimulus to find the resonant
contributions that we have evaluated.
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