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Abstract This work consists an introduction to the classi-
cal and quantum information theory of geometric flows of
(relativistic) Lagrange–Hamilton mechanical systems. Basic
geometric and physical properties of the canonical nonholo-
nomic deformations of G. Perelman entropy functionals and
geometric flows evolution equations of classical mechan-
ical systems are described. There are studied projections
of such F- and W-functionals on Lorentz spacetime mani-
folds and three-dimensional spacelike hypersurfaces. These
functionals are used for elaborating relativistic thermody-
namic models for Lagrange–Hamilton geometric evolution
and respective generalized Hamilton geometric flow and non-
holonomic Ricci flow equations. The concept of nonholo-
nomic W-entropy is developed as a complementary one for
the classical Shannon entropy and the quantum von Neumann
entropy. There are considered geometric flow generalizations
of the approaches based on classical and quantum relative
entropy, conditional entropy, mutual information, and related
thermodynamic models. Such basic ingredients and topics of
quantum geometric flow information theory are elaborated
using the formalism of density matrices and measurements
with quantum channels for the evolution of quantum mechan-
ical systems.
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1 Introduction

One of the most remarkable success in modern mathematics
is the proof of the Poincaré–Thurston conjecture due to G.
Perelman [1–3]. We cite here most important related works
on W. Thurston’s classification of three dimensional, 3-d,
manifolds, [4–6]; then D. Friedman’s geometric flow evo-
lution equations derived for renorm-group considerations in
quantum field theory and condensed matter physics, see [7–
9]; and R. Hamilton [10–12] fundamental contributions to
Ricci flow theory. The monographs [13–15] can be consid-
ered for rigorous proofs and reviews of results in geometric
analysis and topology.1 A series of our works were elabo-
rated in a ’geometry and physics’ style involving general-
izations for relativistic systems and applications in modern
physics and cosmology. We cite [19–22], for geometric flows
of Lagrange-Finsler spaces and nonholonomic manifolds and
algebroids; [23], on noncommutative geometric flow evolu-
tion theories; [24,25], for respective super-Ricci flows and
thermodynamics of relativistic Ricci flows; and a series of

1 We emphasize that the terms Hamilton mechanics and Hamilton equa-
tions for Ricci flows are related to the names of two different famous sci-
entists. In the first case, it refers to William R. Hamilton who formulated
in 1834 his Hamiltonian mechanics starting from Lagrangian mechanics
(a previous reformulation for classical mechanics introduced by Joseph
Louis Lagrange in 1788). On mathematical and physical approaches
and historical remarks on Lagrange and Hamilton mechanics, see [16–
18]. In the second case, Richard Hamilton is known because of his
achievements on the Ricci flows theory and applications in topology
and geometric analysis [10–12].

works [26–29] related to modified gravity theories, MGTs,
and cosmology, see reviews [30–35].

Above mentioned directions for advanced studies in
geometry and mathematical physics were developed using
G. Perelman’s concepts of F- and W-entropy Perelman. Such
values were constructed as A. M. Lyapunov type functionals
[36] which for geometric flows of Riemannian metrics are
determined by Ricci tensors and scalars. We defined their
nonholonomic deformations (equivalently, anholonomic, i.e.
subjected to non-integrable constraints) for various gener-
alized geometric and physical models. The W-entropy is
like a “minus entropy” and it describes some nonholonomic
entropic flows of various classical and quantum physical sys-
tems. The concept of W-entropy is different from the Shan-
non, von Neumann, or other type, entropy used in modern
thermodynamics and classical/ quantum information theory,
see [37,38] and references therein. With respect to various
developments and applications in modern gravity and black
hole, BH, and cosmology information theory (based on area–
entropy, holography and similar concepts), the constructions
with the G. Perelman entropy and modifications seem to be
more general than those based on the Bekenstein–Hawking
thermodynamics [39–42]. On recent research with “non-
area and non-holographic” entropies for geometric flows and
gravity, see details and discussions in [24–29].

This paper is the 4th partner one in a series of previ-
ous works [27–29]. The goal is to elaborate on certain most
important principles and methods for formulating classical
and quantum information theories encoding geometric flows
of relativistic Lagrange-Hamilton mechanical systems. We
shall also consider spacetime configurations emerging as
nonholonomic Ricci solitons, and their analogous geometric
thermodynamic models. This new approach to formulating
geometric information flow, GIF, theories is based on the con-
cept of G. Perelman entropy and a geometrization of physical
theories due to J. Kern [43] and M. Matsumoto [44,45]. The
Kern-Matsumoto ideas were that classical mechanics can be
formulated as Finsler like geometries without homogeneity
conditions on respective Lagrange and/or Hamilton generat-
ing functions on (co) vector and tangent bundles, see a mod-
ern axiomatic approach and historical remarks in [34,35].
For such a geometric formulation, the classical and quan-
tum field and flow evolution theories can be characterized
by certain generalized Perelman’s entropy like functionals.
These functionals allow new developments and applications
to classical and quantum information theories. In this work,
there are not studied emergent (modified) gravity theories
even we provide certain generalized classical and quantum
mechanical entropic functionals from which generalized Ein-
stein equations can be derived. We cite [26,27,29] for recent
results on exact solutions and modified Ricci flow theories
and gravity.

123



Eur. Phys. J. C (2020) 80 :639 Page 3 of 26 639

It is assumed that the reader has a background knowledge
about mathematical physics and geometric methods in QFT
and (modified) gravity theories, and certain familiarity with
fiber bundles and (non) linear connections, nonholonomic
mechanics and geometric thermodynamics, see [23,25,46]
and references therein. Certain other sources of literature
on classical and quantum information theory and modern
physics [37,38,47–49] are listed for more comprehensive
treatments of the subjects that we touch in our developments.

This work is organized as follows: In Sect. 2, we summa-
rize necessary results on J. Kern’s approach to geometriza-
tion of classical Lagrange and Hamilton mechanics. There
are also defined the geometric objects which are important
for relativistic generalizations of such geometric models on
(co) tangent Lorentz bundles. Section 3 is devoted to the
theory of nonholonomic geometric flow evolution of classi-
cal relativistic mechanical systems. There are introduced the
Perelman–Lagrange and Perelman–Hamilton functionals for
geometric mechanics flows on curved phase spacetimes and
their reductions on 4-d Lorentz manifolds (as certain emer-
gent flow evolution gravity theories) and 3-d space like hyper-
surfaces. Corresponding relativistic thermodynamics values
are defined. Generalized R. Hamilton geometric flow evolu-
tion of flow equations are derived for relativistic Lagrange–
Hamilton systems. Self-similar configurations are defined
as nonholonomic Ricci–Lagrange and Ricci–Hamilton soli-
tons and studied the conditions certain analogous mechanical
models define emergent vacuum gravitational configurations.
A brief introduction to theories of classical and quantum
mechanical geometric information flow, GIF, is provided in
Sect. 4. We define and study basic properties of GIF entropies
and basic ingredients of the quantum geometric flow informa-
tion, QGIF, theory and respective thermodynamics for quan-
tum channels. Finally, we draw conclusions and speculate on
further perspectives in Sect. 5.

2 A Hessian type geometrization of Lagrange–Hamilton
mechanics

We develop an approach to geometrization of relativistic
Lagrange and Hamilton mechanics on tangent and cotan-
gent Lorentz manifolds (respectively, T V and T ∗V ) on a
Lorentz manifold V of dimension dim V = 4 and with local
Euclidean signature (+ + +−), see [34,35] for details and
historical remarks. The concept of Lagrange space was pro-
posed in [43] as an alternative geometrization for nonrel-
ativistic mechanics outlined in [16–18]. The main idea in
such Hessian geometric models (with a so-called vertical, or
covertical, metric determined by a Lagrange, or Hamilton,
generating function) is to drop the homogeneity condition
for generating functions and apply Finselr and almost Kähler
geometry methods to classical field theories and mechanics

[44,45]. Here we note that other approaches on geometriza-
tion of classical mechanics and fields, for instance, the poly-
simplectic formalism (see [18], references therein and fur-
ther developments in modern literature), do not allow an
unified formulation of models for geometric flow evolution,
thermodynamics and statistics, (modified) gravity theories
and classical and quantum information. In our works [19–
26,26,27,27,28,28,29,29], using constructions with gen-
eralized Finsler like Hessian geometrization of Lagrange-
Hamilton systems in mathematical relativity, cosmology and
particle physics, various directions were developed for clas-
sical and quantum (non) commutative / supersymetric field
theories, in modified gravity, inhomogeneous cosmology and
theory of nonholonomic geometric flows.

2.1 Canonic nonholonomic models of Lagrange–Hamilton
geometry

Geometrization of classical nonrelativistic and relativistic
mechanical systems can be performed on a Riemannian or
Lorentz manifold V and it tangent T V and cotangent T ∗V
bundles enabled with (pseudo) Riemannian metrics with
local (pseudo) Euclidean signature.

2.1.1 Phase spacetimes with Lagrange–Hamilton
generating functions and Hessian metrics

We call T V and/or T ∗V as phase spaces or phase spacetimes
depending on signatures of metrics they are enabled. In a
typical case, there are considered corresponding quadratic
line elements determined by total phase space metrics with
signature (+ + +−;+ + +−),

ds2 = gαβ(xk)duαduβ = gi j (xk)dxi dx j

+ηabdyadyb, for ya ∼ dxa/dτ ; and/ or (1)

d �s2 = �gαβ(xk)d �uαd �uβ = gi j (xk)dxi dx j

+ηabdpadpb, for pa ∼ dxa/dτ. (2)

In these formulas, the local frame and dual frame (co-frame)
coordinates are labeled respectively. We write uα = (xi , ya),

(or in brief, u = (x, y)), on the tangent bundle T V ; and
�uα = (xi , pa), (or in brief, �u = (x, p)), on the cotan-
gent bundle T ∗V . The total phase space metrics gαβ(u) and
�gαβ( �u) are determined, for such examples, by a pseudo-
Riemannian spacetime metric g = {gi j (x)} with the Levi-
Civita connection, LC-connection, ∇, which is metric com-
patible and with zero torsion. In diagonal form, the vertical
metric ηab and its dual ηab are standard Minkowski met-
rics, ηab = diag[1, 1, 1,−1] used for computations in typ-
ical fibers of respective (co) tangent bundles. The mechani-
cal models can be elaborated for general frame/ coordinate
transforms in total spaces when the metric structures can
be parameterized equivalently by the same h-components of
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gαβ(xk) and �gαβ(xk) = gαβ(xk), but different (co) fiber
metrics gab(x, y) and gab(x, p) than those considered in (1)
and (2).2

A relativistic 4-d model of Lagrange space L3,1 =
(T V, L(x, y)) is determined by a fundamental function
(equivalently, generating function) T V � (x, y) → L(x, y)

∈ R, i.e. a real valued function (in brief, called a Lagrangian
or a Lagrange density) which is differentiable on ˜T V :=
T V/{0}, for {0} being the null section of T V, and continu-
ous on the null section of π : T V → V . Such a relativistic
model is regular if the Hessian metric (equivalently, v-metric)

g̃ab(x, y) := 1

2

∂2L

∂ya∂yb
(3)

is non-degenerate, i.e. det |̃gab| �= 0, and of constant signa-
ture.

In modern literature on geometric mechanics, kinetics and
statistical mechanics of locally anisotropic processes (see a
review of such results and references in [34,35]), there are
used constructions on cotangent bundles with such a con-
cept: A 4-d relativistic model of Hamilton space H3,1 =
(T ∗V, H(x, p)) is constructed for a fundamental function
(equivalently, generating Hamilton function, in brief, Hamil-
tonian or Hamilton density) on a Lorentz manifold V . One
considers that T ∗V � (x, p) → H(x, p) ∈ R defines a real
valued function being differentiable on T̃ ∗V := T ∗V/{0∗},
for {0∗} being the null section of T ∗V, and continuous on
the null section of π∗ : T ∗V → V . Such a relativistic
mechanical model is regular if the Hessian (cv-metric)

�g̃ab(x, p) := 1

2

∂2 H

∂pa∂pb
(4)

is non-degenerate, i.e. det | �g̃ab| �= 0, and of constant sig-
nature.

For Lagrange and Hamilton spaces, we can consider Leg-
endre transforms L → H(x, p) := pa ya − L(x, y) and ya

determining solutions of the equations pa = ∂L(x, y)/∂ya .

In a similar manner, the inverse Legendre transforms can be
introduced, H → L , when

L(x, y) := pa ya − H(x, p) (5)

for pa determining solutions of the equations ya =
∂ H(x, p)/∂pa .

2 There are used such conventions for indices: the “horizontal” indices,
h-indices, run values i, j, k, ... = 1, 2, 3, 4; the vertical indices, v-
vertical, run values a, b, c... = 5, 6, 7, 8; respectively, the v-indices can
be identified/ contracted with h-indices 1, 2, 3, 4 for lifts on total (co)
tangent Lorentz bundles, when α = (i, a), β = ( j, b), γ = (k, c), ... =
1, 2, 3, ...8. We shall consider letters labelled by an abstract left up/low
symbol “ �” (for instance, �uα and �gαβ) in order to emphasize that
certain geometric/ physical objects are defined on T ∗V . In similar forms,
we can consider indices for lower and higher dimensions than 4 + 4, or
other type signatures.

The non-Riemannian total phase space geometries are
characterized by nonlinear quadratic line elements

ds2
L = L(x, y), for models on T V ; d �

s2
H = H(x, p), for models on T ∗V . (6)

We can elaborate on geometric and physical theories with an
effective phase spacetime modelled on (co) tangent Lorentz
bundles endowed with generalized frame, metric and linear
and nonlinear connection structures determined by nonlinear
quadratic line elements and (6). For certain special cases,
such values transform correspondingly into quadratic line
elements (1) and (2).

The Hessians g̃ab and �g̃ab are labeled by a tilde “∼” in
order to emphasize that such conventional v- and cv-metrics
are defined canonically by respective Lagrange and Hamil-
ton generating functions. For simplicity, we can work with
such regular metrics even, in principle, mechanical models
with degenerate Hessians are also studied in modern mechan-
ics and field theories. Considering general frame/ coordinate
transforms on phase spaces, we can express any “tilde” Hes-
sian in a general quadratic form, respectively as a vertical
metric (v-metric), gab(x, y), and/or co-vertical metric (cv-
metric), �gab(x, p). Inversely, if a v-metric (cv-metric) is
prescribed, we can introduce respective (co) frame /coordi-
nate systems, when such values can transformed into certain
canonical ones, with “tilde” values. In general, a v-metric
gab is different from the inverse of a cv-metric �gab, i.e. from
the �gab. Nevertheless, certain relations between such values
can be found via Legendre transforms. We shall omit tildes
on geometrical/ physical objects on respective phase spaces
if certain formulas hold in general (not only canonical) forms
and/or that will not result in ambiguities.

For simplicity, the bulk of geometric constructions in this
paper will be performed for (effective and/or generalized)
Hamilton spaces if that will not result in ambiguities. We
shall consider that via corresponding frame and Legendre
transforms, or homogeneity conditions, we can generate nec-
essary type Lagrange/ Finsler/ Cartan configurations.3

3 A relativistic 4-d model of Finsler space is an example of Lagrange
space when a regular L = F2 is defined by a fundamental (generating)
Finsler function subjected to certain additional conditions: 1) F is a real
positive valued function which is differential on ˜T V and continuous on
the null section of the projection π : T V → V ; 2) it is satisfied the
homogeneity condition F(x, λy) = |λ| F(x, y), for a nonzero real
value λ; and 3) the Hessian (3) is defined by F2 in such a form that in
any point (x(0), y(0)) the v-metric is of signature (+++−). In a similar
form, we can define relativistic Cartan spaces C3,1 = (V, C(x, p)),

when H = C2(x, p) is 1-homogeneous on co-fiber coordinates pa .

123



Eur. Phys. J. C (2020) 80 :639 Page 5 of 26 639

2.1.2 Nonlinear connections, adapted frames, and
distinguished metrics

A complete geometrization of mechanical models is not
possible if we use only Lagrange–Hamilton functions and
respective (non) linear quadratic elements. There are nec-
essary additional concepts and definition of new geometric
objects like the nonlinear connection structure, the distin-
guished linear connection, various distinguished geometric
objects etc., see details and motivations in [34,35].

A nonlinear connection, N-connection, structure for T V,

or T ∗V, is defined as a Whitney sum of conventional h and
v-distributions, or h and cv-distributions,

N : T T V = hT V ⊕ vT V, or �N : T T ∗V

= hT ∗V ⊕ vT ∗V . (7)

Parameterizing locally the N-connections with respect to
coordinate bases by corresponding coefficients N = {N a

i }
and �N = { �Nia}, we obtain by explicit constructions that
decompositions/splitting (7) define respective systems of N-
linear (i.e. N-adapted) bases

eα =
(

ei = ∂

∂xi
− N a

i (x, y)
∂

∂ya
, eb = ∂

∂yb

)

,

eα = (ei = dxi , ea = dya

+N a
i (x, y)dxi ), and/ or

�eα =
(

�ei = ∂

∂xi
− �Nia(x, p)

∂

∂pa
, �eb = ∂

∂pb

)

,

�eα = ( �ei = dxi , �ea = dpa + �Nia(x, p)dxi ). (8)

The N-connection coefficients and necessary types of (co)
frame/ coordinate transforms can be used for constructing
lifts of metric structures (V, g) to respective nonholonomic
(co)tangent bundles, (TV,N, g) and (T∗V, �N, �g).4

We can consider various type of metric structures on a tan-
gent, TV, and/or cotangent, T∗V, Lorentz bundles. This can
be used for elaborating mechanical models, thermodynamic
and kinetic theories and generalizations of the Einstein grav-
ity. Such metric structures can be parameterized by frame
transforms in N-adapted form, i.e. as distinguished metrics
(d-metrics)

g = gαβ(x, y)eα⊗eβ = gi j (x)ei ⊗ e j

+gab(x, y)ea ⊗ ea and/or (9)
�g = �gαβ(x, p) �eα⊗ �e

β = gi j (x)ei ⊗ e j

+ �gab(x, p) �ea ⊗ �eb. (10)

4 Boldface symbols are used in order to emphasize that certain geomet-
ric/physical objects are considered in N-adapted form for certain phase
spaces and/or spacetime enabled with N-connection structure and when
the coefficients of tensors, spinors, and fundamental geometric objects
can be computed with respect to N-elongated bases of type (8).

In this work, such metrics on conventional 8-d manifolds
are of signature (+,+,+,−,+,+,+,−) but for elaborat-
ing non-relativistic mechanical/ thermodynamical / statis-
tical models other type signatures can be considered. For
instance, a pseudo-Riemannian metric gi j (x) can be sub-
jected to the condition that it defines a solution of the standard
Einstein equations in GR, or a MGT, with a corresponding
base Lorentz manifold V. For various mechanical and ther-
modynamical models, there are necessary additional geomet-
rically and physically motivated assumptions on how non-
linear quadratic elements of type or (6), and/or (9), or (10),
encode local anisotropies, inhomogeneous structures, modi-
fied dispersion relations etc.

2.1.3 Hamilton–Jacoby, Euler–Lagrange, and semi-spray
equations and N-connections

Let us consider that a spacetime Lorentzian (or a space
Riemannian) manifold V is endowed with a metric hg =
{gi j (x)} of signature (3, 1) (or of Euclidean signature). Using
frame/generalized coordinate transforms on base and total
spaces, metrics can be deformed to off-diagonal metrics
depending on velocity/ momentum coordinates, including
horizontal components of Hessian type.

Considering a regular curve c(τ ) defined c : τ ∈ [0, 1] →
xi (τ ) ⊂ U ⊂ V, for a real parameter τ, we can construct a
lifted to π−1(U ) ⊂ ˜T V defining a curve in the total space,
when c̃(τ ) : τ ∈ [0, 1] → (

xi (τ ), yi (τ ) = dxi/dτ
)

with a
non-vanishing v-vector field dxi/dτ. Using a canonical sym-
plectic structure θ := dpi ∧dxi on T ∗V and a unique vector
filed ˜X H := ∂ ˜H

∂pi

∂
∂xi − ∂ ˜H

∂xi
∂

∂pi
defined by ˜H , we construct an

equation i
˜X H

θ = −d ˜H . We write ∧ for the antisymmetric
product where i

˜X H
denotes the interior produce defined by

˜X H . This allows us to formulate and prove using an explicit
calculus for any functions 1 f (x, p) and 2 f (x, p) on T ∗V
and a canonical Poisson structure { 1 f, 2 f } := θ(˜X1 f ,

˜X2 f ).

The canonical Hamilton–Jacobi equations are defined
using above canonical Poisson structure,

dxi

dτ
= { ˜H , xi } and

dpa

dτ
= { ˜H , pa}.

The dynamics of a probing point particle in L-dual effective
phase spaces ˜H3,1 and ˜L3,1 is described equivalently by the

Hamilton equations dxi

dτ
= ∂ ˜H

∂pi
and dpi

dτ
= − ∂ ˜H

∂xi , or as Euler-

Lagrange equations, d
dτ

∂˜L
∂yi − ∂˜L

∂xi = 0. In their turn, these
equations are equivalent to the nonlinear geodesic (semi-
spray) equations

d2xi

dτ 2 + 2˜Gi (x, y) = 0, (11)

for ˜Gi = 1
2 g̃i j ( ∂2

˜L
∂yi yk − ∂˜L

∂xi ), with g̃i j being inverse to g̃i j

(3).
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The equations (11) show that point like probing particles
move not along usual geodesics as on Lorentz manifolds
but follow some nonlinear geodesic equations determined
by generating Lagrange functions and their Hessians.

Using the constructions from above section, we prove
there are canonical N-connections determined by generating
Lagrange/ Hamilton functions following formulas

�
˜N =

{

�
˜Ni j := 1

2

[

{ � g̃i j , ˜H} − ∂2
˜H

∂pk∂xi
� g̃ jk − ∂2

˜H

∂pk∂x j
� g̃ik

]}

and ˜N =
{

˜N a
i := ∂˜G

∂yi

}

, (12)

where �g̃i j is inverse to �g̃ab (4). Introducing these canonical
N-connection coefficients into formulas (8), we prove that
there are canonical N-adapted (co) frames

ẽα =
(

ẽi = ∂

∂xi
− ˜N a

i (x, y)
∂

∂ya
, eb = ∂

∂yb

)

;

ẽα =
(

ẽi = dxi , ẽa = dya + ˜N a
i (x, y)dxi

)

; and

�ẽα =
(

�ẽi = ∂

∂xi
− �

˜Nia(x, p)
∂

∂pa
, �eb = ∂

∂pb

)

;
�ẽα =

(

�ei = dxi , �ea = dpa + �
˜Nia(x, p)dxi

)

. (13)

Such a canonical N-splitting ˜N : T T V = hT V ⊕ vT V
and �

˜N : T T ∗V = hT ∗V ⊕ vT ∗V is stated by respective
generating Lagrange and/or Hamilton functions on any tan-
gent and/or cotangent Lorentz bundle. The nonholonomic
structure of phase spaces can be described in equivalent
forms using canonical data (˜L, ˜N; ẽα, ẽα), with effective
Largange density ˜L (correspondingly, ( ˜H , �

˜N; �ẽα, �ẽα),

with effective Hamilton density ˜H ). We can consider a gen-
eral N-splitting without effective Lagrangians (Hamiltoni-
ans), i.e. in terms of arbitrary geometric data (N; eα, eα)

(correspondingly ( �N; �eα, �eα)).5 Using tensor products

5 On nonholonomic (co) tangent bundles, we can consider d-vectors if
they are written in a form adapted to a prescribed N-connection struc-
ture, for instance,

X = ˜Xα ẽα = ˜Xi ẽi + Xbeb = Xαeα = Xiei + Xbeb ∈ TTV,
�X = �

˜Xα ẽα = �
˜Xi �ẽi + � Xb

�eb = �Xα �eα

= �Xi �ei + � Xb
�eb ∈ TT∗V.

Such formulas can be written equivalently for decompositions with
respect to canonical, or arbitrary, N-adapted bases. In brief, the h-v
and/or h-cv decompositions can be written Xα = ˜Xα = (˜Xi , Xb) =
(Xi , Xb), �Xα = �

˜Xα = ( �
˜Xi , � Xb) = ( �Xi , � Xb). Considering X

and �X as 1-forms, we have

X = ˜Xα eα = Xi ei + ˜Xa ẽa = ˜Xαeα = Xi e
i + Xaea ∈ T ∗TV

�X = �
˜Xα

�eα = � Xi
�ei + �

˜Xa �ẽa = �
˜Xα

�eα

= � Xi
�ei + �Xa �ea ∈ T ∗T∗V,

or, in brief, Xα = ˜Xα = (Xi ,˜Xa) = (Xi ,Xa), �Xα = �
˜Xα =

( � Xi ,
�
˜Xa) = ( � Xi ,

�Xa).

of N-adapted (co) frames on phase space, we can parameter-
ize in N-adapted forms (canonical or general ones) arbitrary
tensors fields (d-tensors), connections and d-connections and
other types of geometric objects, d-objects.

2.1.4 Canonical d-metric and almost complex structures

There are canonical data (˜L, ˜N; ẽα, ẽα; g̃ jk, g̃ jk) and/or
( ˜H , �

˜N; �ẽα, �ẽα; �g̃ab, �g̃ab) when the d-metrics are
parameterized in the Hessian form both for the h- and (c)v-
components,

g̃ = g̃αβ(x, y)̃eα⊗̃eβ = g̃i j (x, y)ei ⊗ e j

+g̃ab(x, y)̃ea ⊗ ẽa and/or (14)
�g̃ = �g̃αβ(x, p) �ẽα⊗ �ẽβ = �g̃i j (x, p)ei ⊗ e j

+ �g̃ab(x, p) �ẽa ⊗ �ẽb. (15)

By frame transforms, the canonical d-metric structures
(14) and (15) [with tildes] can be written, respectively, in
general d-metric forms (9) and (10) [without tildes]. In
explicit form, the general vierbein transforms are written
eα = e

α
α(u)∂/∂uα and eβ = eβ

β(u)duβ. We underline

the local coordinate indices in order to distinguish them
from arbitrary abstract ones. In such formulas, the matrix
eβ

β is inverse to e
α
α for orthonormalized bases. For Hamil-

ton like configurations on cotangent bundles, we consider
�eα = �e

α
α( �u)∂/∂ �uα and �eβ = �eβ

β( �u)d �uβ. There are

not used boldface symbols for such transforms because they
can be not adapted to a N-connection structure.

Using (13), respectively, for (9) and (10) and regrouping
with respect to local coordinate bases, we prove that with
respect to local coordinate frames, any d-metric structures
on TV and/or T∗V,

g = gαβ(x, y)eα⊗eβ = gαβ(x, y)duα⊗duβ and/or

�g = �gαβ(x, p) �eα⊗ �e
β = �gαβ(x, p)d �uα⊗d �uβ.

These formulas can be subjected to frame transforms, gαβ =
e
α
αe

β

βgαβ and �gαβ = �e
α
α

�e
β

β
�gαβ, and written in equiva-

lent off-diagonal forms:

gαβ =
[

gi j (x) + gab(x, y)N a
i (x, y)N b

j (x, y) gae(x, y)N e
j (x, y)

gbe(x, y)N e
i (x, y) gab(x, y)

]

and/or

�gαβ =
[

�gi j (x) + �gab(x, p) � Nia(x, p) � N jb(x, p) �gae � N je(x, p)
�gbe � Nie(x, p) �gab(x, p)

]

.

(16)

Parameterizations of type (16) for metrics are considered,
for instance, in Kaluza–Klein theories on associated vector
bundles. In our cases, the constructions are on (co) tangent
bundles for geometric mechanics models. We conclude that
if we fix a metric structure of type �g̃ (15), we can elaborate
equivalent models with �g (10) determined by certain classes
of nonholonomic frame transforms. Inversely, prescribing a
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d-metric �g, we can define nonholonomic variables when this
metric structure can be represented as a �g̃, i.e. in mechanical
like variables, when �g = �g̃. In a more general context, we
can elaborate on bi-metric (and even multi-metric theories
of gravity, geometric mechanics and thermodynamics) if we
consider that �g̃ and �g are related via certain generalized
nonholonomic transforms, see details an references in [34,
35].

The canonical N-connections ˜N and �
˜N define respec-

tively certain canonical almost complex structures˜J, on TV,

and �̃J, on T∗V. This follows, for instance, from such a con-
struction on T∗V. Let us consider a linear operator �̃J acting
on �eα = (�ei ,

� eb) using formulas �̃J(�ei ) = − �en+i and
�̃J(�en+i ) =� ei . This �̃J defines globally an almost com-

plex structure (�̃J◦�̃J = − I, where I is the unity matrix) on
T∗V. Such an operator is completely determined for Hamil-
ton spaces by a ˜H(x, p).

We note that˜J and �̃J are standard almost complex struc-
tures only for the Euclidean signatures, respectively, on TV
and T∗V . Contrary, we call them as pseudo almost complex
structure. It is possible to omit tildes and write J and �J for
arbitrary frame/ coordinate transforms.

The canonical Neijenhuis tensor fields determined by
Lagrange and Hamilton generating functions, for respec-
tive canonical almost complex structures ˜J on TV and/or
�̃J on T∗V, are introduced as curvatures of respective N-

connections

˜�(˜X,˜Y) := −[˜X,˜Y] + [˜J˜X,˜J˜Y] −˜J[˜J˜X,˜Y] −˜J[˜X,˜J˜Y] and/or
�
˜�( �

˜X, �
˜Y) := −[ �

˜X, �
˜Y] + [ �

˜J �
˜X, �

˜J �
˜Y]

− �
˜J[ �

˜J �
˜X, �

˜Y] − �
˜J[ �

˜X, �
˜J �

˜Y], (17)

for any d-vectors X, Y and �X, �Y. Such formulas can
be written in general form without tilde values if there are
considered arbitrary frame transforms. In local form, a N-
connection on TV, or T∗V, is characterized by such coeffi-
cients of (17) (i.e. the N-connection curvature):

�a
i j = ∂ N a

i

∂x j
− ∂ N a

j

∂xi
+ N b

i

∂ N a
j

∂yb
− N b

j
∂ N a

i

∂yb
, or

��i ja = ∂ �Nia

∂x j
− ∂ �N ja

∂xi

+ �Nib
∂ �N ja

∂pb
− �N jb

∂ �Nia

∂pb
. (18)

Almost complex structures J and �J transform into stan-
dard complex structures for Euclidean signatures if � = 0
and/or �� = 0. For almost complex canonical structures, we
can consider canonical forms with “tilde” values determined
by ˜N = {˜N b

j } and �
˜N = { �

˜Nia}.
Applying a straightforward N-adapted calculus using for-

mulas ẽα = (̃ei , eb) and �ẽα = ( �ẽi ,
�eb), see (13) and

(18), we prove that the canonical nonholonomic frame struc-
tures on TV and/or T∗V are characterized by corresponding

anholonomy relations

[̃eα, ẽβ ] = ẽα ẽβ − ẽβ ẽα = ˜W γ
αβ ẽγ and [ �ẽα, �ẽβ ]

= �ẽα
�ẽβ − �ẽβ

�ẽα = �
˜W γ

αβ
�ẽγ (19)

with anholonomy coefficients ˜W b
ia = ∂a ˜N b

i , ˜W a
ji = ˜�a

i j ,

and �
˜W a

ib = ∂ �
˜Nib/∂pa and �

˜W jia = �
˜�i ja . We can define

holonomic (integrable) frame configurations if the respective
anholonomy coefficients in (19) are zero.

In geometric mechanics, the canonical d-metric structures
g̃ (14) and �g̃ (15) are described by generic off-diagonal
metrics (16) if respective anholonomy coefficients (19) are
not trivial.

2.2 Linear connections and curvatures for
Lagrange–Hamilton spaces

Elaborating on different type Lagrange-Hamilton mod-
els, we are not able to perform the constructions in N-
adapted anholonomic form if we work only with general-
ized (Finsler like) metrics determined by nonlinear quadratic
forms L(x, y) and/or H(x, p) (6). The goal of this section is
to analyze which classes of linear connections and respective
covariant derivative operators can be generated canonically
by fundamental generating functions.

2.2.1 Distinguished connections, N-adapted distortions
and curvatures

We can define a linear connection D onTV when aL-duality
between the tangent and corresponding cotangent bundles
which can be defined by pull-back and push-forward maps.
We omit geometric details on constructing such maps from/to
base space to total space, considered, for instance, in [34,
35]. A linear connection � D on T∗V is defined as follows:
� D �X

�Y := (DXY)∗ = �(DXY), for any vector fields �X and
�Y on T∗V. Inversely, we can consider a linear connection
� D on T∗V and then construct a linear connection ◦ D on

TV, following the rule ◦ DXY := ( � D �X
�Y)◦, for any vector

fields X and Y on TV.
A distinguished connection (d-connection) is a linear con-

nection D on TV (or �D on T∗V) which is compatible with
the N-connection splitting (7).

The coefficients of d-connections can be defined and com-
puted in corresponding N-adapted forms,

Deβ eγ := �α
βγ eα and �D �eβ

�eγ := ��
α

βγ
�eα.

For a h-v splitting, Dek e j := Li
jkei ,Dek eb := Ĺa

bkea,Dece j

:= Ći
jcei ,Dec eb := Ca

bcea and a h-cv splitting, �D �ek
�e j :=

�Li
jk

�ei ,
�Dek

�eb := − � Ĺ b
a k

�ea, �D �ec
�e j := �Ći c

j
�ei ,

�D �ec
�eb := − �C bc

a
�ea . In result, the N-adapted coefficients

of d-connections on (co) tangent Lorentz bundles can be
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parameterized (respectively)�α
βγ = {Li

jk, Ĺa
bk, Ći

jc, Ca
bc}

and ��α
βγ = { �Li

jk,
� Ĺ b

a k,
�Ći c

j , �C bc
a }. These coefficients

can be used for explicit computations of h- and/or v-splitting,
cv-splitting, of covariant derivatives

D = (hD, vD) and �D =
(

�

hD, �

vD
)

,

where hD = {Li
jk, Ĺa

bk}, vD = {Ći
jc, Ca

bc} and �

hD =
{�Li

jk,
� Ĺ b

a k}, �

vD = {�Ći c
j , �C bc

a }.
We can consider a linear connection D (which is not oblig-

atory a d-connection) and a d-connection D both defined on
TV. Such geometric objects are respectively denoted � D and
�D on T∗V. For (co)vector bundles, there are nonholonomic
relations with respective distortion d-tensorsZ := D−D and
�Z := �D − � D.

Using similar definitions and theorems both for linear con-
nections and d-connections, we prove that d-connection D,

or �D, is characterized by respective curvature (R, or �R),

torsion (T , or �T ), nonmetricity, (Q, or �Q), d-tensors,

R(X,Y) := DXDY − DYDX − D[X,Y],T (X,Y)

:= DXY − DYX − [X,Y],Q(X) := DXg, or
�R( �X, �Y) := �D �X

�D �Y − �D �Y
�D �X − �D[ �X, �Y],

�T ( �X, �Y) := �D �X
�Y − �D �Y

�X − [ �X, �Y], (20)

and �Q( �X) := �D �X
�g. The N-adapted coefficients for the

curvature, torsion and nonmetricity d-tensors are provided
in Appendices to [34,35], see also references therein. The
geometric d-tensors (20) are written, for instance, using tilde
on symbols if such d-objects are defined and computed for
Lagrange (or Hamilton) generating functions, see below.

2.2.2 The Ricci and Einstein d-tensors on phase spaces and
(co) vector bundles

Respectively, the Ricci d-tensors are defined and computed
as Ric = {Rαβ := Rτ

αβτ }, for a d-connection D, and
� Ric = {�Rαβ := �Rτ

αβτ }, for a d-connection �D, see for-
mulas ( 20). In N-adapted form, we prove that the N-adapted
coefficients of the Ricci d-tensors of a d-connectionD (or �D)

in respective phase spaces are parameterized in h - and/or v-,
or cv-form, by formulas

Rαβ = {

Rhj := Ri
hji , R ja := −Pi

jia,

Rbk := Pa
bka, R bc = Sa

bca

}

, or (21)
�Rαβ = {

� Rhj := � Ri
hji ,

� R a
j

:= − � Pi a
ji , � Rb

k := � P b a
a k , � Rbc = �S bca

a

}

. (22)

If a phase space is enabled both with a d-connection, D
(or �D), and d-metric, g (9) (or �g (10)) [in particular, we
can consider canonical “tilde” values with d-metrics g̃ (14 )
and/or �g̃ (15), and their frame transforms], we can define
and compute nonholonomic Ricci scalars. In result, we obtain
that the scalar curvature of a d-connection D, or �D, can be
defined and computed for the inverse d-metric gαβ, or �gαβ,

s R := gαβRαβ = gi j Ri j + gab Rab = R + S, or
�

s R := �gαβ �Rαβ = �gi j � Ri j + �gab � Rab = � R + �S,

with respective h- and v-components R = gi j Ri j , S =
gab Sab, or � R = �gi j � Ri j ,

�S = �gab
�Sab.

By constructions, the Einstein d-tensors on TV and/or
T∗V are defined:

En =
{

Eαβ := Rαβ − 1

2
gαβ s R

}

and/or

�En =
{

�Eαβ := �Rαβ − 1

2
�gαβ

�

s R

}

.

Such values can be used in MGTs and encoding geometric
and physical models in quantum computing theories.

2.2.3 Physically important d-connections for geometric
mechanics

The Lagrange and/or Hamilton phase spaces (with a pos-
sible L-duality) can be endowed and characterized respec-
tively by different type geometric and physically important
linear connections and canonical/ almost symplectic connec-
tions, which are equivalent if respective distorting relations
are postulated. In our approaches to geometric mechanics
and classical and quantum field/ thermodynamic and gravity
theories, we use such linear connection structures:

[g,N]�[̃g,˜N]� [˜θ := g̃(˜J·, ·),˜P,˜J,˜J]

�⇒
⎧

⎨

⎩

∇ : ∇g = 0; T[∇] = 0, Lagrange LC-connection;
̂D : ̂D g = 0; ĥT = 0, v̂T = 0. canonical Lagrange d-connection;
˜D : ˜D˜θ = 0,˜D˜θ = 0 almost sympl. Lagrange d-connection;

(23)

[ �g, �N] � [ �g̃, �
˜N] � [ �

˜θ := �g̃( �
˜J·, ·), �

˜P, �
˜J, �

˜J]

�⇒
⎧

⎨

⎩

�∇ : �∇ �g = 0; �T[ �∇] = 0, Hamilton LC-connection;
�
̂D : �

̂D g = 0; h �
̂T = 0, cv �

̂T = 0. canonical Hamilton d-connection;
�
˜D : �

˜D �
˜θ = 0, �

˜D �
˜θ = 0 almost sympl. Hamilton d-connection.

(24)
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We can consider distortion relations

̂D = ∇ + ̂Z,˜D = ∇ + ˜Z, and ̂D = ˜D

+Z, determined by (g,N);
�
̂D = �∇ + �

̂Z, �
˜D = �∇ + �

˜Z, and �
̂D = �

˜D

+ �Z, determined by ( �g, �N); (25)

with distortion d-tensors ̂Z,˜Z, and Z, on TTV, and �
̂Z, �

˜Z,

and �Z, on TT∗V.

Geometric mechanic models are characterized by respec-
tive canonical and/or almost symplectic distortion d-tensors
̂Z[̃g,˜N],˜Z[̃g,˜N], and Z[̃g,˜N], for (almost symplectic)
Lagrange models, and �

̂Z[ �g̃, �
˜N], �

˜Z[ �g̃, �
˜N], and

�Z[ �g̃, �
˜N], for (almost symplectic) Hamilton models.

Respective phase space geometries can be described in equiv-
alent forms by such data

on TV : (g,N,̂D) � (L : g̃,˜N,˜D) ↔ (˜θ,˜P,˜J,˜J,˜D) ↔ [(g[N ],∇)];
� possible L-duality � not N-adapted

on T∗V : ( �g, �N, �
̂D) � (H : �g̃, �

˜N, �
˜D) ↔ ( �

˜θ, �
˜P, �̃J, �̃

J, �
˜D) ↔ [( �g[ �N ], �∇)].

We can work with canonical d-connection structures on (co)
tangent bundles,̂D and/or �

̂Dwhich allows us to decouple and
integrate in most general exact and parametric forms certain
effective geometric flow and/or modified gravitational field
equations. Here we note that Lagrange–Finsler variables can
be introduced on 4-d, and higher dimension, (pseudo) Rie-
mannian spaces and in GR if nonholonomic fibered structures
are considered on spacetime manifolds, see discussions and
examples in Refs. [24–29,34,35].

An important example is that when imposing certain (in
general, nonholonomic) constraints of typêZ = 0, we obtain
̂D|̂Z=0 � ∇ even ̂D �= ∇. If such conditions are satisfied,
we can extract (pseudo) Riemannian or effective geometric
mechanical (with tilde values) LC-configurations from more
(general) nonholonmic metric-affine structures. For instance,
we can obtain LC-configurations for geometric models with
̂D and/or �

̂D for respective zero distortions, ̂Z and/or �
̂Z.

Equivalently, one can be considered the zero torsion condi-
tions for ̂T = {̂Tγ

αβ} = 0 and/or �
̂T = { �

̂Tγ
αβ} = 0.

Using distortions of linear connections, we can prove in
abstract and N-adapted forms that there are canonical distor-
tion relations encoding generating functions for respective
Lagrange-Hamilton and equivalent nonholonomic variables:
For the curvature d-tensors, we compute

̂R[g,̂D = ∇ + ̂Z] = R[g,∇] + ̂Z[g,̂Z], �
̂R[ �g, �

̂D

= �∇ + �
̂Z] = �R[ �g, �∇] + �

̂Z[ �g, �
̂Z],

with respective distortion d-tensors ̂Z, on TV, and �
̂Z, on

T∗V. Similarly, we obtain for the Ricci d-tensors,

̂Ric[g,̂D = ∇ + ̂Z] = Ric[g,∇] + ̂Zic[g,̂Z], �
̂Ric[ �g, �

̂D

= �∇ + �
̂Z] = � Ric[ �g, �∇] + �

̂Zic[ �g, �
̂Z],

with respective distortion d-tensors ̂Zic, on TV, and �
̂Zic,

on T∗V. Finally, for the scalar curvature of canonical d-
connection ̂D, or �

̂D,

�

s
̂R[g,̂D = ∇ + ̂Z] = R[g,∇] + ŝZ [g,̂Z], �

s
̂R[ �g, �

̂D

= �∇ + �
̂Z] = �

s R[ �g, �∇] + �

s
̂Z [ �g, �

̂Z],
with respective distortion scalar functionals ŝZ , on TV, and
�

s
̂Z , on T∗V.

Above formulas can be reformulated for distortions of the
almost symplectic Lagrange, or Finsler, d-connections, for
instance, considering

˜R[̃g � ˜θ,˜D = ∇ + ˜Z] = R[̃g � ˜θ,∇] + ˜Z [̃g � ˜θ,˜Z],
�
˜R[ �g̃ � �

˜θ, �
˜D = �∇ + �

˜Z] = �R[ �g̃ � �
˜θ, �∇] + �

˜Z[ �g � �
˜θ, �

˜Z],

and any similar geometric objects with “tilde” symbols.

3 Geometric flow evolution of classical mechanical
systems

The goal of this section is to formulate in canonical Hamil-
ton variables the theory of nonholonomic geometric flows
of relativistic mechanical systems. This is important for fur-
ther developments in classical and quantum information the-
ories when the Hamilton variables are used in explicit form.
We shall present also the main results in canonical Lagrange
variables because such formulas are very important for inves-
tigating various connections between quantum field theory,
QFT, quantum gravity, QG, and quantum information the-
ory.6

6 Such a research is related to author’s project on geometric flows
and applications in physics which was elaborated in 2005 for a sab-
batical professor fellowship at CSIC, Madrid, in Spain, and further
developments supported by a project IDEI, in Romania; and related
visiting projects at CERN (Switzerland); M. Planck Institute, Munich,
and A. Einstein Institute, Postdam, (Germany) etc. Those projects
were on applications of nonholonomic geometric methods in classi-
cal and quantum mechanics and physics, with various generalizations
to deformation quantization, noncommutative geometry etc. A sub-
direction of former research was devoted to studies on flow evolution
of Lagrange-Hamilton systems geometrized on (co) tangent bundles,
which resulted in a series of works on the nonholonomic geometric
evolution of Finsler–Lagrange–Hamilton space spaces, see historical
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3.1 Relativistic geometric flows and Perelman’s
thermodynamics for phase spacetimes

Let us consider families of nonholonomic 8-d tangent and
cotangent Lorentz bundles, TV(τ ) and T ∗V(τ ) parameter-
ized by a positive parameter τ, 0 ≤ τ ≤ τ0. Such phase
spacetimes are enabled with corresponding sets of canon-
ical d-metrics of type (14) and (15), g̃(τ ) = g̃(τ, u) and
�g̃(τ ) = �g̃(τ, �u) and canonical N-connections of type

(12), �
˜N(τ ) = �

˜N(τ, �u). Any relativistic nonholonomic
phase spacetime TV ⊂ TV(τ ) and/or T ∗V ⊂ T ∗V(τ ) can
be enabled with necessary types of double nonholonomic
(2+2)+(2+2) and (3+1)+(3+1) splitting, see details for such
geometric constructions in [24–28]. 7 For instance, a non-
holonomic (3+1)+(3+1) splitting on a TV can be chosen in
such a form that any open region on a base Lorentz mani-
fold, U ⊂ V, is covered by a family of 3-d spacelike hyper-
surfaces ̂t , or ˜t , parameterized by a time like parame-
ter t. The parameterizations of hypersurfaces can be labeled
in certain forms which are adapted to the type of canon-
ical d-connection we use for our geometric constructions.
In this work, we prefer to use “tilde” labels/ values related
to geometric mechanics. On a typical cofiber of T ∗V, we
can consider a 3-d cofiber hypersurface �

˜E , for instance,
of signature (+ + +) with a label E for parameterizations
by an energy type parameter. We can write correspondingly
˜ = (˜t , ˜E ) and �

˜ = (˜t ,
�
˜E ) for nonholonomic dis-

tributions of base and fiber hypersurfaces with conventional
splitting 3+3 of signature (+++;+++) on total phase space. For
additional shell decompositions of type (2+2)+(2+2), we can
use also a s-label, �

s
̂ = ( ŝt ,

�

s
̂E ) ⊂ s T ∗V, if we shall be

interested in constructing certain classes of exact or paramet-
ric solutions of geometric flow equations. In general, we can
elaborate on two generic different types of geometric phase
flow theories: The fist type is with a conventional parame-
ter τ(χ) admitting re-parameterizations of a temperature like
parameter used for labeling 4-d Lorentz spacetimes and their

Footnote 6 continued
remarks and a comprehensive bibliography in Appendix B.4.17 to Ref.
[34]. Here we note that nonholonomic generalizations of Perelman func-
tionals and Hamilton geometric evolution equations were considered for
Finsler–Lagrange systems in Refs. [19,20], see further generalizations
for almost Kähler–Lagrange–Hamilton models on Lie algebroids , rel-
ativistic Lagrange-Hamilton mechanics etc. [21,22,50]. In principle,
Finsler-Lagrange-Hamilton variables can be introduced on any (non)
commutative/(super) manifold, which allows to re-write in effective
(super/noncommutative) mechanic forms all results on geometric flows
of physical theories elaborated in [23–29], see also references therein.
7 Additionally to coordinate and index conventions from footnote 2,
we label the local (3+1)+(3+1) coordinates in the form �u = { �uα =
�uαs = (xi1 , ya2 ; pa3 , pa4 ) = (x ı̀ , u4 = y4 = t; pà, p8 = E)}
for i1, j1, k1, ... = 1, 2; a1, b1, c1, ... = 3, 4; a2, b2, c2, ... = 5, 6;
a3, b3, c3, ... = 7, 8; and ı̀ , j̀, k̀, ... = 1, 2, 3, respectively, à, b̀, c̀, ... =
5, 6, 7 can be used for corresponding spacelike hyper surfaces on a base
Lorentz manifold and typical cofiber.

phase space configurations. The second type of models is
with τ(t) as a time like parameter when (3+3)-d spacelike
phase configurations evolve relativistically on a “redefined’
time like coordinate. In this work, we elaborate on theories
of type 1.

3.1.1 Perelman–Lagrange and Perelman–Hamilton
functionals

In [20], we studied geometric flows of Finsler-Lagrange the-
ories using canonical data (g(τ ),˜D(τ )) when various gen-
eralizations and applications in MGTs were elaborated for
the data (g(τ ),̂D(τ )), [19,23–29]. Those constructions were
based on nonholonomic generalizations of Perelman’s func-
tionals [1] and distortion relations form the Levi-Civita con-
figurations (g(τ ),∇(τ )). Let us consider how Perelman’s
functionals can be generalized in relativistic form for geo-
metric flow evolution of Lagrange–Hamilton spaces.
F- andW-functionals in canonical J. Lagrange variables:

Considering canonical Lagrange data (̃g(τ ),˜D(τ )) on tan-
gent Lorentz bundles in order to postulate the functionals:

˜F = ˜

∫

e− ˜f
√|̃gαβ |d8u( s ˜R + |˜D˜f |2) and (26)

˜W = ˜

∫

μ̃
√|̃gαβ |d8u[τ( s ˜R + | h˜D ˜f |

+| v
˜D ˜f |)2 + ˜f − 16], (27)

where the normalizing function ˜f (τ, u) satisfies the condi-
tions

˜

∫

μ̃
√|̃gαβ |d8u :=

∫ t2

t1

∫

˜t

∫ y8

y8
(0)

∫

�
˜E

μ̃
√|̃gαβ |d8u = 1

for μ̃ = (4πτ)−8 e− ˜f , when the coefficients 16 = 2 × 8 is
for 8-d spaces. For 3-d hypersurface LC-configurations with
∇, such values transform into the standard G. Perelman func-
tionals. The Ricci scalar s ˜R is taken for the Ricci d-tensor
˜Rαβ (21) constructed for the canonical Lagrange data (̃g,˜D).
Re-defining the normalization functions and using corre-
sponding nonholonomic frame transforms and d-connection
distortions, we can re-write the functionals (26) and (27)
in “hat” variables, ̂F and ̂W, see similar constructions in
[19,24–28].
F- andW-functionals in canonicalW. Hamilton variables

We use canonical data ( �g̃(τ ), �
˜D(τ )) on cotangent

Lorentz bundles and postulate the functionals:

�
˜F = �

˜

∫

e− �
˜f
√

| �g̃αβ |d8 �u( �

s
˜R + | �

˜D �
˜f |2) and (28)

�
˜W = �

˜

∫

�μ̃

√

| �g̃αβ |d8 �u[τ( �

s
˜R + | �

h
˜D �

˜f | + | �

v
˜D �

˜f |)2

+ �
˜f − 16], (29)

123
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where the normalizing function �
˜f (τ, �u) satisfies

�

˜

∫

�μ̃

√

| �g̃αβ |d8 �u :=
∫ t2

t1

∫

˜t

∫ E2

E1

∫

�
˜E

�μ̃

√

| �g̃αβ |d8 �u = 1

for �μ̃ = (4πτ)−8 e− �
˜f , when the coefficient 16 = 2 × 8

is taken for 8-d spaces. The Ricci scalar �

s
˜R is taken for

the Ricci d-tensor �
˜Rαβ (22) constructed using the canonical

Hamilton data ( �g̃, �
˜D).

Similar functionals can be postulated for nonholonomic
geometric flows on T ∗V using data ( �g(τ ), �

̂D(τ )) and
redefined integration measures and normalizing functions
on respective hypersurfaces. Considering LC-configurations
with �

˜D| �˜T=0 = �∇ and/or �
̂D| �̂T=0 = �∇, the values (28)

and (29) transform respectively into 8-d phase space ver-
sions of the so called Perelman’s F-entropy and W-entropy.
It should be noted that �

˜W and/or �
̂W do not have a char-

acter of entropy for pseudo-Riemannian metrics but can be
treated as a value characterizing relativistic geometric hydro-
dynamic phase space flows.

Nonholonomic lapse and shift variables

Using N-adapted diadic shell and/or double (2+2)+(2+2) and
(3+1)+(3+1) frame and coordinate transforms of metrics with
additional dependence on a flow parameter, we can intro-
duce various parameterizations of geometric objects on phase
spacetimes. To define thermodynamic like variables for geo-
metric flow evolution of stationary configurations on T ∗V,

we take

�g = �gα′β′ (τ, �u)d �eα
′ ⊗ d �eβ

′ = qi (τ, xk )dxi ⊗ dxi

+q3(τ, xk , y3)e3 ⊗ e3 − [N̆ (τ, xk , y3)]2e4 ⊗ e4 +
× �qa2 (τ, xk , y3, pb2 ) �ea2 ⊗ �ea2

+ �q7(τ, xk , y3, pb2 , pb3 ) �e7 ⊗ �e7

−[ � Ň (τ, xk , y3, pb2 , pb3 )]2 �e8 ⊗ �e8,

where, for instance, �eαs are N-adapted bases on total space of
respective cotangent Lorentz bundles. This ansatz for metrics
is a general N-adapted one for a 8-d phase space metric which
can be written as an extension of a couple of 3-d metrics,

qi j = diag(qı̀ ) = (qi , q3) on a hypersurface ˜t , and �qàb̀ =
diag( �qà) = ( �qa2 , �q7) on a hypersurface �

˜E , if

q3 = g3, N̆ 2 = −g4 and �q7 = �g7, � Ň 2 = − �g8, (30)

where N̆ is the lapse function on the base and � Ň is the lapse
function in the co-fiber (here we note that “the inverse hat”
labels are a bit different for the 4-th and 8-th coordinate).

On TV, the nonholonomic lapse and shift variables are
introduced in a similar way, which results in d-matric param-
eterizations

g = gα′β′ (τ, u)d eα
′ ⊗ deβ

′ = qi (τ, xk )dxi ⊗ dxi + q3(τ, xk , y3)e3

⊗e3 − [N̆ (τ, xk , y3)]2e4 ⊗ e4 +
×qa2 (τ, xk , y3, yb2 )ea2 ⊗ ea2 + q7(τ, xk , y3, yb2 , yb3 )e7 ⊗ e7

−[Ň (τ, xk , y3, yb2 , yb3 )]2e8 ⊗ e8. (31)

We consider respective hypersurface formulas, qi j = diag(qı̀ )

= (qi , q3) on a hypersurface ˜t , and qàb̀ = diag(qà) =
(qa2 , q7) on a hypersurface ˜E , if q3 = g3, N̆ 2 = −g4

and q7 = g7, Ň 2 = −g8,where N̆ is the lapse function on
the base and � Ň is the lapse function in the fiber

3.1.2 Relativistic thermodynamic models for
Lagrange–Hamilton geometric evolution

G. Perelman’s very original idea was that the geometric flows
of Riemannian metrics can be characterized by an analogous
thermodynamic model [1]. In this work, we consider rela-
tivistic mechanical generalizations related to geometric flow
approaches to classical mechanics [19,20].

Some basic concepts from statistical thermodynamics

To elaborate analogous thermodynamical models we can
consider a partition function Z = ∫

exp(−βE)dω(E) for
the canonical ensemble at temperature β−1 = T (one should
not confuse this T for thermodynamics with standard tensor
notations with T containing indices for respective for energy-
momentum tensors and/or torsion in MGTs) being defined
by the measure taken to be the density of states ω(E). The
thermodynamical values are computed in standard form for
the average energy, E = 〈E〉 := −∂ log Z/∂β, the entropy
S := β 〈E〉+ log Z and the fluctuation η := 〈

(E − 〈E〉)2〉 =
∂2 log Z/∂β2. Using Z , we can define a conventional state
density (generalized as a density matrix, it is important for
elaborations in geometric flow thermodynamics and infor-
mation theory, see next sections)

σ(β, E) = Z−1e−βE .

Considering log σ = −βE− log Z , we define the relative
entropy between any state density ρ and σ,

S(ρ � σ) := −S(ρ) +
∫

(βE+ log Z)ρdω(E)

= β[E(ρ) − TS(ρ)] + log Z ,

where the average energy computed in the density matrix ρ

is E(ρ) = ∫

Eρdω(E). The free energy corresponding to ρ

is

F(ρ) := E(ρ) − TS(ρ). (32)

123
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We note that if log Z is independent on ρ (as we consider in
above formulas) we have S(σ � σ) = 0. This allows us to
write

S(ρ � σ) = β[F(ρ) − F(σ )]. (33)

In this work, we study the geometric flow evolution of
thermodynamics systems that preserves the thermal equilib-
rium at temperature β but maps ρ → ρ′ (such density states
are different ones) keeping the same density state σ. We can
provide a realistic physical interpretation for such systems if

S(ρ � σ) ≥ S(ρ′
� σ), i.e. F(ρ) ≥ F(ρ′). (34)

So, we should elaborate on thermodynamic geometric flows
that preserve the thermal equilibrium and can only reduce the
free energy. These aspects connect mechanical flow models
to the second low of thermodynamics.8

Thermodynamicvalues for relativisticLagrange-Hamilton
flows:

For relativistic geometric flows of mechanical systems, we
introduce respective thermodynamic generating functions

˜Z [̃g(τ )] = ˜

∫

e− ˜f
√|̃gαβ |d8u(− ˜f + 16), for TV;

�
˜Z[ �g̃(τ )] = �

˜

∫

e− �
˜f
√

| �g̃αβ |d8 �u(− �
˜f + 16), for T ∗V,

(35)

where the respective functional dependence is given by
[̃g(τ )] and [ �g̃(τ )] (we shall not write such dependencies
if that will not result in ambiguities). For a thermodynamic
analogous interpretation we can consider that a density state
σ is associated to g̃αβ, we can write in functional form σ [̃g],
but the geometric evolution may involve densities ρ[ 1g̃] and
ρ′[ 1g̃], where the left label 1 is used in order to distinguish
two d-metrics g̃ and 1g̃. On cotangent bundles, such values
are written respectively �σ [ �g̃], �ρ[ �

1g̃] and ρ′[ �

1g̃].
Generalizing for nonholonomic deformations of metrics

and d-connections respective formulas related to respective

8 It should be noted here that G. Perelman treated τ = β−1 as a tem-
perature parameter and that he introduced the concept of W-entropy
following an analogy to formulas for the entropy in statistical mechan-
ics. We reproduce here the Remark 5.3 and next paragraph, just before
section 6 in [1]: “An entropy formula for the Ricci flow in dimension
two was found by Chow [C]; there seems to be no relation between his
formula and ours. .... The interplay of statistical physics and (pseudo)-
riemannian geometry occurs in the subject of Black Hole Thermo-
dynamics, developed by Hawking et al. Unfortunately, this subject is
beyond my understanding at the moment.” It should be also emphasized
that G. Perelman had not specified what type of underlying microstates
and their energy should be taken in order to explain the geometric flows
corresponding to certain thermodynamical and gravity models. In this
work, we are interested in geometric mechanics and the classical and
quantum information theory developing our approaches elaborated in
[19,23–29].

entropy like functionals (26), (27) and (28), (29 ), we can
define and compute such relativisitic thermodynamic values
for geometric evolution flows of Lagrange mechanical sys-
tems,

average flow energy: ˜E = −τ 2
˜

∫

e− ˜f
√

|q1q2q3 N̆q5q6q7 Ň |δ8

×u

(

s ˜R + |˜D˜f |2 − 8

τ

)

,

flow entropy: ˜S = −˜

∫

e− ˜f
√

|q1q2q3 N̆q5q6q7 Ň |δ8u

×
[

τ
(

s ˜R + |˜D˜f |2) + f̃ − 16
]

,

flow fluctuation: η̃ = −˜

∫

e− ˜f
√

|q1q2q3 N̆q5q6q7 Ň |δ8

×u

[

∣

∣

∣

∣

˜Rαβ + ˜Dα
˜Dβ f̃ − 1

2τ
gαβ

∣

∣

∣

∣

2
]

,

(36)

where δ8u contains N-elongated differentials of type (8 )
(when we compute such integrals in N-adapted form). Using
such values, we can compute the respective free energy (32)
and relative entropy ( 33),

˜F( 1g̃) = ˜E( 1g̃) − β−1
˜S( 1g̃) and ˜S( 1g̃ � σ)

= β[ ˜F( 1g̃) − ˜F (̃g)], where

˜E( 1g̃) = −τ 2
˜

∫

e− ˜f
√

|q1q2q3 N̆q5q6q7 Ň |δ8

×u[ s ˜R( 1g̃) + |˜D( 1g̃)˜f (τ, u)|2 − 8

τ
],

˜S( 1g̃) = −˜

∫

e− ˜f
√

|q1q2q3 N̆q5q6q7 Ň |δ8u

×
[

τ
(

s ˜R( 1g̃) + |˜D( 1g̃) ˜f (τ, u)|2) + f̃ (τ, u) − 16
]

.

Such values are in relativistic thermodynamic relation if the
second thermodynamic law (34) is satisfied. This impose cer-
tain constraints on the class of normalizing and generating
functions we consider for the termodynamic description of
such relativistic Lagrange systems.

For geometric evolution flows of Hamilton mechanical
systems, the relativistic thermodynamic values are

�
˜E = −τ 2 �

˜

∫

e− �
˜f
√

|q1q2q3 N̆ �q5
�q6

�q7
� Ň |δ8 �

×u

(

�

s
˜R + | �

˜D �
˜f |2 − 8

τ

)

,

�
˜S = − �

˜

∫

e− �
˜f
√

|q1q2q3 N̆ �q5
�q6

�q7
� Ň |δ8 �

×u
[

τ
(

�

s
˜R + | �

˜D �
˜f |2

)

+ � f̃ − 16
]

,

123



Eur. Phys. J. C (2020) 80 :639 Page 13 of 26 639

�η̃ = − �

˜

∫

e− �
˜f
√

|q1q2q3 N̆ �q5
�q6

�q7
� Ň |δ8 �

×u

[

∣

∣

∣

∣

�
˜Rαβ + �

˜Dα
�
˜Dβ

� f̃ − 1

2τ

�gαβ

∣

∣

∣

∣

2
]

. (37)

Other thermodynamic values and conditions can be com-
puted by analogy to above relativistic Lagrange thermody-
namic configurations and formulas (32), (33) and (34).

Finally we note that above formulas can be written
respectively and equivalently in terms of the canonical d-
connections ̂D and �

̂D if we consider nonholonomic defor-
mations to certain systems of nonlinear partial differential
equations with general decoupling.

3.1.3 Curved spaces emerging from relativistic phase space
geometric evolution

The geometric flow evolution of 4-d (pseudo) Riemannian
configurations is described by nonholonomically modified
Perelman’s functionals integrated on (co) fiber variables
(26), (27) and/or (28), (29). A subclass of such relativis-
tic flows are generated for parameterizations with d-metrics
(1) and (2)). Re-defining the normalizing functions, ˜f →
̂f (x1, x2, y3, y4) and/or ˜f → �

̂f , for general frame trans-
forms on a base Lorentz manifold, we obtain such function-
als:

̂F =
∫ t2

t1

∫

̂t

e− ̂f
√

|q1q2q3 N̆ |δ4u( s ̂R + |̂D̂f |2) and

̂W =
∫ t2

t1

∫

̂t

(4πτ)−4 e− f
√

|q1q2q3 N̆ |δ4u
[

τ( s ̂R + | ĥD ̂f

| + | v
̂D ̂f |)2 + ̂f − 8

]

. (38)

In these formulas, geometric fllows of s ̂R are for respec-
tive ̂D = ( ĥD, v

̂D) on a family of bases V(τ ),where
the normalizing function ̂f (τ, u) satisfies the conditions
∫ t2

t1

∫

˜t
μ̂

√

|q1q2q3 N̆ |δ4u = 1 for μ̂ = (4πτ)−4 e− ̂f , when
the coefficient 8 = 2 × 4 is taken for 4-d manifolds.

Using formulas for distortions of connections (25) re-
defined for 4-d nonholonomic manifolds, the functionals (38)
can re-written using geometric data (̃g,˜D) and/or (g,∇).

Such F- and W-functionals define nonholonomic geometric
evolution flows of vacuum gravitational fields in MGTs and
GR, see details in Refs. [25–28]. We can consider that, in
principle, (modified) gravitational interactions are induced
as certain emergent fields from geometric evolution flows of
mechanical Lagrange/ Hamilton systems.

The thermodynamic generating function corresponding to
(38) can be defined in the form

̂Z =
∫ t2

t1

∫

̂t

e− ̂f
√

|q1q2q3 N̆ |δ4u(−̂f + 8), for V.

In result, we can characterize emergent (pseudo) Riemannian
geometries by such relativistic thermodynamic values,

̂E = −τ 2
∫ t2

t1

∫

̂t

e−̂f
√

|q1q2q3 N̆ |δ4u

(

s ̂R + |̂D̂f |2 − 4

τ

)

,

̂S = −
∫ t2

t1

∫

̂t

e−̂f
√

|q1q2q3 N̆ |δ4u

× [

τ
(

s ̂R + |̂D̂f |2) + ̂f − 8
]

,

η̂ = −
∫ t2

t1

∫

̂t

e−̂f
√

|q1q2q3 N̆ |δ4u
[

| ̂Rαβ + ̂Dα
̂Dβ f̃

− 1

2τ
gαβ |2

]

, (39)

where all geometric objects and indices are for 4-d base man-
ifolds. Up to nonholonomic frame transforms and deforma-
tions of connections, such vaules encode explicit information
(integrated on fiber variables and/or projected on base space-
time manifolds) on certain total space Lagrange/ Hamilton
generating functions.

There are different approaches for elaborating models of
3-d Ricci flow evolution of mechanical systems and (emer-
gent of prescribe) 4-d spacetimes with pseudo-Euclidean
signature. In principle, there are two general possibilities.
In the first case, is to approach the problem as in the theo-
ries of stochastic / diffusion and kinetic processes with local
anisotropy, fractional geometric evolution etc. For such mod-
els, one elaborates on thermofield models of Ricci flow evolu-
tion on imaginary time τ = −i t (0 ≤ τ ≤ 1/κT, where κ is
Boltzmann’s constant. In corresponding formulas, the sym-
bol T is used for the temperature (such a letter with respective
indices for torsion and energy-momentum tensors is also used
in gravity theories). In result, the pseudo-Riemannian space-
time is transformed into a Riemannian configuration space as
one elaborates in thermal and/or finite temperature quantum
field theory. The second class consists from theories mod-
elled on 3-d hypersurfaces and evolving relativistically, for
instance, on a 4-d Ricci soliton configuration. In such cases,
the evolution parameter τ ∼ t is a time like coordinate. In this
work, we study evolution of relativistic mechanics systems
on a temperature like parameter τ ∼ T .

3.1.4 Effective nonholonomic 3-d space like hypersurface
F- and W-functionals

Lagrange and Hamilton mechanical systems on Lorentz man-
ifolds can be also characterized by 3-d space like hypersur-
face functionals. Such values can be defined respectively for
(38) and (39) for any 3+1 splitting with 3-d closed hypersur-
face fibrations ̂t .

We denote by ◦̂D = ̂D|̂t
the canonical d-connection ̂D

defined on a 3-d hypersurface ̂t . In a similar form, there are
defined hypersurface “tilde” variables with ◦˜D = ˜D|˜t

deter-
mined as a projection of 8-d canonical Lagrange-Hamilton

123
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d-connection defined on a 3-d hypersurface ˜t . For geomet-
ric flow evolution, all such values depend on a temperature
like parameter τ(τ ′) with possible scale re-definitions for
another parameter τ ′ etc. We define also s◦̂R := s

̂R|̂t
and

s◦˜R := s
˜R|˜t

. Using qı̀ (τ ) = [qi (τ ), q3(τ )] in a family of
d-metrics (see, for instance, (31 )), we define 3-d F- and W-
functionals parameterized in N-adapted form for the canon-
ical d-connection,

◦ ̂F =
∫

̂t

e− ◦ ̂f
√|q1q2q3|δx̀3 [

( s◦ ̂R+| ◦̂D ◦ ̂f |2)] , and (40)

◦̂W =
∫

̂t

◦μ̂
√|q1q2q3|δx̀3

[

τ
(

s◦ ̂R + | h◦̂D ◦ ̂f | + | v◦̂D ◦ ̂f |
)2

+ ◦ ̂f − 6

]

. (41)

These functionals are for a redefined normalization func-
tion ◦ ̂f . We can always chose a necessary type scal-
ing function ◦ ̂f which satisfies normalization conditions
∫

̂t ◦μ̂
√|q1q2q3|δ x̀3 = 1 for ◦μ̂ = (4πτ)−3 e− ◦ ̂f .

For topological considerations, the type of normalization
is not important. Such conditions can be imposed as via
frame/coordinate transforms and deformations of linear con-
nections which allows to solve derived geometric flow evo-
lution equations in explicit form. For certain applications,
we can consider ◦ ̂f as an undetermined scalar function
which can be related to certain conformal transforms or re-
parameterizations.

Using ◦ ̂F (40) and the thermodynamic generating func-
tion ◦ ̂Z = exp[∫

̂t ◦μ̂
√|q1q2q3|δ x̀3(− ◦ ̂f + 6)], we can

define and compute such 3-d hypersurface thermodynamic
values:

◦̂E = −τ 2
∫

̂t

◦μ̂
√|q1q2q3|δ x̀3

(

s◦ ̂R + | ◦̂D ◦ ̂f |2 − 3

τ

)

,

◦̂S = −
∫

̂t

◦μ̂
√|q1q2q3|δ x̀3

×
[

τ
( s◦ ̂R+| ◦̂D ◦ ̂f |2) + f̃ − 6

]

,

◦η̂ = 2 τ 4
∫

̂t

◦μ̂
√|q1q2q3|δ x̀3

[

| ◦̂Rı̀ j̀ + ◦̂Dı̀ ◦̂D j̀ f̃

− 1

2τ
qı̀ j̀ |2

]

. (42)

These formulas can be considered for 4-d configurations
(39) taking the lapse function N̆ = 1 for N-adapted Gaus-
sian coordinates. We can also write such formulas in equiv-
alent form using geometric data (̃q, ◦˜D) and/or (q, ◦∇)

for respectively re-defined normalizing functions. For LC-
configurations, the 3-d hypersurface formulas ( 40), (41) and
(42) transform into the standard ones from G. Perelman’s
preprint [1]. The main difference is that in our approach such
Riemannian hypersufrace flow evolution scenarios are deter-
mined by Lagrange-Hamilton mechanical systems.

3.2 Generalized R. Hamilton flow evolution equations and
geometric mechanics

In this section we show that Lagrange and/or Hamilton
mechanical systems are characterized not only by dynamical
equations (which is well-known from classical mechanics
[16–18]) but also by certain classes of geometric flow evolu-
tion equations [19,20]. Relativistic variants of such systems
of nonlinear PDEs can be proven by applying a variational
N-adapted calculus for respective F- and W-functionals as
in [19,23–29]. For holonomic Riemannian manifolds, such
proofs can be found in [1,13–15].

3.2.1 Riemannian geometric flows on 3-d spacelike
hypersurface

Applying a N-adapted variational procedure on a 3-d hyper-
surface to a functional (40) or (41) defined by data (g̃ı̀ j̀ ,

˜∇),

we obtain such equations in the form

∂ g̃ı̀ j̀

∂τ
= −2 ˜Rı̀ j̀ , (43)

where τ is an evolution real parameter. There are used local
coordinates uı̀ with indices ı̀, j̀ = 1, 2, 3 and Ricci tensor
˜Rı̀ j̀ for a 3-d Riemannian manifold (in this work constructed
as an emergent from geometric mechanics curve space).
These equations are equivalent to the (non-relativistic) Ricci
flow evolution equations postulated heuristically by R.
Hamilton [10–12]. G. Perelman proved such equations using
his F- and W-functionals.

The equations (43) describe a nonlinear diffusion process
for geometric flow evolution of relativistic mechanical sys-
tems encoded up to frame transforms into 3-d Riemannian
metrics (we can omit tilde and write gı̀ j̀ in certain general
covariant form). For models with small deformations of a 3-d
Euclidean metric gı̀ j̀ ≈ δı̀ j̀+ hı̀ j̀ , with δı̀ j̀ = diag[1, 1, 1]
and hı̀ j̀ | � 1, the Ricci tensor approximates the 3-d Laplace

operator � = ∂2

(∂u1)2 + ∂2

(∂u2)2 + ∂2

(∂u3)2 . On 3-d hypersur-
faces and “slow” evolution, the geometric flows of mechani-
cal systems are described by a linear diffusion equation with
Rı̀ j̀ ∼ �hı̀ j̀ . For relativistic models, we have to elaborate on
hydrodynamic anisotropic like transports of entropic fields
and derived geometric objects [24–26].

3.2.2 Geometric flow equations for relativistic
Lagrange–Hamilton systems

Applying a N-adapted variational procedure with a corre-
sponding re-definition of normalizing function for ˜F (26)
determined by geometric data (̃g= {̃gμν = [̃gi j , g̃ab]},
˜N= {˜N a

i },˜D), we obtain a system of nonlinear PDEs gener-
alizing the R. Hamilton equations for geometric flow evolu-
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tion of relativistic Lagrange systems,

∂τ g̃i j = −2˜Ri j ; ∂τ g̃ab = −2˜Rab;
˜Ria = ˜Rai = 0;˜Ri j = ˜R j i ;˜Rab = ˜Rba;
∂τ

˜f = −˜� ˜f + ∣

∣˜D˜f
∣

∣

2 − s ˜R). (44)

In these formulas, ˜�(τ ) = ˜Dα(τ )˜Dα(τ ) and the conditions
˜Ria = 0 and ˜Rai = 0 for the Ricci tensor Ric[˜D] = {˜Rαβ =
[˜Ri j ,˜Ria,˜Rai ,˜Rab]} are imposed in order to keep a sym-
metric metric evolution.

For the geometric flow evolution of relativisitic Hamil-
ton mechanical systems, the analogs of (44) can be writ-
ten (in principle, such equations can be proven in abstract
form dualizing geometric objects from the tangent Lorentz
bundles to respective cotangent bundles and functional

�
˜F (28)) for the geometric data ( �g̃ = { �g̃μν =

[ �g̃i j ,
�g̃ab]}, �

˜N= { �
˜N a

i }, �
˜D),

∂τ
�g̃i j = −2 �

˜Ri j ; ∂τ
�g̃ab = −2 �

˜Rab;
�
˜Ria = �

˜Rai = 0; �
˜Ri j = �

˜R j i ; �
˜Rab = �

˜Rba;
∂τ

�
˜f = − �

˜� ˜f + ∣

∣
�
˜D �

˜f
∣

∣

2 − �

s
˜R), (45)

where �
˜�(τ ) = �

˜Dα(τ ) �
˜Dα(τ ).

Using nonholonomic deformations of d-connections (25),
respective frame transforms and re-definition of normaliz-
ing functions, the geometric flow evolution equations can be
written in “hat” variables or for LC-configurations. Imposing
corresponding classes of nonholonomic constraints, we may
drive the flows of geometric objects in a “pure” mechanical
form, or mix the frames and indices and generate new classes
of nonholonomic phase spacetimes.

3.2.3 Nonholonomic Ricci solitons, emergent gravity, and
geometric mechanics

For self-similar configurations in a fixed point τ = τ0, the
geometric flows (43) are described by nonholonomic Ricci
soliton equations

˜Rı̀ j̀ − λg̃ı̀ j̀ = ˜∇ı̀v j̀ + ˜∇ j̀vı̀ , (46)

for λ = ±1, 0 and a vector field v j̀ . In these formulas, λ

is taken for a corresponding normalization function, which
defines a 3-d hypersurface version of the Einstein equations
with cosmological constant. We keep tilde on symbols in
order to emphasize that the geometric objects are determined
by certain Lagrange or Hamilton generating function on a 8-d
(co) tangent bundle.

In a similar form, we can consider self-similar point
τ = τ0 configurations for the systems of nonlinear PDEs (44)
and/or ( 45), when ∂τ g̃μν = 0 and/or ∂τ g̃μν = 0, with a cor-
responding choice of the normalizing geometric flow func-
tions (for simplicity, we can take a zero vector field vα = 0),

the equations (44) transform into relativistic nonholonomic
Ricci soliton equations

˜Ri j = λg̃ı̀ j̀ ,
˜Rab = λg̃ab, ˜Ria = ˜Rai = 0, on TV;

�
˜Ri j = λ �g̃ı̀ j̀ ,

�
˜Rab = λ �g̃ab,

�
˜Ria = �

˜Rai = 0, on T ∗V.

(47)

Such equation can be written in hat and/or LC-variables using
nonholonomic deformations of d-connections (25) and frame
transforms. Projecting (47) on a base 4-d Lorentz manifold
V, we obtain nonholonomically deformed vacuum Einstein
equations with cosmological constant λ.

In this work, we do not study gravitational and matter field
geometric field interactions. Nevertheless, we note that in our
nonholonomic geometric flow approach to investigating the
evolution of Lagrange-Hamilton systems, the gravitational
field equations emerge from geometric flows of mechanical
systems being characterized by a W-entropy (38) and respec-
tive thermodynamical values (39). The gravitational constant
can be introduced for identifications with respective spheri-
cal symmetric solutions with an additional assumption that
at long distances the standard Newton gravitational potential
is generated. In certain sense, for such theories, a W-entropy
acts as an entropic force for the E. Verlinde model [51,52],
see proofs in [27–29].

4 Classical and quantum mechanical geometric
information flow theories

This section is a short introduction to basic aspects of clas-
sical and quantum geometric information flow (respectively,
GIF and QGIF) models and related subjects from the the-
ory of geometric evolution of relativistic mechanical systems
(elaborated in previous sections). Using modified G. Perel-
man entropy functionals and the nonholonomically adapted
von Neumann entropy for quantum density matrices, there
are defined quantum conditional entropy, relative entropy,
and mutual information values as basic ingredients of the
QGIF theory.

4.1 Geometric information flow theory of classical
mechanical systems

Classical information theory is based on fundamental con-
cepts of Shannon, conditional and relative entropies [37,38,
47–49]. To elaborate on classical aspects of geometric infor-
mation flow, GIF, models we have to define analogous values
determined by (modified) Perelman entropy functionals and
associated thermodynamical models.

4.1.1 Shannon entropy and geometric flow entropy in
information theories

Let us remember the general definition of the Shannon
entropy SB of a probability distribution for a random variable
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B taking certain values b1, b2, ..., bk (for instance, to send a
long message N � 1 with k letters) with respective proba-
bilities to observe such values p1, p2, ..., pk .

9 By definition,

SB := −
k

∑

j=1

p j log p j ≥ 0 with
k

∑

j=1

p j = 1.

This is for the probability theory with random variables. In
classical information models, N SB is the number of bits of
information which can be extracted from a message with
N symbols which are randomly generated. For engineering
applications, N SB is the number of bits to which a message
with N letters can be compressed. Typically, such messages
are not randomly generated but contain certain information.
To encode certain real messages with correlations between
letters (for instance, words for grammar and syntax) and loose
less modifications is a more complex random process. In the
ideal gaze limit (ignoring correlations), we can consider that
the entropy of a long message is just N S, when S is the
entropy of a message consisting of only one letter. We can
formalize the constructions as models of statistical mechan-
ics if we introduce a classical Hamiltonian H determining
the probability of a i-th symbol bi in a statistical thermody-
namical model via formula pi = 2−H(bi ).

The theory of geometric flows is different from the stan-
dard theory of random processes, classical information mod-
els and “simple” engineering applications. The flow evolu-
tion is characterized by the W-entropy and (which is impor-
tant for our further developments) additional assumptions
on associated statistical thermodynamic values like mean
energy, entropy and fluctuation. For classical mechanical sys-
tems, such values are canonically determined by generat-
ing functions ˜L and ˜H , see formulas ˜W (27) and �

˜W (29),
and, respectively, for flow evolution of Hessian metrics, by
[

˜E, ˜S, η̃
]

(36) and
[

�
˜E, �

˜S, �η̃
]

(37). On a discrete network
with random variables, we can introduce probabilities, for
instance, p̃n = 2− ˜H(bn) and � p̃n = 2− �

˜H(bn), or, for statisti-

cal ansambles, p̃n = 2−˜E(bn) and � p̃n = 2− �
˜E(bn). In result,

it is possible to elaborate classical information theories deter-
mined by effective Hamiltonians ˜H , or energy functionals ˜E
and �

˜E . This is for certain discrete versions with probability
models and correlations encoding information on geometric
flows of mechanical systems.

9 In this section, we should not confuse symbols for probabilities pi
with similar notations for cofiber coordinates; and a number N is dif-
ferent from the symbol N used for the N-connections. Here we note that
it is almost impossible and not optimal to elaborate an unified system
of notations with completely different symbols in an article involv-
ing different directions in differential geometry, geometric mechanics,
probability and diffusion, classical and quantum information theory. We
try to keep traditional notations for different directions in mathematics
or physics but (if necessary) underly symbols and provide respective
remarks allowing to avoid notation ambiguities.

In this section, we elaborate on continuous information
flow models encoding geometric evolution of mechanical
systems using the thermodynamic entropies ˜S [̃g(τ )] and
�
˜S[ �g̃(τ )] without involving in the constructions probability

distributions which appear for random variables. Geometric
flows can be described by ˜S [̃g(τ )] and �

˜S[ �g̃(τ )]. We can
elaborate equivalent constructions for W-entropies ˜W [̃g(τ )]
and �

˜W[ �g̃(τ )]). Systems under geometric flows are denoted
as ˜B = ˜B [̃g(τ )] and �

˜B = �
˜B[ �g̃(τ )] determined by corre-

sponding canonical d-metrics on phase spacetimes.

4.1.2 Conditional entropy and geometric information flows
GIF

In information theory, there are studied various conventional
models with communicating humans called, for instance,
Alice and Bob, see [37,38]. Let us suppose that Alice sends
a message via a noisy telephone connection with many let-
ters (any letter is a random variable X taking possible val-
ues x1, ..., xk). Bob receives instead of X a random vari-
able Y consisting from possible letters y1, ..., yr . In clas-
sical information theory, one computes how many bits of
information does Bob receives form Alice’s message with
N letters? Traditionally, the random variables are denoted
as X, Y, Z etc. For one variable, the probability to observe
X = xi is denoted PX (xi ) subjected to the condition that
∑

i PX (xi ) = 1. The communication between Alice and
Bob is a random process of two variables defined by a joint
distribution PX,Y (xi , y j ) as the probability that Alice sends
X = xi and Bob hears Y = y j . It is considered that the value
PY (y j ) = ∑

i PX,Y (xi , y j ) is the probability that Bob hears
Y = y j (summation is over all choices of what Alice could
send). The conditional probability

PX |Y (xi |y j ) := PX,Y (xi , y j )

PY (y j )

is by definition a value characterizing that if Bob hear Y =
y j , he can estimate the probability that Alice sent xi . We can
write for Alice’s messages PX (xi ) = ∑

j PX,Y (xi , y j ), or

consider PX (xi ) as an independent probability density. Using
these formulas, one defines such important values:

SX |Y=y j := −
∑

i

PX |Y (xi |y j ) log PX |Y (xi |y j ),

the Shannon entropy of the conditional probability;
SXY := −

∑

i, j

PX,Y (xi , y j ) log PX,Y (xi , y j ),

the entropy of joint distribution ;
SY := −

∑

i, j

PX,Y (xi , y j ) log PY (y j ),

the total information content received by Bob ;
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SX := −
∑

i, j

PX,Y (xi , y j ) log PX (xi ),

the total information content in Alice’s message ;
SX |Y := S(X |Y ) =

∑

j

PY (y j )SX |Y=y j ,

the conditional entropy . (48)

Using such formulas, one prove that (this can be violated by
quantum systems)

S(X |Y ) = SXY − SY ≥ 0 (49)

and the mutual information between X and Y (a measure of
how much we learn about X observing Y )

I (X; Y ) := SX − SXY + SY ≥ 0. (50)

Now, let us analyse another type of communications
between Alice and Bob. We suppose that they are research
scientists and know advanced differential geometry, classi-
cal mechanics, information theory, and theory of geometric
flows. Alice sends to Bob not only simple messages con-
sisting from letters and density probabilities but messages
encoding that (in her world ) she study geometric flow evolu-
tion processes of a mechanical system of type ˜A = ˜A[̃g(τ )],
or �

˜A = �
˜A[ �g̃(τ )], determined by flows of Hessian met-

rics. Bob will receive Alice’s message (it may be a short let-
ter) and knows that Alice plays a game with geometric flow
modeling. We denote Bob’s geometric evolution systems as
˜B = ˜B[ 1g̃(τ )], or �

˜B = �
˜B[ �

1g̃(τ )]. In elaborating such GIF
models, Alice and Bob could work or not with probability
densities. In principle, the thermodynamic generating func-
tions ˜Z [̃g(τ )] and/or �

˜Z[ �g̃(τ )] from (35) can be considered
as geometric flow analogs of probability densities but they
may use directly the W-entropy ˜W (27), or �

˜W (29 ), and,
respectively, for ansambles of Hessian metrics, by

[

˜E, ˜S, η̃
]

(36), or
[

�
˜E, �

˜S, �η̃
]

(37). For simplicity, we analyze here
how they may GIF-communicate using instead of messages
with random letters certain geometric flow transfers of infor-
mation encoding concepts of mechanical dual phase space-
times for Lorentz cotangent bundles. In such a case, we have
to use the geometric flow thermodynamic entropy �

˜S[ �g̃(τ )]
associated to W-entropy �

˜W[ �g̃(τ )] and formulas consid-
ered in Sect. 3.1.2. We shall use also geometric flow mod-
els on T ∗V⊗ T ∗V with one cotangent bundle for Alice and
another one for Bob. The local coordinates on such products
of cotangent bundles are labeled ( �u,

�

1u) and the normalizing
functions are of type �

AB
˜f ( �u,

�

1u). The canonical d-metric
structure on such tensor products of phase spacetimes is of
type

�

AB g̃ =
{

�g̃ = [q1, q2, q3, N̆ , �q5,
�q6,

�q7,
� Ň ], �

1g̃

=
[

1q1, 1q2, 1q3, 1 N̆ ,
�

1q5,
�

1q6,
�

1q7,
�

1 Ň
]}

.

Respectively, we consider a canonical d-connection �

AB
˜D =

�
˜D+ �

B
˜D and respective scalar curvature �

s AB
˜R = �

s
˜R+ �

s1
˜R.

We work with �
˜S[˜A] and �

˜S[˜B] defined by respective
formulas for �g̃(τ ) and �

1g̃(τ ) as in (37). They are analogs
of SX and SY in above formulas. As an analog of SXY for
GIF, we consider the thermodynamic generating function (as
a generalization of (35))

�

AB
˜Z[ �g̃(τ ),

�

1g̃(τ )] = �

˜

∫

�

1

˜

∫

e− �

AB
˜f

×
√

| �g̃αβ |
√

| �

1g̃αβ |d8 �u d8 �

1u
(

− �

AB
˜f + 32

)

,

for T ∗V ⊗ T∗V,

and resulting entropy function

�

AB
˜S = �

˜S [˜A, ˜B] = − �

˜

∫

�

1

˜

∫

e− �

AB
˜f

×
√

|q1q2q3 N̆ �q5
�q6

�q7
� Ň |

×
√

| 1q1 1q2 1q3 1 N̆ �

1q5
�

1q6
�

1q7
�

1 Ň |δ8 �u d8 �

1u

×
[

τ
(

�

s
˜R + �

s1
˜R + | �

˜D �

AB
˜f + �

1
˜D �

AB
˜f |2

)

+ �

AB f̃ − 32
]

.

Using such formulas, we claim that for GIFs the formulas
for the conditional entropy (37) and mutual information (37)
are respectively generalized

�
˜S [˜A|˜B] := �

AB
˜S − �

˜S[˜B] ≥ 0 and (51)
�
˜J [˜A; ˜B] := �

˜S[˜A] − �

AB
˜S + �

˜S[˜B] ≥ 0. (52)

Similar claims can be formulated if we use the W-entropy
�
˜W (29):

�
˜W [˜A|˜B] := �

AB
˜W − �

˜W[˜B] ≥ 0 and �
˜J [˜A; ˜B]

:= �
˜W[˜A] − �

AB
˜W + �

˜W[˜B] ≥ 0,

with respective formulas computed for the W-entropy instead
of the S-entropy in the standard probability theory. For rela-
tivistic information flows, such formulas can be applied with-
out additional assumptions on formulating associated statis-
tical thermodynamic models.10

10 Let us explain why we use the word “claim” for these formulas.
In principle, the conditions of non-negativity of respective values can
be violated if Alice sends to Bob GIFs as solutions, for instance, of
generalized R. Hamilton geometric flow equations (45). For such vari-
ants, we use the claims (51) and (52) as criteria for selecting physically
realistic and viable solutions for the information theory of geomet-
ric flow evolution of W. Hamilton mechanical systems. Nevertheless,
working on cotangent Lorentz bundles, such claims can be transformed
into theorems and proven if we consider a causal axiomatic approach
Footnote 10 continued
to Finsler-Lagrange-Hamilton theories elaborated in [34,35]. Here we
sketch the idea and key steps for proving such formulas. For physicists,
such formulas seem to be natural ones; rigorous mathematical proofs
require hundreds of pages and application of a corresponding inter-
ference of methods outlined in [1,13–15] together with [37,38,47–49]
and, for nonholonomic configurations, in our works [19,23–29] . The
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Finally, we note that above formulas can be defined and
proven respectively, and in similar forms, on TV,TV ⊗ TV,

and other tensor products and lower dimension projections
involving Lagrange generating functions. For instance,

˜S [˜A|˜B] := AB ˜S − ˜S[˜B] ≥ 0 and ˜J [˜A; ˜B]
:= ˜S[˜A] − AB ˜S + ˜S[˜B] ≥ 0;

˜W [˜A|˜B] := AB ˜W − ˜W[˜B] ≥ 0 and ˜J
˜W [˜A; ˜B]

:= ˜W[˜A] − AB ˜W + ˜W[˜B] ≥ 0.

Such values can satisfy certain Legendre conditions and dual-
ity conditions to respective formulas (51) and (51) and W-
analogs. The models for cotangent bundles are important
for elaborating quantum mechanical theories of GIFs with
Hamilton generating functions. In their turn, the GIF models
on tangent bundles are important for encoding quantum field
theories formulated using the Lagrange formalism.

4.1.3 Relative GIF entropy and monotonicity

In the standard probability theory, the concept of relative
entropy is introduced if (for a random variable X ) there are
considered two probability distributions PX and Q X , where
for X = xi , labeled by i= {1, 2, ...s}, one obtains pi =
PX (xi ) and qi = Q X (xi ), let say, for some long messages
with N letters. The key issue is to decide which distribution
describe a random process more realistically. The relative
entropy per observation (or Kullback–Liebler divergence) is
defined S(PX ||Q X ) := ∑

i pi (log pi − log qi ) ≥ 1 under
assumption that N S(PX ||Q X ) � 1. This is an asymmetric
value on PX and Q X and measure the difference between
these two probability distributions when we consider that
PX is a correct answer and Q X is an initial hypothesis.

Let us study a pair of random variables X and Y for which
we consider two probability distributions. The fist one is a
possible correlated joint distribution

PX,Y (xi , y j ) and PX (xi ) :=
∑

j

PX,Y (xi , y j ), PY (y j )

:=
∑

i

PX,Y (xi , y j ). (53)

W-entropy and respective thermodynamic values can be defined on a
3-d hypersurface as in (40), (41) and (42 ), and then extended for evo-
lution on a time like curve to formulas (38) and (39). Then the formulas
are dualized to momentum type local coordinates on some open regions
on T ∗V ⊗ T∗V. Such causal curves can be defined to cover a subspace
on respective phase spacetimes, their tensor products, and projections
on lower dimensions. Here we note that in any point of a causal curve
in T ∗V and related tensor products/ projection spaces and subspaces
we can define entopies of type (48). This way, the geometric flow infor-
mation values can be completed with certain random variables. Alice’s
letters to Bob will encode not only GIFs but also random bit informa-
tion processes. We can associate entropies of type �

˜W and/or �
˜S to

probabilistic entropies.

A second probability distribution Q X,Y (xi , y j ) = PX (xi )

PY (y j ) can be defined to ignore correlations between X and
Y. In a general context, Q X,Y (xi , y j ) can be with correlations
when Q X (xi ) := ∑

j Q X,Y (xi , y j ). For more general con-
structions, we can introduce three random variables X, Y, Z
described by a joint probability distribution and related val-
ues:

PX,Y,Z (xi , y j , zk) and PX (xi ) :=
∑

j,k

PX,Y,Z (xi , y j , zk),

PY,Z (y j , zk) :=
∑

i

PX,Y,Z (xi , y j , zk).

If we forget the correlations between X and Y Z , we define
Q X,Y,Z (xi , y j , zk) := PX (xi )PY,Z (y j , zk). Other type val-
ues can be defined if we observe the subsystem XY, when

PX,Y (xi , y j ) :=
∑

k

PX,Y,Z (xi , y j , zk), Q X,Y (xi , y j )

:=
∑

k

Q X,Y,Z (xi , y j , zk) = PX (xi )PY (y j ).

Now, we can calculate the relative entropy S and mutual
information I between two distributions

S(PX ||Q X ) :=
∑

i, j

PX,Y (xi , y j )

×
[

log PX,Y (xi , y j ) − log
(

PX (xi )PY (y j )
)]

= SX − SXY + SY = I (X; Y );
S(PX,Y ||Q X,Y ) := SX − SXY + SY = I (X; Y );

S(PX,Y,Z ||Q X,Y,Z ) := SXY − SXY Z − SY Z = I (X; Y Z).

In result, one proves by explicit calculations such properties

I (X; Y ) := SX + SY − SXY ≥ 0, subadditivity of entropy ;
S(PX,Y ||Q X,Y ) ≥ S(PX ||Q X ), S(PX,Y,Z ||Q X,Y,Z )

≥ S(PX,Y ||Q X,Y ), monotonicity of relative entropy.

There is also the condition of strong subadditivity

SX − SXY Z − SY Z ≥ SX − SXY + SY ,

or SXY + SY Z ≥ SY + SXY Z ,

which is equivalent for the condition of monotonity of mutual
information I (X; Y Z) ≥ I (X; Y ).

Above formulas for S and I can be generalized for respec-
tive relative entropy and mutual information of geometric
flows of mechanical systems (for simplicity, we consider for-
mulas generated by certain relativistic Hamilton generating
functions H(x, p)). For such evolution systems, there are
considered �

A
˜Z := �

˜Z[ �g̃(τ )] and �

B
˜Z := �

1
˜Z[ �

1g̃(τ )],
see (35), as analogs of pi = PX (xi ) and qi = Q X (xi ), see
also formulas in the previous section. In general, there are
considered three evolution flow canonical mechanical sys-
tems ˜A, ˜B, ˜C . In result, we claim (and can prove following
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the method sketched in footnote 10) by explicit integral N-
adapted calculations on T ∗V ⊗ T∗V⊗ T∗V such properties

�
˜J [˜A; ˜B] := �

˜S[˜A] − �

AB
˜S + �

˜S[˜B] ≥ 0,

subadditivity of entropy;
�
˜S [ �

AB
˜Z|| �

AB
˜Z] ≥ �

˜S [ �

A
˜Z|| �

A
˜Z], �

˜S [ �

ABC
˜Z|| �

ABC
˜Z]

≥ �
˜S [ �

AB
˜Z|| �

AB
˜Z],

monotonicity of relative entropy .

The conditions of strong subadditivity for GIF entropies are
claimed

�

A
˜S − �

ABC
˜S − �

BC
˜S ≥ �

A
˜S − �

AB
˜S + �

B
˜S, or �

AB
˜S

+ �

BC
˜S ≥ �

B
˜S + �

ABC
˜S.

In equivalent form, these formulas can be written as the con-
dition of monotonicity of GIFs mutual information,

�
˜J [˜A; ˜B˜C] ≥ �

˜J [˜A; ˜B].
Above formulas involve, for instance, the thermodynamic

generating function (as a generalization of (35))

�

ABC
˜Z[ �g̃(τ ),

�

1g̃(τ ),
�

2g̃(τ )]
= �

˜

∫

�

1

˜

∫

�

2

˜

∫

e− �

ABC
˜f

×
√

| �g̃αβ |
√

| �

1g̃αβ |
√

| �

2g̃αβ |d8 �u d8 �

1u d8 �

2u

×
(

− �

ABC
˜f + 48

)

, for T ∗V ⊗ T∗V ⊗ T∗V,

with a normalizing function �

ABC
˜f ( �u,

�

1u,
�

2u), when the
local coordinates on such such products of cotangent bundles
are labeled ( �u,

�

1u,
�

2u). The canonical d-metric structure
on such tensor products of phase spacetimes is of type

�

ABC g̃ = { �g̃ = [q1, q2, q3, N̆ , �q5,
�q6,

�q7,
� Ň ], �

1

g̃ = [ 1q1, 1q2, 1q3, 1 N̆ ,
�

1q5,
�

1q6,
�

1q7,
�

1 Ň ],
�

2g̃ = [ 2q1, 2q2, 2q3, 2 N̆ ,
�

2q5,
�

2q6,
�

2q7,
�

2 Ň ]}.
We can consider a canonical d-connection �

ABC
˜D = �

˜D+ �

B
˜D

+ �

C
˜D and respective scalar curvature �

s ABC
˜R = �

s
˜R+ �

s1
˜R+

�

s2
˜R. The resulting entropy function

�

ABC
˜S = �

˜S [˜A, ˜B, ˜C] = − �

˜

∫

�

1

˜

∫

�

2

˜

∫

e− �

ABC
˜f

×
√

|q1q2q3 N̆ �q5
�q6

�q7
� Ň |

×
√

| 1q1 1q2 1q3 1 N̆ �

1q5
�

1q6
�

1q7
�

1 Ň |
×
√

| 2q1 2q2 2q3 2 N̆ �

2q5
�

2q6
�

2q7
�

2 Ň |δ8 �u d8 �

1u d8 �

2u

×
[

τ
(

�

s
˜R + �

s1
˜R + + �

s2
˜R + | �

˜D �

ABC
˜f + �

1
˜D �

ABC
˜f

+ �

2
˜D �

ABC
˜f |2

)

+ �

ABC f̃ − 48
]

.

Similar formulas can be derived for W-entropies and for
Lagrange GIFs on TV ⊗ TV ⊗ TV.

We conclude this introduction to the GIF theory of canon-
ical classical mechanical systems with two remarks: First,
such constructions can be generalized for stochastic maps
and nonholonomic flow evolution and kinetic processes of
Lagrange-Hamilton systems as we studied in [53–55]. Here,
we shall analyse a QGIF analog when the quantum rela-
tive entropy is monotonic in any quantum channel, includ-
ing those associated to evolution of Hamiltonian quantum
mechanical systems.

Second, we shown that we are able both in the proba-
bility theory and for geometric flow models to define con-
ditional on some observation entropies. There is not a good
analog of the probability conditional distribution in the quan-
tum mechanical case. Nevertheless, there is a miracle that
many conclusions have quantum analogs [38]. For GIFs of
mechanical Hamilton systems with a H(τ, x, p), this is not
a miracle because the flow evolution of Hessian Hamilton
metrics �g̃ab(τ, x, p) := 1

2∂2 H/∂pa∂pb ( 4) and respective
canonical d-metrics �g̃(τ ) (14) are characterized by well-
defined concepts of W-entropy �

˜W (27) and respective ther-
modynamical variables

[

�
˜E, �

˜S, �η̃
]

(37). In result, we can
introduce GIF formulas for conditional entropy and mutual
entropy and their W-analogs. For quantum developments in
next section, we shall speculate on strong subadditivity of
quantum entropy which holds also for quantum analogs of
mechanical Hamilton systems.

4.2 Basic ingredients of the quantum geometric
information flow theory

The goal of this section is to analyze how the main con-
cepts and formulas for GIFs of mechanical systems can be
extended to quantum theory and formulate an approach to the
theory of QGIFs. We note that a noncommutative version of
geometric flow theory was elaborated in [23]. Those results
can be extended for elaborating noncommutative models of
quantum information theory. In a more simplified approach,
we can consider quantum mechanical models, and respec-
tive quantum geometric flows, by quantizing certain relativis-
tic mechanical Hamiltonians H(τ, x, p), when in the quasi-
classical limits the geometric mechanics theory with Hessian
metrics �g̃ab(τ, x, p) emerges. In this work, the main goal
is to elaborate on quantum information theory for geomet-
ric flows of mechanical systems characterized by geometric
thermodynamical data

[

�
˜W; �

˜E, �
˜S, �η̃

]

, see (27) and (37).

4.2.1 Density matrices and properties of quantum entropies
for GIFs

Statistical density matrix for relativistic mechanical
Hamilton flows

The thermodynamic generating function �
˜Z[ �g̃(τ )] (35)

with canonical geometric objects determined by a Hamilton
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function ˜H , see also Sect. 3.1.2, can be used for defining the
state density

�σ̃ (β, ˜H , �g̃) = �
˜Z−1e−β ˜H , (54)

with β = 1/T, τ = T, as a classical analog of the density
matrix in quantum mechanics. The relative entropy between
any state density �ρ̃(β, ˜H ,

�

1g̃) and �σ̃ (β, ˜H , �g̃) is com-
puted for a prescribed measure ω( ˜H), for instance, on a
cotangent Lorentz bundle with E considered as a thermo-
dynamical energy parameter.

Using formulas (33) and (32), we define for the conditional
entropy for geometric flows of Hamilton mechanical systems

�
˜S( �ρ̃ �

�σ̃ ) = β[ �
˜F( �ρ̃) − �

˜F( �σ̃ )], (55)

where the free energy corresponding to �ρ̃ is �
˜F( �ρ̃) :=

�
˜E( �ρ̃) − T �

˜S( �ρ̃). In these formulas, the average energy is
computed �

˜E( �ρ̃) = ∫

�ρ̃ ˜Hdω( ˜H) (i.e. using the density
matrix �ρ̃) and the thermodynamic entropy is �

˜S( �ρ̃) :=
β �

˜E( �ρ̃) + log �
˜Z( �ρ̃). Both values �

˜E( �ρ̃) and �
˜S( �ρ̃)

can be written equivalently to (37). We note that if log �
˜Z

is independent on �ρ̃ (as we consider in above formulas) we
have �

˜S( �σ̃ �
�σ̃ ) = 0.

In this section, we elaborate on how GIFs of classical
mechanical systems can be generalized to QGIFs using basic
concepts of quantum mechanics, QM, and information the-
ory. QM involves probabilities not as classical probability
distributions for a quantum state but, in general, as densities
matrices. Certain special QM systems can be described by
pure states. Nevertheless, to study quantum models of GIFs
systems is necessary to consider density matrices as quantum
analogs of state densities of type �σ̃ (54).

Densitymatrix for quantum information theory andasso-
ciated Hamilton mechanical systems

In an idealized case, a Hamiltonian GIF system ˜A =
[

�
˜E, �

˜S, �η̃
]

(37) can be described by a Hilbert space ˜HA.

A state vector ˜ψA ∈ ˜HA can be defined as infinite dimen-
sional complex vector solving the Schrödinger equation with
a Hamiltonian ̂H taken as a well-defined quantum version
of a canonical Hamiltonian ˜H . In the quasi-classical limit,
from a quantum mechanical model with ̂H , we obtain a rela-
tivistic ˜H and respective Hessian �g̃ab(x, p) (4) and canon-
ical d-metric �g̃ (15) (from which “non-tilde” d-metrics

�g (10) emerge for general frame and coordinate trans-
forms on a TV). We can consider unitary transforms of type
˜ψA → UψA and describe the system ˜A in an abstract Hilbert
spaceH

˜A (we put tilde on certain symbols if it is necessary to
emphasize that the constructions are related to quantization
of a canonical mechanical Hamiltonian system). For appli-
cations in the information theory, a Hilbert space is approx-
imated to a complex vector space of dimension N with Her-
mitian product, see details in [37,38].

We can consider a complementary system B (we write ˜B
if it is a quantum mechanical analog of a classical Hamilton
mechanics) with an associate Hilbert space HB, or H

˜B, with
state vectors of type ψB ∈ HB and/or unitary transforms of
type ˜ψB → ψB V ∈ H

˜B . The combined Hilbert space is
defined as a tensor product, HA ⊗HB and/or H

˜A ⊗H
˜B . The

state vectors for the combined system are of type

ψAB = ψA ⊗ ψB ∈ HAB = HA ⊗ HB,

where, for instance, ψB = 1B is considered as the unity state
vector. For such products, the predictions about a system ˜A
can be made using the state vector ˜ψA and forgetting about the
system B. In general, a generic pure state ψAB ∈ HAB is not
a tensor product vector but is “entangled”. This means that
if the respective dimension dim HA = N and dim HB = M
then a generic state ψAB is described by an N × M matrix.
In quantum information theory, it is considered that any pure
state can be written as a Schmidt decomposition

ψAB =
∑

i

√
piψ

i
A ⊗ ψ

i
B or ˜ψAB =

∑

i

√
pi ˜ψ

i
A ⊗ ˜ψ

i
B .

(56)

In such formulas, the state vectors are orthonormal: for

instance, < ψ
i
A, ψ

j
A >=< ψ

i
B, ψ

j
B >= δi j , where δi j is

the Kronecker symbol. If pi > 0 and
∑

i pi = 1 (this is
equivalent to the condition that, for instance, ψAB is a unit
vector), we can treat pi as probabilities. Here we note that

ψ
i
A, or ψ

i
B, may not be bases of HA, or HB (in principle,

they may be not enough for such bases).
The quantum density matrix for a system A, or ˜A, is

defined

ρA :=
∑

i

pi |ψ i
A >< ⊗ψ

i
A| or ρ

˜A :=
∑

i

pi |ψ i
˜A

>< ⊗ψ
i
˜A
|.

This operator is Hermitian and positive semi-definite, with
trace T rHAρA = T rH

˜A
ρ

˜A = 1. Using ρA, or ρ
˜A, we can

compute the expectation value of any operator OA, or O
˜A,

following, for instance, the rules

< O >AB = 〈ψAB |OA ⊗ 1B |ψAB〉
=

∑

i

pi

〈

ψ
i
A|OA|ψ i

A

〉 〈

ψ
i
B |1B |ψ i

B

〉

=

〈O〉A =
∑

i

pi

〈

ψ
i
A|OA|ψ i

A

〉

= T rHAρAOA. (57)

In above formulas, we considered a bipartite system AB,

or ˜A˜B. Such systems are described in general form by quan-
tum denstity matrices of type ρAB, or ρ

˜A˜B . Here we note
that in the classical probability theory a bipartite system XY
is described by a joint probability distribution PX,Y (xi , y j ),

where PX (xi ) := ∑

j PX,Y (xi , y j ), see (53). For AB as a

bipartite quantum system with Hilbert space HA ⊗ HB, the
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density matrix ρAB is defined in standard quantum mechan-
ical form: Let us consider |i >A, i = 1, 2, ..., n as an
orthonormal basis of HA and |b >B, b = 1, 2, ..., m as
an orthonormal basis of HB . We write

ρAB =
∑

i,i ′,b,b′
ρi i ′bb′ |i >A ⊗|b >B A < i ′| ⊗ B < b′|.

For measurements of the system A, it is considered the
reduced density matrix obtained by respective contracting
of indices,

ρA = T rHB ρAB =
∑

i,i ′,b,b

ρi i ′bb|i >A A < i ′|,

for |b >B B < b| = 1.

In a similar form, it is defined ρB = T rHAρAB . Using such
formulas, we can elaborate on quantum information theory
(see reviews [37,38]) and develop the approach for QGIFs.

Quantum density matrix for GIFs of mechanical Hamil-
ton systems

Using formulas (57), we can compute expectation values
of a state density �σ̃ (54) and define a respective quantum
density

�σ̃AB = 〈

�σ̃
〉

AB = 〈

ψAB | �σ̃ ⊗ 1B |ψAB
〉

=
∑

i

pi

〈

ψ
i
A| �σ̃ |ψ i

A

〉 〈

ψ
i
B |1B |ψ i

B

〉

�σ̃A = 〈

�σ̃
〉

A =
∑

i

pi

〈

ψ
i
A| �σ̃ |ψ i

A

〉

= T rHAρA
�σ̃ . (58)

Here the density matrix ρA is taken for computing the QGIF
density matrix �σ̃A determined by a state density of the
thermodynamical model for GIFs of a classical mechani-
cal Hamiltonian system �σ̃ . For such systems, we can work
directly with quantum density matrices �σ̃AB and �σ̃A and
respective partial traces

�σ̃A = T rHB
�σ̃AB and �σ̃B = T rHA

�σ̃AB . (59)

In coefficient form, we obtain such formulas

�σ̃AB =
∑

i,i ′,b,b′

�σ̃i i ′bb′ |i >A ⊗|b >B A < i ′| ⊗ B < b′|

and �σ̃A =
∑

i,i ′,b,b

�σ̃i i ′bb|i >A A < i ′|.

Let us discuss a concrete example with density matrices.
Consider an isolated classical mechanical Hamitonian sys-
tems for which a QM model can be constructed. To describe
thermodynamically the geometric flow evolution of both
classical and quantum models we need respective state den-
sity and quantum density matrix. In a pure state formalism,
the mathematical machinery gets bigger and bigger involv-
ing differential geometric concepts, quantum mechanics and

probability theories. This can be organized as quantum infor-
mation flow evolution model. Using a density matrix encod-
ing the data for Hamilton mechanical system, we can com-
pute respective thermodynamical values.

4.2.2 Properties of entropies for QGIFs

The von Neumann entropy of density matrix for QGIFs
of mechanical systems

Using �σ̃A, we can describe QGIF in a standard QM form
when the respective von Neumann entropy is used instead of
the Shannon entropy for a probability distribution,

�

q
˜S( �σ̃A) := T r �σ̃A log �σ̃A, (60)

where the trace is written in a simplified form without a label
for the corresponding Hilbert space. We use a left label q as
“quantum” and emphasize that such an entropy is a quantum
analog of �

˜S used in the thermodynamic model for geometric
flow evolution of Hamilton mechanical systems. The QGIF
entropy �

q
˜S( �σ̃A) ≥ 0 and is manifestly invariant under a

unitary transformation �σ̃A → U �σ̃AU−1.

The quantum value �

q
˜S( �σ̃A) has a purifying property

which is typical for quantum information theory and does
not have a classical analog. For a bipartite system ˜ψAB =
∑

i
√

pi ˜ψ
i
A ⊗ ˜ψ

i
B (56) and ρA := ∑

i pi |ψ i
A > ⊗ < ψ

i
A|,

we write

�σ̃A :=
∑

i,i ′,b,b

�
∑

k

σ̃i i ′bb pk A

〈

i ′||ψk
A

〉 〈

⊗ψ
k
A||i

〉

A
,

�σ̃B :=
∑

j, j ′,b,b

�
∑

k

σ̃ j j ′bb pk B

〈

j ′||ψk
B

〉 〈

⊗ψ
k
B || j

〉

B
. (61)

In both these formulas, we have the sam probabilities pk

even the matrices and bases are different. So, it is clear that
�

q
˜S( �σ̃A) = �

q
˜S( �σ̃B), which proves that a system A and

a purifying system B always have the same QGIF von Neu-
mann entropy. This holds true if ˜A is taken for GIFs of a
mechanical Hamilton system.

Because �

q
˜S( �σ̃ ) is a typical von Neumann entropy, it has

another very important concavity property. Let explain this
for QGIFs because there are involved certain important fea-
tures induced by geometric flow evolution. This mean that for
any two density mechanical matrices �σ̃1 and �σ̃2 we can intro-
duce �σ̃ (λ) = λ �σ̃1 + (1 − λ) �σ̃2, for 0 ≤ λ ≤ 1, and prove
that d2 �

q
˜S( �σ̃ )/dλ2 ≤ 0. In result, one obtains �

q
˜S( �σ̃D) ≥

�

q
˜S( �σ̃ ), here D is from diagonal, which means that drop-

ping the off-diagonal part of density matrix (this holds in
any basis) results in entropy increasing. This has important
implications, for instance, in gravity models emerging from
(quantum) mechanical evolution theories. Pure diagonal con-
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figurations have higher entropy than the generic off-diagonal
ones.

Quantum generalizations of W- and thermodynamic
entropy of mechanical systems
QGIFs can characterized not only by a von Neumann entropy
of type (60) but also by quantum analogs of entropy values
used for classical geometric flows (associated thermodynam-
ics entropy and W-entropy). Such values can be introduced
and computed in explcity form using respective formulas
(58), (59), (61) for classical conditional and mutual entropy
used in formulas (51) and (52). The quantum formulas intro-
duced in this section can be considered for geometric flows
of arbitrary systems and not only for mechanical ones. So,
we write A, B, ... instead of ˜A, ˜B, ... and define

�

q
˜SAB = T rHAB [( �σ̃AB)(

�

AB
˜S)] and �

q
˜SA

= T rHA [( �σ̃A)(
�

A
˜S)], �

q
˜SB

= T rHB [( �σ̃B)(
�

B
˜S)].

Similar formulas can be provided for the quantum version of
W-entropy,

�

q
˜WAB = T rHAB [( �σ̃AB)(

�

AB
˜W)] and

�

q
˜WA = T rHA [( �σ̃A)(

�

A
˜W)], �

q
˜WB = T rHB [( �σ̃B)(

�

B
˜W)].

Such values describe QGIFs of Hamiltonian (quantum)
mechanical systems.

The quantum probabilistic characteristics are described by
the von Neumann entropy �

q
˜S( �σ̃A) (60) and corresponding

generalizations for AB and B systems

�

q
˜S( �σ̃AB) := T r �σ̃AB log �σ̃AB and

�

q
˜S( �σ̃A) := T r �σ̃A log �σ̃A, �

q
˜S( �σ̃B) := T r �σ̃B log �σ̃B .

Finally, we note that the entropies �

q
˜SA, �

q
˜WA, and �

q
˜S( �σ̃A)

characterize respectively different thermodynamic, geomet-
ric flow and probabilistic properties of QGIFs of geomet-
ric mechanical Hamilton flows. In a similar form, we can
omit the label “ �” and derive respective formulas for quan-
tum flows of Lagrange systems. Such a formalism is more
sophisticate mathematically because the Lagrange generat-
ing functions can not be used directly for constructing base
vectors for respective Hilbert spaces.

Conditional and relative quantum entropy for QGIFs of
mechanical systems
For QGIFs, we can imitate formally many classical defini-
tions for GIFs. As it is stated in section 3.4 of [38], the quan-
tum versions are potentially misleading or not good or usual
notions. This is not surprising in the case of geometric flows
because they are characterized not only by certain probabilis-
tic quantum entropies but also by G. Perelman W-entropy and
geometric thermodynamic entropy. Let us outline the main

equations for respective von Neumann and conditional and
relative entropy of quantum mechanical geometric flows.

Using quantum matrix computations with formulas of
type (58), (59), (61), we prove such quantum properties of
entropies for QGIFs:

�

q
˜S[A|B] = �

q
˜SAB − �

q
˜SB and �

q
˜J [A; B]

= �

q
˜SA + �

q
˜SAB + �

q
˜SB ≥ 0. (62)

Similar claims can be formulated (from small quantum per-
turbations, we can prove respective theorems) for the Neu-
mann (60) and quantum W-entropy (29),

�

q
˜S( �σ̃A|B) := �

q
˜S( �σ̃AB) − �

q
˜S( �σ̃B) and �

q

˜J ( �σ̃A;B) := �

q
˜S( �σ̃A) − �

q
˜S( �σ̃AB) + �

q
˜S( �σ̃B);

�

q
˜W[A|B] = �

q
˜WAB − �

q
˜WB and �

q
˜J

˜W [A; B]
= �

q
˜WA + �

q
˜WAB + �

q
˜WB ≥ 0.

It should be noted that different entropies and related
mutual information values characterize different properties
of the QGIFs of mechanical Hamilton systems. The von Neu-
mann type values �

q
˜S( �σ̃A|B) and �

q
˜J ( �σ̃A;B) can be used

for proofs of entanglement and purifcation properties of such
systems following standard methods of quantum information
theory. Unlike the classical case, the quantum conditional
entropy is not conditional on certain classical or quantum
processes. But for QGIFs, the systems are with nonholo-
nomic structure encoding classical and/or quantum mechan-
ical systems. The conditional properties of such systems are
encoded in �

q
˜SA and �

q
˜J [A; B], for thermodynamical mod-

els of QGIFs, and �

q
˜WA and �

q
˜J

˜W [A; B], for quantum
geometric evolution flows.

Monotonicity andmonogamy of entanglement of relative
entropy for QGIFs
The relative entropies for QGIFs are positive just as for the
classical GIFs. Using �

q
˜S( �σ̃A|B), we can prove that such a

quantum entropy is also monotonic (for proofs, we can use
the same methods as in [38,56], and posses also a strong
subadditivity property as in [57]). The intuition behind the
classical theory of probability is not applicable in a direct way
for geometric flows and/or quantum systems. In this sense,
the monotonicity of quantum relative entropies is a miracle.

Let us consider a very basic property of QGIFs described
by the von Neumann entropy �

q
˜S( �σ̃A). For a bipartite system

AB with two density matrices �ρ̃AB and �σ̃AB, we can define
the corresponding reduced density matrices on A, �ρ̃A =
T rB ( �ρ̃AB) and �σ̃A = T rB( �σ̃AB). The partial trace can
only reduce the relative quantum entropy,

�

q
˜S( �ρ̃AB �

�σ̃AB) ≥ �

q
˜S( �ρ̃A �

�σ̃A). (63)

see also (34) and (55).
For a tripartite system ABC with QGIF density matrix

�ρ̃ABC and above montonicity property, we can proved a
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strong subadditivity property for geometric flows of quan-
tum mechanical Hamilton systems. There are used reduced
density matrices and corresponding second density matrices

�ρ̃A = TBC
�ρ̃ABC , �ρ̃BC = TA

�ρ̃ABC , �ρ̃AB = TC
�ρ̃ABC and

�σ̃ABC = �ρ̃A ⊗ �ρ̃BC , �σ̃AB = TC
�σ̃ABC = �ρ̃A ⊗ �ρ̃B . (64)

Using above monotonicity property, we can write

�

q
˜S( �ρ̃ABC �

�σ̃ABC ) ≥ �

q
˜S( �ρ̃AB �

�σ̃AB)

and/or as the monotonicity of mutual information

�

q J̆ (A; BC) ≥ �

q J̆ (A; B), (65)

which is equivalent to the condition of strong subadditivity

�

q
˜SAB + �

q
˜SBC ≥ �

q
˜SB + �

q
˜SABC . (66)

These formulas follow from (64); notations of type �

q
˜S( �σ̃A) =

�

q S̆A, �

q
˜S( �σ̃AB) = �

q S̆AB, �

q
˜S( �σ̃ABC ) = �

q S̆ABC ; and def-
initions

�

q
˜S( �ρ̃ABC �

�σ̃ABC ) = �

q
˜S( �ρ̃ABC �

�ρ̃A ⊗ �ρ̃BC )

= �

q J̆ (A; BC) := �

q S̆A + �

q S̆BC − �

q S̆ABC ;
�

q
˜S( �ρ̃AB �

�σ̃AB) = �

q
˜S( �ρ̃AB �

�ρ̃A ⊗ �ρ̃B)

= �

q J̆ (A; B) := �

q S̆A + �

q S̆B − �

q S̆AB .

The von Neumann entropy for QGIFs allows us to deduce
an important property related to the monogamy of entangle-
ment when a given qubit in a QGIF system ˜C can be entangled
with ˜D (reducing �

q S̆C D) or with ˜B (reducing �

q S̆BC ), but
not with both systems for set of 4 QGIF systems ˜A˜B˜C ˜D (for
mechanical systems, we can use tilde on symbols, which can
be omitted for general GIFs). This follows from the possibil-
ity of purification of this type of entropy, which allows to find
various equivalent systems. If we consider ABC D in a pure
state, then �

q S̆AB = �

q S̆C D, �

q
˜SABC = �

q S̆D . The inequal-

ity (66) becomes �

q S̆C D + �

q S̆BC ≥ �

q S̆B + �

q S̆D. We can

consider, for instance, that �

q S̆(C |D) = �

q S̆C D − �

q S̆D < 0,

or �

q S̆(C |B) = �

q S̆BC − �

q S̆B < 0, when the monogamy of
entanglement follows from the non negative condition

�

q S̆(C |D) + �

q S̆(C |B) ≥ 0. (67)

Above important conditions (65), (66) and (67) for the von
Neumann entropy for QGIFs can be proven in a standard
form for quantum information theory [38,56,57]. It is not
clear if similar results can be proven for the thermodynamic
entropy �

q
˜SA or W-entropy �

q
˜WA. In principle, such values

characterize certain complementary properties of QGIFs and
relativistic quantum mechanical systems.

4.2.3 Measurements for QGIFs and quantum channels

In QM, measurements involve projection onto orthogonal
subspaces of a Hilbert space HA. The same formalism can
be applied to QGIFs if we work with a density matrix �σ̃ of
type (58) or (59).
Generalizedmeasurements for QGIFs ofmechanical sys-
tems

Let us introduce a system of s = 1, ..., k orthogonal Her-
mitian projection operators πs subjected to the conditions
∑k

s=1 πs = 1; (πs)
2 = πs; and πsπs′ = 0 for s �= s′.

Applying such a πs to a pure quantum system |ψ >∈ H,

we obtain an outcome s with probability ps =< ψ |πs |ψ >,

when the properties of πs result in
∑k

s=1 ps = 1. If a system
˜A encodes a QGIF of a mechanical system characterized by
a density matrix �σ̃ , the outcome s is � p̃s = T rHπs

�σ̃ .

We endow such a probability � p̃s with a typical label for
a canonical Hamilton quantum system and respective geo-
metric flows. A measurement with an outcome s changes the
QGIFs and results in a new density matrix

�σ̃s = πs
�σ̃πs/

� p̃s (68)

encoding quantum information both from the geometric
flows and the mechanical Hamilton structure.

In a more general context, measurements can be per-
formed using an auxiliary system C. Such a system is not
obligatory a mechanical one, of type ˜C (it can be an electric
device etc.). A procedure with auxiliary C is called a “positive
operator-valued measurement” or POVM) with Hilbert space
C. Conventionally, such a ˜C is k-dimensional with a basis
consisting from k vectors/states |s >∈ C, for s = 1, 2, ...,

k . We can initialize such a C-system in the state |1 >, then
consider a combined system C⊗H and a corresponding uni-
tary transform U which, for instance, adjusts a time- and flow
parameter - dependent Hamiltonian H (if we a going to study
quantum geometric flows of mechanical systems). The oper-
ator U can be chosen that for any ψ ∈ H, the result of such
a transform is parameterized using arbitrary linear operators
Es,

U (|1 > ⊗ψ) =
k

∑

s=1

|s > ⊗Esψ when
k

∑

s=1

E†
s Es = 1

(69)

follows from the condition of unitarity (the symbol † is used
for the Hermitian conjugation). We can label such values
with “tilde” if they are considered for geometric mechan-
ical flows, for instance, using ˜U and ˜Es . In princile, one
can be used arbitrary operators, U and Es, even the quan-
tum density matrices, see below, will be taken for QGIFs.
In general, projective measurements of the system C ⊗ H
can be performed using the commuting projection operators
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πs = |s >< s| ⊗ 1 when the probability of outcome s is

ps = |Es |ψ > |2 =< ψ E†
s Es |ψ > .

The described above POVM procedure can be applied
for measurements of a QGIF system defined by a density
matrix �σ̃ , when the probability of outcome s is � p̃s =
T rHE†

s Es
�σ̃ . We can treat the numbers � p̃s as probabilities

for any �σ̃ because E†
s Es ≥ 0 for any s and (together with (69

)) this results in
∑k

s=1
� p̃s = 1. It should be noted that E†

s Es

are nonnegative Hermitian operators that add to 1 but not
orthogonal projection ones. After a measurement with an out-
come s, the combined system C⊗H can be described by the
density matrix for a “pure” quantum system. It can be param-
eterized in the form (ps)

−1|s >< s| ⊗ Es |ψ >< ψ E†
s , see

(68), and, taking the partial trace over C, we obtain a conven-
tional density matrix (ps)

−1 Es |ψ >< ψ E†
s for the orginal

system H. QGIFs of such quantum mechanical systems can
be described by mixed stated with density matrix �σ̃ , when
( p̃s)

−1 Es
�σ̃ E†

s results in an outcome s.
Finally, we note that above POVM constructions can be

generalized for any Hilbert space of type C⊗ (H ⊕ H′) with
linear transforms Es : H → H′, which is useful for elaborat-
ing on generalized quantum models and information theory.

Quantum channels for QGIFs
For modeling quantum information flow theories, a corre-
sponding density matrix evolves both in a QM form and as
a geometric flow evolution process. The usual Hamiltonian
evolution of a state |ψ >→ U |ψ > can be described by
a unitary operator U a Hamiltonian ̂H corresponding to a
canonical relativistic Hamiltonian ˜H (and respective Hessian
�g̃ab(x, p) (4) and canonical d-metric �g̃ (15 )) or by a ther-
modynamic GIF system ˜A = [

�
˜E, �

˜S, �η̃
]

(37). In all cases,
we can introduce the von Neumann entropy �

q
˜S( �σ̃A) (60),

and conditional entropy �

q
˜S [˜A|˜B] (62), which are invariant

under unitary transforms �σ̃A ∈ U �σ̃AU−1. Such QGIFs are
also characterized by W-entropy �

q
˜WA (29 ) and or �

q
˜SA (37).

Let us analyze how the notion of quantum channels can be
elaborated for QGIFs of mechanical Hamilton systems. We
consider again an extended system C⊗H enabled with a den-
sity matrix �σ̆ = |1 >< 1| �σ̃ , where �σ̃ is a density matrix
on H. Unitary maps �σ̆ → �σ̆ ′, and with a trace induced
matrix �σ̃ ′ on H, can be parameterized in the form (69),

�σ̆ ′ = U �σ̆U−1 =
k

∑

s,s′=1

|s >< s′| ⊗ Es
�σ̃ E†

s and �σ ′

= T rC
�σ̆ ′ =

k
∑

s=1

Es
�σ̃ E†

s .

In result, we can define certain “quantum channels” for evo-
lution of QGIF density matrices for mechanical systems as
operations �σ̃ → ∑k

s=1 Es
�σ̃ E†

s , where the so-called Kraus

operators Es are subjected to the condition
∑k

s=1 Es E†
s = 1.

If we consider only one Kraus operator, we obtain as a special
case the unitary evolution of a QGIF system.

We can consider quantum channels for the relative entropy
and respective inequality conditions (63) which are written
in the form

�

q
˜S( �ρ̃ �

�σ̃ ) ≥ �

q
˜S( �ρ̃ �

�σ̃ )

for �ρ̃ → ∑k
s=1 Es

�ρ̃E†
s and �σ̃ → ∑k

s=1 Es
�σ̃ E†

s ,

when the fist step of initialization consists in replacing �ρ̃

and �σ̃ , respectively, by |1 >< 1 ⊗ �ρ̃ and |1 >< 1 ⊗ �σ̃ .

This is a very general statement on monotonicity of rela-
tive entropy and the von Neumann entropy for QGIFs of
mechanical systems. The properties of Kraus operators for
quantum channels are similar to those outlined in paragraphs
(1)–(6) in section 3.7 of [38], see also references therein.
There are two differences: the first one is that we consider
geometric flow evolution of density matrices and that such
rich quantum and geometric flow evolutions are character-
ized by additional inequalities for the quantum versions of
thermodynamic entropy and W-entropy.

Thermodynamics of QGIFs and quantum channels
Let us consider a thermal quantum density matrix as in QM,
�

q σ̃ = �

q
˜Z−1e−β ˜H , with β = 1/T, τ = T . We define

for the conditional quantum entropy for geometric flows of
Hamilton mechanical systems

�

q
˜S
(

�

q ρ̃ �
�

q σ̃
)

= β
[

�

q
˜F

(

�

q ρ̃
)

− �

q
˜F( �

q σ̃ )
]

,

where the free energy corresponding to a second density
matrix �

q ρ̃ is �

q
˜F( �

q ρ̃) := �

q
˜E( �

q ρ̃)−T �

q
˜S( �

q ρ̃). The energy

operator is defined and computed as �

q
˜E( �

q ρ̃) = T r [( �

q ρ̃) ˜H ]
and the thermodynamic entropy is

�

q
˜S
(

�

q ρ̃
)

:= β �

q
˜E
(

�

q ρ̃
)

+ log �

q
˜Z

(

�

q ρ̃
)

.

If log �

q
˜Z is independent on �

q ρ̃, we obtain �

a
˜S( �

q σ̃ �
�

q σ̃ ) =
0. For any quantum channel preserving the thermal equi-
librium at temperature T, there is a map �

q σ̃ to itself and
transforms �

q ρ̃ to a general density matrix �

q ρ̃′. In such a
quantum channel the entropy decreases following formulas

�

q
˜S
(

�

q ρ̃ �
�

q σ̃
)

≥ �

q
˜S
(

�

q ρ̃′
�

�

q σ̃
)

and

�

q
˜F

(

�

q ρ̃
)

≥ �

q
˜F

(

�

q ρ̃′) .

For quasi-classical approximations, we consider that such
formulas transform into similar ones, see (55), for the state
densities of type �σ̃ (54).
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5 Outlook and conclusions

In this paper, we put emphasis on the roles of entropic values
derived from Perelman–Lyapunov type functionals [1,36]
in elaborating relativistic models of geometric flow evolu-
tion of Lagrange–Hamilton mechanical systems and possi-
ble applications in classical and quantum information theory.
Our aim was to seek answer to wether the incorporation of
fundamental geometric objects in relativistic mechanics into
canonical noholonomic structures on (co) tangent Lorentz
bundles allow a new (J. Kern type) geometrization in terms
of certain generalized (pseudo) Riemannian and Finsler–
Lagrange–Hamilton spaces [34,35,43,45]. Due to Grigory
Perelman, such geometric constructions can be characterized
by W-entropy functionals and respective statistical/ geomet-
ric thermodynamic functionals like average flow energy, flow
entropy and flow fluctuation, see further developments and
applications in physics [19–22,25,26,50,53].

Here it should be emphasized that such concepts of “non-
area, non-holographic, non-conformal ... ” entropy are more
general that those based on the Bekenstein–Hawking ther-
modynamics [39–42]. In our approach, the fundamental geo-
metric and physical objects are defined by analogous metrics,
nonlinear and linear connections, and their curvatures, canon-
ically determined by Hessians of respective Lagrange and/or
Hamilton generating functions. Corresponding entropic and
thermodynamic type values can be computed for various
classes of exact and parametric solutions (not only black hole
type ones) in geometric flow evolution and (modified) gravity
theories.

The work presented here indicates that G. Perelman’s
ideas and geometric methods with W-entropy and associated
thermodynamic models for Ricci flows presented not only an
important tool for proving the Poincaré–Thurston hypothe-
sis. The constructions can be generalized for various types of
relativistic and/or non-Riemannian geometries which allow
to elaborate on further developments for noncommutative,
supersymmetric, stochastic and quantum geometries [23,24,
27,54,55]. Although in this paper we investigated only flows
of geometric mechanical Lagrange-Hamilton models elabo-
rated on (co) tangent Lorentz bundles, and did the hole anal-
ysis based on classical and quantum mechanical Hamilton
structures, our study sheds light on the importance of such
constructions in elaborating new directions in quantum infor-
mation theory [37,38,47–49] . We note that the conjecture
that gravity can be thought of as an entropic force [51,52]
can be proven for certain classes of nonholonomic deforma-
tions of G. Perelman’s functionals [27–29]. Using the results
of this and partner works [27–29], we conclude that such
proofs can be performed for the emergent gravity from clas-
sical and quantum mechanical Lagrange-Hamilton theories.

The results of Sect. 4 support also the conclusion that
using advanced geometric methods we can elaborate on basic

ingredients of the geometric flow information, QGIF, theory.
We close with the remark that in our future works there will
be considered some more special topics of QGIFs such as
teleportation and conditional geometric flow entropy; rel-
ative entropy and hypothesis geometric flow testing; how
to encode classical geometric flow information in quantum
states; geometric classical and quantum flow entanglement
and emergent gravity theories.
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