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Abstract We investigate static and spherically symmet-
ric solutions in a gravity theory that extends the standard
Hilbert–Einstein action with a Lagrangian constructed from
a three-form field Aαβγ , which is related to the field strength
and a potential term. The field equations are obtained explic-
itly for a static and spherically symmetric geometry in vac-
uum. For a vanishing three-form field potential the gravi-
tational field equations can be solved exactly. For arbitrary
potentials numerical approaches are adopted in studying the
behavior of the metric functions and of the three-form field.
To this effect, the field equations are reformulated in a dimen-
sionless form and are solved numerically by introducing a
suitable independent radial coordinate. We detect the forma-
tion of a black hole from the presence of a Killing horizon for
the timelike Killing vector in the metric tensor components.
Several models, corresponding to different functional forms
of the three-field potential, namely, the Higgs and exponential
type, are considered. In particular, naked singularity solutions
are also obtained for the exponential potential case. Finally,
the thermodynamic properties of these black hole solutions,
such as the horizon temperature, specific heat, entropy and
evaporation time due to the Hawking luminosity, are studied
in detail.

1 Introduction

The use of differential three-form fields in the realm of cos-
mology has been gaining ever more attention over the last
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decade [1]. These form fields naturally emerge in funda-
mental theories, such as string theory [2–4] and, thus it is
only reasonable to explore their existence under effective
formulations of gravity. Its application in cosmology has
already proven to be fruitful in explaining the early- and
late-time acceleration periods of the cosmic history [5–8],
reheating [9], screening solutions [10], generation of cos-
mological magnetic fields [11], among others. Primordial
inflation driven by multiple three-form fields was studied in
[12], considering several potential functions. One appealing
consequence is that these models present distinct signatures
when compared to the standard inflationary setting with a
scalar degree of freedom, compatible with recent cosmolog-
ical observations. Inflationary models in extra dimensional
braneworld scenarios inhabited by a single three-form have
also been explored in [13], through the use of dynamical sys-
tems analysis, and tested against the Planck data. The compu-
tation of non-Gaussianities produced by several three-form
fields inflation has been examined in [14] through the analy-
sis of curvature perturbations employing the δN formalism.

It is well known that in four spacetime dimensions a three-
form field admits a dual scalar field representation [15,16].
For example, assuming nonquadratic three-form potentials
leads to an equivalent scalar representation exhibiting a non-
canonical kinetic term. However, this mapping is nontriv-
ial, and thus for several self-interaction choices, or for any
nonminimal coupling, this dual representation breaks down
[5]. Nonetheless, even in the cases where the dual scalar
description exists, it is often quite complex to deal with and
it becomes much more practical and intuitive to work in
the form-representative framework. An interesting feature
of three-forms, is that the standard Maxwell term, F = d A,
constructed from a massless three-form A, naturally induces
a cosmological constant term, and therefore has been used to
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address the cosmological puzzle regarding the tiny value of
� [17]. Furthermore, nonminimal interactions between dark
energy, driven by a three-form field, and cold dark matter,
were explored in [18,19] along with the corresponding lin-
ear cosmological perturbations. It was shown that even small
values for the coupling lead to substantial variations on the
growth of matter fluctuations.

Screening solutions with three-form fields conformally
coupled to matter were also studied in [10]. In [20] the
authors investigate the existence of future abrupt cosmolog-
ical events, particularly the little sibling of the Big Rip, and
the possibility of avoiding these by considering interactions
between the three-form field, portraying dark energy, and
dark matter. With the aid of dynamical systems techniques,
it was found that this can be achieved only by considering
interactions not directly involving the dark matter species.
The authors also shed some light on how to distinguish the
quadratic and linear dark energy interactions, through the
statefinder hierarchy diagnosis and computing the growth
of matter perturbations, compatible with the observational
SDSS III data. An alternate procedure to avoid these future
cosmological abrupt events induced by the three-form is
the quantization of the aforementioned system [21]. The
Lagrangian formalism for a single three-form fluid with a
noncanonical Maxwell term was also explored, in compari-
son with k-essence cosmology, in [22].

More recently, theories embracing three-forms have been
extended to spherically symmetric and static spacetimes,
in particular, wormhole geometries [23]. More specifically,
solutions were found for the modified field equations, assum-
ing a single static and radial-dependent three-form field,
where the standard matter fields are allowed one to dwell
within the entire wormhole domain without violating the null
and weak energy conditions.

Indeed, the present work also deals with static three-forms
supporting spherically symmetric spacetimes, however, in
the context of black holes and naked singularities. In fact,
black hole solutions are well known in many gravitational
field models and, in particular, in standard scalar–tensor
extensions of general relativity. For instance, black hole solu-
tions were recently found in the scalar–tensor representa-
tion of the hybrid metric-Palatini gravitational theory [24],
which is a combination of the metric and Palatini f (R) for-
malisms unifying local constraints at the Solar System level
and the late-time cosmic acceleration [25–28]. Furthermore,
many other exact analytical black hole solutions have been
obtained and studied extensively for nonminimally coupled
scalar fields [29–34] (for a review of the nonsingular general
relativistic solutions with minimally coupled scalar fields see
[35]).

Generally the latter solutions have been derived in the
Einstein frame, without the assumption of the existence of
any coupling between the scalar field and the Ricci scalar.

Similarly to these scalar field models, the three-form field
theory we have considered is also formulated in the Einstein
frame. However, there are fundamental differences between
the three-form field theory and scalar field models in the
Einstein or Jordan frames. An interesting result in the Brans–
Dicke-type scalar–tensor theories is that the solutions with
zero scalar field potential have in general no horizons [36].
Our analytic and numerical investigations show that this is
not the case in the three-form field theory. Another interest-
ing result in scalar–tensor theories is that globally regular,
asymptotically flat solutions are possible. These solutions
correspond to at least partly negative potentials V (φ), and
they are solitons without horizons and with a regular center
[37]. However, these results specific to scalar–tensor theories
cannot be recovered in the three-form fields gravitational the-
ory. On the other hand our analytical and numerical investi-
gations do not indicate the possible existence of any globally
regular solutions.

This work is outlined in the following manner: in Sect.
2, we present the general formalism of the three-form field
extension of general relativity. In Sect. 3, considering a static
and spherically symmetric background, we deduce the grav-
itational field equations. In Sect. 4, exact vacuum solutions
with three-form fields are presented, for the specific cases
of a zero potential and for a constant potential. In Sect. 5,
numerical solutions of the field equations are explored, for
the Higgs potential and the exponential potential. The ther-
modynamic properties of the black holes solutions obtained
are studied in Sect. 6. Finally, in Sect. 7, we discuss and
summarize our results.

2 Einstein gravity with a three-form field: general
formalism

We start by considering the following action for Einstein
gravity with a standard three-form field Aαβγ :

S =
∫

d4x
√−g

(
1

2κ2 R + LA

)
, (1)

with R being the Ricci scalar, g = det gμν the determi-
nant of the metric tensor, κ2 = 8πG and LA stands for the
Lagrangian density for our three-form, which reads [1,5]

LA = − 1

48
F2 − V (A2), (2)

where we have used the notation

F2 = Fαβγ δF
αβγ δ and A2 = Aαβγ A

αβγ . (3)

Here V (A2) is the three-form potential and F = dA is the
field strength tensor [15,20], a four-form, whose components
can be written as

Fαβγ δ = ∇αAβγ δ − ∇δAαβγ + ∇γ Aδαβ − ∇β Aγ δα, (4)
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with ∇μ being the covariant derivative. The equations of
motion for our three-form can be found by varying the action
Eq. (1) with respect to Aαβγ . They read [6,23]

∇μF
μ

αβγ = 12
∂V

∂(A2)
Aαβγ . (5)

Varying now Eq. (1) with respect to the metric gμν one
finds the following field equations:

Gμν = κ2 Tμν, (6)

where Gμν is the Einstein tensor and Tμν is the energy
momentum tensor of our form field source:

Tμν = −2
δLA

δgμν
+ gμνLA

= 1

6
(F ◦ F)μν + 6

∂V

∂(A2)
(A ◦ A)μν + LA gμν, (7)

with a circle denoting contraction of all indices but the first,
i.e., (F ◦ F)μν = Fμαβγ F

αβγ
ν .

We will construct our three-form with the aid of its dual
vector (one-form) [23], via the Hodge star operator

Bμ = (�A)δ = 1

3!
1√−g

εμαβγ Aαβγ . (8)

Inverting the last identity, we express the three-form compo-
nents in terms of its dual vector

Aαβγ = √−g εαβγ δB
δ. (9)

We now build the three-form components by parameterizing
Bμ in terms of a radial scalar function ζ = ζ(r), i.e.,

Bδ = (0, ζ(r), 0, 0)T . (10)

Due to the antisymmetric nature of differential forms, once
we attain a solution for ζ(r), all the three-form components
are automatically determined through Eq. (9).

Through Eqs. (4) and (9), we may rewrite the kinetic term
in the action Eq. (1) as [7]

− 1

48
F2 = −1

2
F0123F

0123 = 1

2
(∇μB

μ)2. (11)

We now consider applications of the general formalism
obtained here to the specific case of static and spherically
symmetric spacetimes.

3 Spherically symmetric and static background

3.1 Metric and field equations

Consider a static and spherically symmetric spacetime, given
by the following line element:

ds2 = −eα(r)dt2 + eβ(r)dr2 + r2
(
dθ2 + sin2 θ dφ2

)
.

(12)

On this background geometry, the invariant A2 is given
by

A2 = −6 eβ(r)ζ(r)2, (13)

and the term expressing the kinetic energy of the three-form
is provided by

F2 = −6

[
ζ

(
α′ + β ′ + 4

r

)
+ 2ζ ′

]2

, (14)

where a prime denotes the derivative with respect to the radial
component.

The equations of motion (5) can now be written in terms
of ζ , using the metric Eq. (12), as

2ζ ′′ +
(

α′ + β ′ + 4

r

)
ζ ′ +

(
α′′ + β ′′ − 4

r2

)
ζ + 2V,ζ = 0,

(15)

where V,ζ = ∂V/∂ζ .
Through Eq. (7), using Eq. (12), the components of the

energy momentum tensor are then found to be

T t
t = −ρ = F2

48
− V + ζV,ζ , (16)

T r
r = pr = F2

48
− V, (17)

T θ
θ = T φ

φ = p = T t
t , (18)

where the F2 term is given by Eq. (14) and we identify ρ,
pr and p with the energy density, the radial pressure, and
the tangential pressure, respectively, of the three-form. The
components of the Einstein tensor can be written as

Gt
t = 1

r2

d

dr

[
r
(
e−β − 1

)] = e−β

r2

(
1 − rβ ′ − eβ

)
, (19)

Gr
r = e−β

r2

(
1 + rα′ − eβ

)
, (20)

Gθ
θ = Gφ

φ = e−β

2

[
α′′ +

(
1

r
+ α′

2

) (
α′ − β ′)] . (21)

At this point, we have four variables, namely, α, β, ζ

and V , and four independent equations, namely, the equation
of motion for ζ , i.e., Eq. (15) and the three field equations
(setting κ = 1 for simplicity):

e−β

r2

(
1 − rβ ′ − eβ

) = F2

48
− V + ζV,ζ , (22)

e−β

r2

(
1 + rα′ − eβ

) = F2

48
− V, (23)

e−β

2

[
α′′ +

(
1

r
+ α′

2

) (
α′ − β ′)] = F2

48
− V + ζV,ζ .

(24)
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Combining the first two field equations, Eqs. (22) and (23),
one finds

α′ + β ′ = −reβζV,ζ . (25)

Using Eqs. (22) and (24) yields

2

r2

(
1 − rβ ′ − eβ

) = α′′ +
(

1

r
+ α′

2

) (
α′ − β ′) . (26)

Moreover, from Eq. (22) we obtain

rβ ′ = 1 − eβ

[
1 +

(
F2

48
− V + ζVζ

)
r2

]
. (27)

These expressions will be useful below.

3.2 Dynamical system formulation

The field equation (22) can be rewritten as

d

dr

(
re−β

) = 1 −
(
V − ζV,ζ − F2

48

)
r2, (28)

and can immediately be integrated to give

e−β = 1 − 2Meff(r)

r
, (29)

where the effective mass Meff(r) is defined as

Meff(r) = 1

2

∫ r

0

(
V − ζV,ζ − F2

48

)
r2dr , (30)

and satisfies the mass continuity-type equation

dMeff(r)

dr
= 1

2

(
V − ζV,ζ − F2

48

)
r2. (31)

From Eq. (23) we obtain the expression of α′:

α′ = r3
(
F2/48 − V

) + 2Meff(r)

r2 (1 − 2Meff(r)/r)
. (32)

With the use of Eq. (25), Eq. (15) can be reformulated as

ζ ′′ +
[

2

r
− rζ

(
V,ζ + ζV,ζ ζ /2

)
1 − 2Meff (r)/r

]
ζ ′ − G (r, ζ ) ζ + V,ζ = 0,(33)

where we have denoted

G (r, ζ ) = 2

r2 + ζV,ζ

2 [1 − 2Meff(r)/r ]

×
[

2 − 1 + (
F2/48 − V + ζV,ζ

)
r2

1 − 2Meff(r)/r

]
. (34)

Finally, for the function F2 we obtain

F2 = −6

[(
4

r
− rζV,ζ

1 − 2Meff(r)/r

)
ζ + 2ζ ′

]2

. (35)

Here we have presented the relevant equations, which set
the stage for exploring solutions, both exactly and numeri-
cally.

4 Exact vacuum solutions with three-form fields

In the present section we will consider some solutions of
the system of the vacuum field equations (22)–(24), respec-
tively, which must be solved together with Eq. (15), once the
functional expression of the three-form potential V is fixed.

4.1 First case: V = 0

If the three-form field potential V identically vanishes, V ≡
0, then Eq. (25) can be immediately integrated, giving

α = −β, (36)

where we have set, without loss in generality, the arbitrary
integration constant equal to zero. Then Eq. (26) becomes

α′′ + α′2 = 2

r2

(
1 − e−α

)
. (37)

By introducing a new variable α = ln f , Eq. (37) becomes

f ′′ − 2 f

r2 + 2

r2 = 0, (38)

with the general solution given by

f (r) = 1 + c1

r
+ c2r

2, (39)

where c1 and c2 are arbitrary constants of integration. Since in
the limit F2 → 0 the Schwarzschild solution of standard gen-
eral relativity must be recovered, it follows that c1 = −2M ,
where M is the mass of the gravitating body, while c2 = −�

can be interpreted as the cosmological constant. Hence, we
have recovered the Schwarzschild–de Sitter solution, with
the cosmological constant naturally included,

eα = e−β = 1 − 2M

r
− �r2. (40)

Equation (15), giving the evolution of the function ζ ,
becomes

ζ ′′ + 2

r
ζ ′ − 2

r2 ζ = 0, (41)

and it has the general solution

ζ(r) = C1r + C2

r2 , (42)

where C1 and C2 are arbitrary constants of integration. With
the use of Eq. (42), we obtain finally for F2 the expression

F2 = −216C2
1 = constant, (43)

as expected. On the other hand with the use of the field equa-
tion (23) we obtain F2 = 144c1 = −288M . By comparing
the two expressions for F2 we obtain for C1 the representa-
tion C1 = √

4M/3.
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4.2 The constant potential V = V0 = constant

In the case of the constant potential V = V0 = constant,
Eq. (33) take the same form as in the case of the vanishing
scalar potential of the three-form field, Eq. (41), and its solu-
tion is given again by Eq. (42). As for F2, given by Eq. (35),
we obtain again F2 = −216C2

1 . By integrating the mass
continuity equation, Eq. (31), we obtain

Meff(r) = 1

6

[
V0 + 9

2
C2

1

]
r3 + c1, (44)

where c1 is an arbitrary constant of integration. Hence for
e−β we immediately obtain

e−β = 1 − c1

r
− 1

6

[
V0 + 9

2
C2

1

]
r2. (45)

Since also in the constant potential case the general rela-
tion α +β = 0 holds, we obtain the metric tensor coefficient
eα as

eα = 1 − c1

r
− 1

6

[
V0 + 9

2
C2

1

]
r2. (46)

The solution is again of the Schwarzschild–de Sitter type,
with the potential V0 generating, together with F2, an effec-
tive cosmological constant. On the other hand, the arbitrary
integration constant c1 is undetermined by the field equa-
tions, and must be chosen from physical considerations. If
the integration constantC1 and the constant potential V0 van-
ish, the metric reduces to the standard Schwarzschild form.
Moreover, there are no restrictions on the integration constant
c1, whose sign and physical interpretation remains arbitrary.

5 Numerical solutions of the field equations

The system of three Eqs. (31), (32) and (33) for the three
unknown functions Meff , α and ζ , representing a strongly
nonlinear system of differential equations, determines the
vacuum solutions of the three-form field model gravity. In
order to integrate the equations we introduce a new indepen-
dent variable η, defined as

η = 1

r
. (47)

Then we can reformulate the gravitational field equations
as the following first order dynamical system:

dζ

dη
= u, (48)

dMeff

dη
= 1

2

(
F2

48
+ ζV,ζ − V

)
1

η4 , (49)

dα

dη
= − F2/48 − V + 2η3Meff

η3 (1 − 2ηMeff)
, (50)

du

dη
= − V,ζ + ζV,ζ ζ /2

η3 (1 − 2ηMeff)
u + 1

η4 G (η, ζ ) ζ − V,ζ

η4 , (51)

where

G (η, ζ ) = 2η2 + ζV,ζ

2 (1 − 2ηMeff)

×
[

2 − η2 + (
F2/48 − V + ζV,ζ

)
η2 (1 − 2ηMeff)

]
(52)

and

F2 = −6

[(
4η − ζV,ζ

η (1 − 2ηMeff)

)
ζ − 2η2u

]2

, (53)

respectively. In order to obtain the above equations we have
used the mathematical relations dζ/dr = −η2dζ/dη, and

d2ζ

dr2 = η4 d2ζ

dη2 + 2η3 dζ

dη
, (54)

respectively. The system of Eqs. (48), (49), (50) and (51)
must be integrated with the initial conditions at infinity, given
by Meff(0) = M (0)

eff , α(0) = 0, ζ(0) = ζ0, and u(0) = u0,
respectively.

5.1 The Higgs potential: V (ζ ) = μ2ζ 2 + νζ 4

5.1.1 General considerations

The Higgs-type potential

V (ζ ) = μ2ζ 2 + νζ 4 (55)

plays a fundamental role in elementary particle physics. From
a physical point of view we may assume that −μ2 represents
the mass of the three-form field associated to the gravitational
interaction. For the strong interaction case the Higgs self-
coupling constant ν takes the value ν ≈ 1/8 [38], a value
which follows from the analysis of accelerator experiments.
But of course in the case of the gravitational models in the
presence of a three-form field the values of both μ2 and ξ

may be very different from those suggested by elementary
particle physics.

In the case of the Higgs-type potential of the three-form
field the vacuum gravitational field equations take the form

dζ

dη
= u,

dMeff

dη
= 1

2

[
F2

48
+

(
μ2 + 3νζ 2

)
ζ 2

]
1

η4 , (56)

dα

dη
= − F2/48 − (

μ2 + νζ 2
)
ζ 2 + 2η3Meff

η3 (1 − 2ηMeff )
, (57)

du

dη
= −

(
3μ2 + 10νζ 2

)
ζ

η3 (1 − 2ηMeff )
u + 1

η4 G (η, ζ ) ζ − 2
(
μ2 + 2νζ 2

)
η4 ,

(58)
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Fig. 1 Specific case of the Higgs potential: Variation of the metric
tensor coefficient eα as a function of the coordinate η, for ν = 0.01 and
for different values of μ2: μ2 = 0.0001 (solid curve), μ2 = 0.00012
(dotted curve), μ2 = 0.00013 (short dashed curve), μ2 = 0.000138
(dashed curve), and μ2 = 0.000141 (long dashed curve), respectively

where G(η, ζ ) and F2 are given by

G (η, ζ ) = 2η2 + 2
(
μ2 + 2νζ 2

)
ζ 2

2 (1 − 2ηMeff)

×
{

2 − η2 + [
F2/48 + (

μ2 + 3νζ 2
)
ζ 2

]
η2 (1 − 2ηMeff)

}

(59)

and

F2 = −6

{[
4η − 2

(
μ2 + 2νζ 2

)
ζ 2

η (1 − 2ηMeff)

]
ζ − 2η2u

}2

, (60)

respectively. Equations (56)–(58) must be considered with
the initial conditions at infinity Meff = 1, ζ(0) = 10−5,
u(0) = 40, and α(0) = 0, respectively. In Figs. 1, 2, 3 and
4 we present the variations with respect to η of the metric
tensor coefficients eα , e−β , of the effective mass Meff and of
the radial scalar function ζ .

The variation of the metric tensor coefficient eα is repre-
sented in Fig. 1. The metric function monotonically decreases
from its constant, Minkowskian value at infinity, to zero, a
value reached for finite values of η, and which defines the
singular surface of the black hole, or its event horizon. The
position of the event horizon is strongly dependent on the
numerical values of μ2. A similar behavior characterizes the
metric tensor component e−β , whose variation with respect
to η is represented in Fig. 2. The inverse of the metric ten-
sor component decreases linearly from infinity to the event
horizon of the black hole, where the metric tensor becomes
singular. Similarly to eα , the variation of e−β is significantly
influenced by the numerical values of μ2. The changes in the
effective mass Meff are plotted in Fig. 3. The mass increases
rapidly from its initial value at infinity to a maximum value,
reached before the event horizon, an effect due to the pres-
ence of the three-form field, and its mass–energy contribution

Fig. 2 Specific case of the Higgs potential: Variation of the metric
tensor coefficient e−β as a function of the coordinateη, forν = 0.01, and
for different values of μ2: μ2 = 0.0001 (solid curve), μ2 = 0.00012
(dotted curve), μ2 = 0.00013 (short dashed curve), μ2 = 0.000138
(dashed curve), and μ2 = 0.000141 (long dashed curve), respectively

Fig. 3 Specific case of the Higgs potential: Variation of the effective
mass Meff as a function of the coordinate η, for ν = 0.01, and for
different values of μ2: μ2 = 0.0001 (solid curve), μ2 = 0.00012
(dotted curve), μ2 = 0.00013 (short dashed curve), μ2 = 0.000138
(dashed curve), and μ2 = 0.000141 (long dashed curve), respectively

Fig. 4 Specific case of the Higgs potential: Variation of the radial scalar
function ζ as a function of the coordinate η, for ν = 0.01, and for
different values of μ2: μ2 = 0.0001 (solid curve), μ2 = 0.00012
(dotted curve), μ2 = 0.00013 (short dashed curve), μ2 = 0.000138
(dashed curve), and μ2 = 0.000141 (long dashed curve), respectively
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Fig. 5 Variation of the metric tensor coefficient eα , for the Higgs
potential, as a function of the coordinate η, for μ2 = 0.000095, and
for different values of ν: ν = 0.04 (solid curve), ν = 0.08 (dotted
curve), ν = 0.12 (short dashed curve), ν = 0.16 (dashed curve), and
ν(0) = 0.20 (long dashed curve), respectively

to the mass of the central object. After reaching its max-
imum value the effective mass decreases before reaching
the event horizon. However, for some particular values of
μ2, the mass becomes approximately constant beginning for
some finite value of η. This indicates that the model enters
very quickly in an approximate Schwarzschild regime, with
e−β ≈ 1−2Meffη, with Meff a function of the parameters of
the Higgs-type potential, and of the initial conditions for ζ .
This dependence on the initial conditions and on the param-
eters of the potential also determines the modifications of the
position of the event horizon of the black hole, with respect to
its standard general relativistic value. The dependence of the
scalar radial function ζ is depicted in Fig. 4. The behavior of
ζ indicates a complex dynamics, with ζ increasing initially,
reaching a maximum value, and then becoming again zero
at the event horizon. For some values of the Higgs potential
the variation has a quasi-oscillatory behavior, characterized
by an alternation of local maxima and minima.

The behavior of the geometric and physical quantities in
vacuum for the three-form supported black holes also depend
sensitively on the numerical values of the self-coupling con-
stant ν of the Higgs potential. In Figs. 5, 6, 7 and 8 we present
the behavior of the metric tensor components, of the effec-
tive mass and of the scalar function ζ for different values
of ν. To integrate the gravitational field equations we have
fixed the values of μ2 = 0.000095, ζ(0) = 0, u(0) = 40,
Meff(0) = 1, and α(0) = 0, respectively, and we have varied
the values of ν.

The metric tensor components eα and e−β , represented in
Figs. 5 and 6, decrease from their Minkowski values at infin-
ity to zero, corresponding to a finite value of η, indicating the
presence of a singularity corresponding to the formation of
a black hole. Their numerical values depend effectively on
the numerical values of ν, which also strongly influence the

Fig. 6 Variation of the metric tensor coefficient e−β , for the Higgs
potential, as a function of the coordinate η, for μ2 = 0.000095, and
for different values of ν: ν = 0.04 (solid curve), ν = 0.08 (dotted
curve), ν = 0.12 (short dashed curve), ν = 0.16 (dashed curve), and
ν(0) = 0.20 (long dashed curve), respectively

Fig. 7 Variation of the effective mass Meff , for the Higgs potential, as
a function of the coordinate η, for μ2 = 0.000095, and for different
values of ν: ν = 0.04 (solid curve), ν = 0.08 (dotted curve), ν = 0.12
(short dashed curve), ν = 0.16 (dashed curve), and ν(0) = 0.20 (long
dashed curve), respectively

Fig. 8 Variation of the radial scalar function ζ , for the Higgs potential,
as a function of the coordinate η, for μ2 = 0.000095, and for different
values of ν: ν = 0.04 (solid curve), ν = 0.08 (dotted curve), ν = 0.12
(short dashed curve), ν = 0.16 (dashed curve), and ν(0) = 0.20 (long
dashed curve), respectively
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Table 1 The position of the event horizon ηS for selected values of the
initial conditions and Higgs model parameters

ζ0 u0 μ2 ν ηs

10−5 40 0.0001 0.01 0.88

10−5 40 0.00012 0.01 0.46

10−5 40 0.00013 0.01 0.49

10−5 40 0.000138 0.01 0.61

10−5 40 0.000141 0.01 0.76

10−5 40 0.0001 0.015 0.59

10−5 40 0.0001 0.02 0.51

10−5 40 0.0001 0.015 0.48

10−5 40 0.0001 0.015 0.46

10−5 45 0.0001 0.01 0.75

10−5 50 0.0001 0.01 0.66

10−5 55 0.0001 0.01 0.58

10−5 55 0.0001 0.01 0.54

10−4 40 0.0001 0.01 0.78

5 × 10−4 40 0.0001 0.01 0.56

10−3 40 0.0001 0.01 0.48

5 × 10−5 40 0.0001 0.01 0.44

position of the event horizon. The effective mass, shown in
Fig. 7, increases from its value at infinity towards a maximum
value reached far away from the event horizon. The value of
the effective mass also strongly depends on the self-coupling
constant ν. For some numerical values of ν the mass becomes
roughly a constant beginning from a finite η, and the geom-
etry near the compact object becomes quasi-Schwarzschild,
with the effective mass of the black hole strongly dependent
on the values of ν. The radial scalar function ζ , represented
in Fig. 8, also shows an effective dependence on ν, reach-
ing, similarly to the effective mass, a finite value at the event
horizon of the black hole.

The numerical values of the event horizon ηS are pre-
sented, for a selected value of the initial conditions and of
the model parameters, in Table 1. In the adopted system of
units the position of the Schwarzschild singularity corre-
sponds to ηS = 1/2. The position of the event horizon rs
of the black hole is found to be rs = rg/ηS , where rg is the
Schwarzschild gravitational radius of the object, defined as
rg = GM/c2, where M is the total mass of the object. For
example, the physical position of the event horizon of the
black hole supported by a three-form field with Higgs poten-
tial having ηS = 0.88 is located at rs = 1.13rg , indicating a
black hole more extended that its Schwarzschild counterpart.
For a three-form field black hole with ηS = 0.44, the event
horizon is located at rs = 2.27rg . The three-dimensional dis-
tribution of the event horizons of the black holes supported
by three-form fields is represented in Fig. 9.

Fig. 9 Distribution of the event horizons of the three-form field sup-
ported black holes as a function of the parameters μ2 and ν of the
Higgs potential for ζ0 = {1, 1.105, 1.21, 1.315, 1.42} × 10−4, and
u0 = {1, 2, 3, 4, 5} × 10−2

5.1.2 Interpolating functions

In order to facilitate the further investigations of the prop-
erties of the three-form field supported black holes in the
following we will present some explicit analytic expressions
for the basic physical and geometrical quantities, obtained
from the interpolation of the numerical results. For the effec-
tive mass function Meff(η) we assume a general expression
of the form

Meff(η) = AMH + BMHη + CMHη2, (61)

where the coefficients AMH, BMH, and CMH are functions of
(μ2, ν, ζ0, u0). In the following analysis we will concentrate
mostly on the dependence on the initial conditions, and hence
we will fix the parameters of the Higgs potential as μ2 =
10−4, and ν = 10−2, respectively. Then we obtain

Av = −1.915 − 3031.75ζ0 − 509.327

√
ζ0

u0

+142182
ζ0

u0
+ 0.1444u0 − 0.0016u2

0, (62)

with the correlation coefficient R2 = 0.999,

BMH = 70.627 + 81785.6ζ0 − 5.312 × 107ζ 2
0

−2.98 × 106 ζ0

u0
− 3.27u0 + 0.036u2

0, (63)

with R2 = 0.989, and

CMH = −294.508 + 916417ζ0 − 1.4889 × 107 ζ0

u0

+12.86u0 − 12456.8ζ0u0 − 0.129447u2
0, (64)
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with R2 = 0.99. The general expression of the metric tensor
component eα is

eα(η) = AαH + BαHη + CαHη2, (65)

with the coefficients AαH , BαH , CαH given, for fixed μ2 and
ν, as functions of (ζ0, u0) by

AαH = 0.847 − 125.916ζ0 − 36.981

√
ζ0

u0
+ 9656.83

ζ0

u0

+0.0069u0 − 0.000059u2
0, (66)

with R2 = 0.999,

BαH = 0.62 + 2036.19ζ0 − 4.162 × 106ζ 2
0

−102912 × 106 ζ0

u0
− 0.0942u0 + 0.000678u2

0,

(67)

with R2 = 0.999, and

CαH = −2.754 + 90221.2ζ0 − 1.96 × 106 ζ0

u0

+0.00058u0 − 882.929ζ0u0 − 0.00193u2
0, (68)

with R2 = 0.998.
For the metric tensor component eβ the general interpo-

lating function can be taken as

eβ(η) = AβH + BβHη + CβHη2, (69)

with the coefficients AβH , BβH , and CβH given as functions
of (ζ0, u0) by

AβH = 1.653 + 730.135ζ0 + 67.886

√
ζ0

u0
− 35382

ζ0

u0

+0.0324u0 − 0.000353u2
0, (70)

with R2 = 0.999,

BβH = 12.688 − 16943.1ζ0 + 9.355 × 106ζ 2
0 + 737250

ζ0

u0

−1.12u0 + 0.0296u2
0 − 0.000243u3

0, (71)

with R2 = 0.976, and

CβH = 59.249 + 212369ζ0 + 3.0549 × 106 ζ0

u0
− 2.506u0

+2762.06ζ0u0 + 0.0206u2
0, (72)

with R2 = 0.999.

5.2 The exponential potential: V (ζ ) = V0eλζ

As a second example of black hole solutions supported by
a three-form field with non-zero potential, we consider the
case of the exponential-type potential, V (ζ ) = V0eλζ , where
V0 and λ are constants. There are many physical processes
in string theory and elementary particle physics described
by this type of potential. For example, an exponential-type

potential is obtained in string-type theories and in four-
dimensional effective Kaluza–Klein theories from the com-
pactification of the higher dimensions. Moduli fields and non-
perturbative effects in quantum field theory such as gaugino
condensation can also generate exponential-type potentials
for scalar fields [39]. The role of the exponential potential
has been intensively investigated especially in the framework
of scalar field cosmological and gravitational models and for
many field configurations, including the inhomogeneous and
homogeneous scalar fields [40–48]. In the presence of an
exponential potential the gravitational field equations (48)–
(51) take the form

dζ

dη
= u,

dMeff

dη
= 1

2

[
F2

48
+ V0 (λζ − 1) eλζ

]
1

η4 , (73)

dα

dη
= − F2/48 − V0eλζ + 2η3Meff

η3 (1 − 2ηMeff)
, (74)

du

dη
= −V0λ (1 + λζ/2) eλζ

η3 (1 − 2ηMeff)
u + 1

η4 G (η, ζ ) ζ − λV0eλζ

η4 ,

(75)

where

G (η, ζ ) = 2η2 + λV0ζeλζ

2 (1 − 2ηMeff)

×
{

2 − η2 + [
F2/48 + V0 (λζ − 1) eλζ

]
η2 (1 − 2ηMeff)

}

(76)

and

F2 = −6

{[
4η − λV0ζeλζ

η [1 − 2ηMeff ]

]
ζ − 2η2u

}2

, (77)

respectively.

5.2.1 Naked singularity solutions

The description of the state and structure of ordinary mate-
rial systems, forming an initial regular distribution, after the
gravitational collapse, is one of the most important theoret-
ical and observational problems in general relativity. There
are two questions one should consider when investigating
the gravitational collapse. The first question is to find the ini-
tial conditions of the gravitational collapse that lead to the
formation of a black hole. On the other hand a careful inves-
tigation of the gravitational collapse shows that it does not
end always with the creation of a black hole. Depending on
the initial conditions, another type of object, called a naked
singularity, can also be born as the final state of the collapse
[49–54]. For reviews of the naked singularity problem see
[55,56], respectively.
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Fig. 10 Variation of the metric tensor coefficient eα as a function of
the coordinate η for the case of the exponential three-form potential
V = V0eλζ , for λ = −10−3, and for different values of V0: V0 = 0.001
(solid curve), V0 = 0.0012 (dotted curve), V0 = 0.0013 (short dashed
curve), V0 = 0.0014 (dashed curve), and V0 = 0.0015 (long dashed
curve), respectively

The second question one must also necessarily consider
is the question if the physically realistic collapse solutions of
the Einstein gravitational field equations that indicate the for-
mation of naked singularities do really correspond to existing
natural objects, which can be observed by astrophysical or
astronomical methods. If detected observationally, the exis-
tence of the naked singularities would be counterexamples of
the Cosmic Censorship Hypothesis, proposed by Roger Pen-
rose [57]. The Cosmic Censorship Hypothesis conjectures
that curvature singularities are always covered in asymptoti-
cally flat spacetimes by event horizons. In fact, one can for-
mulate the Cosmic Censorship Hypothesis in a strong sense
(in a geometry that is physically appropriate naked singular-
ities cannot form), and in a weak sense (if naked singular-
ities do really exist, they are securely covered by an event
horizon, and therefore they cannot be detected by far-away
observers). There have been many attempts to prove the Cos-
mic Censorship Hypothesis (see [58] for a review of the early
investigations and results in this field). For the possibilities
of observationally identifying naked singularities see [59],
and the references therein.

For a certain range of parameters and of initial conditions,
naked singularity solutions of the gravitational field equa-
tions in the presence of a three-form field with exponential
potential can also be obtained. In Figs. 10, 11, 12 and 13 we
present the behavior of the metric tensor coefficients eα , e−β ,
of the effective mass Meff , and of the radial scalar function ζ

for the initial conditions M(0) = 1, α(0) = 0, ζ(0) = 10−5,
and u(0) = 10−4, respectively. For λ we have adopted the
value λ = −10−3, and we have slightly varied the numerical
values of V0.

As one can see from Figs. 10 and 11, the metric tensor
coefficients are monotonically increasing functions of η, and
they are singular only at the origin η → ∞, or, equivalently,

Fig. 11 Variation of the metric tensor coefficient e−β as a function of
the coordinate η for the case of the exponential three-form potential
V = V0eλζ , for λ = −10−3, and for different values of V0: V0 = 0.001
(solid curve), V0 = 0.0012 (dotted curve), V0 = 0.0013 (short dashed
curve), V0 = 0.0014 (dashed curve), and V0 = 0.0015 (long dashed
curve), respectively

Fig. 12 Variation of the effective mass Meff as a function of the coordi-
nate η for the case of the exponential three-form potential V = V0eλζ ,
for λ = −10−3, and for different values of V0: V0 = 0.001 (solid
curve), V0 = 0.0012 (dotted curve), V0 = 0.0013 (short dashed curve),
V0 = 0.0014 (dashed curve), and V0 = 0.0015 (long dashed curve),
respectively

Fig. 13 Variation of the radial scalar function ζ as a function of the
coordinate η for the case of the exponential three-form potential V =
V0eλζ , for λ = −10−3, and for different values of V0: V0 = 0.001
(solid curve), V0 = 0.0012 (dotted curve), V0 = 0.0013 (short dashed
curve), V0 = 0.0014 (dashed curve), and V0 = 0.0015 (long dashed
curve), respectively

123



Eur. Phys. J. C (2020) 80 :617 Page 11 of 20 617

Fig. 14 Variation of the metric tensor coefficient eα as a function of
the coordinate η for the case of the exponential three-form potential
V = V0eλζ , for V0 = 9.9 × 10−10, and for different values of λ:
λ = −40 (solid curve), λ = −120 (dotted curve), λ = −200 (short
dashed curve), λ = −280 (dashed curve), and λ = −360 (long dashed
curve), respectively

r → 0. The correspondent massive object does not have an
event horizon, and therefore it corresponds to a naked singu-
larity, with the only singular point located at the center. The
effective mass of the naked singularity, presented in Fig. 12,
becomes negative at infinity, and takes a constant, negative
value up to the singular center of the naked singularity. Hence
the metric of this exotic object can be represented as

eα(r) = e−β(r) = 1 + 2Meff
(
V0, λ, ζ0, ζ

′(0)
)

r
. (78)

The numerical values of the (negative) effective mass are
determined by the initial conditions of the gravitational field
equations at infinity, as well as by the parameters of the
exponential potential. The solutions of the gravitational field
equations depend sensitively on these parameters. The radial
scalar function ζ , shown in Fig. 13, diverges at the center of
the naked singularity. Its behavior is also dependent on the
initial conditions used to solve the gravitational field equa-
tions, and on the parameters of the exponential potential.

5.2.2 Black hole solutions

The static spherically symmetric vacuum gravitational field
equations in the presence of a three-form field also admit
black hole-type solutions. In Figs. 14, 15, 16 and 17 we
present the results of the numerical integration of the gravita-
tional field equations for M(0) = 1, α(0) = 0, ζ(0) = 10−2,
ζ ′(0) = 10−1, V0 = 9.9 × 10−10, and different values of λ.

As one can see from Figs. 14 and 15, the metric tensor
coefficients eα and e−β decrease monotonically from their
Minkowskian values at infinity to zero, a value reached for a
finite value of η = ηS . Hence the compact object possesses
an event horizon, and is thus a black hole. The effective mass
Meff , depicted in Fig. 16, decreases very quickly from its

Fig. 15 Variation of the metric tensor coefficient e−β as a function of
the coordinate η for the case of the exponential three-form potential
V = V0eλζ , for V0 = 9.9 × 10−10, and for different values of λ:
λ = −40 (solid curve), λ = −120 (dotted curve), λ = −200 (short
dashed curve), λ = −280 (dashed curve), and λ = −360 (long dashed
curve), respectively

Fig. 16 Variation of the effective mass Meff as a function of the coor-
dinate η for the case of the exponential three-form potential V = V0eλζ ,
for V0 = 9.9 × 10−10, and for different values of λ: λ = −40 (solid
curve), λ = −120 (dotted curve), λ = −200 (short dashed curve),
λ = −280 (dashed curve), and λ = −360 (long dashed curve), respec-
tively

initial value at infinity, and becomes a constant, having the
same numerical value from infinity to the event horizon of
the black hole. Hence the metric is of the Schwarzschild type,
with

eα(r) = e−β(r) = 1 − 2Meff
(
V0, λ, ζ(0), ζ ′(0)

)
r

, (79)

with the effective mass, and the position of the event hori-
zon depending on the initial conditions at infinity, and on
the parameters of the exponential potential. The radial scalar
function increases rapidly from infinity when approaching
the event horizon, and takes a finite value for η = ηS .

We can obtain an interpolating expression for the effective
mass function Meff in the case of the exponential potential,

123



617 Page 12 of 20 Eur. Phys. J. C (2020) 80 :617

Fig. 17 Variation of the radial scalar function ζ as a function of the
coordinate η for the case of the exponential three-form potential V =
V0eλζ , for V0 = 9.9 × 10−10, and for different values of λ: λ = −40
(solid curve), λ = −120 (dotted curve), λ = −200 (short dashed
curve), λ = −280 (dashed curve), and λ = −360 (long dashed curve),
respectively

Fig. 18 Variation of the position of the event horizons of the
three-form field supported black holes as a function of the
parameters V0 and λ of the exponential potential for ζ0 =
{0.0004, 0.0064, 0.0124, 0.0184, 0.0244} and u0 = {4, 8, 16, 32, 64}

Meff(η) ≈ A(exp)

MH , (80)

with the coefficient A(exp)

MH given, for fixed V0 and λ, by

A(exp)

MH ≈ 0.74 + 9.78ζ0 + 15.812

√
ζ0

u0
− 146.854

ζ0

u0

+0.00134u0 − 0.0000528u2
0, (81)

with R2 = 0.997.
The distribution of the position of the black holes event

horizon supported by a three-form field with exponential
potential are represented, for fixed V0 and λ, in Fig. 18.

6 Thermodynamic properties of black holes

In the present section we consider the thermodynamic prop-
erties of the black hole solutions supported by a three-form
field. In particular we will concentrate on the surface grav-
ity of the black holes, their Hawking temperature, their spe-
cific heat, their entropy and their Hawking luminosity. In our
investigation of the vacuum field equations in the three-form
fields model we have adopted the simplifying assumption
that the effective mass function and the lapse function eα are
functions of the radial coordinate r only. Hence the space-
time is static and a timelike Killing vector tμ exists [60,61].
In the present section, for the sake of clarity, we will restore
the physical units in all mathematical expressions.

6.1 Brief summary of black hole thermodynamics

For a static black hole that possesses a Killing horizon the
definition of the surface gravity κ̃ is given by [60,61]

tμ∇μt
ν = tν κ̃, (82)

where tμ is a Killing vector, and ∇μ denotes the covariant
derivative with respect to the metric. For a static, spherically
symmetric geometry, with the line element given by

ds2 = −σ̃ 2(r) f (r)c2dt2 + dr2

f (r)
+ r2d�2, (83)

we can adopt a suitable normalized Killing vector defined as
tμ = (1/σ̃∞, 0, 0, 0). Then the surface gravity of the black
hole is found to be [61]

κ̃ =
(

σ̃hor

σ̃∞

)
c4

4GMhor

[
1 − 2GM ′(r)

c2

]∣∣∣∣
hor

. (84)

The subscript hor requires that all physical quantities must be
evaluated on the outer apparent horizon. If the function σ̃ ≡
1, and M = constant, from the above definition we reobtain
the standard result of the surface gravity of a Schwarzschild
black hole, which is given by [60]

κ̃ = c4

4GMhor
. (85)

The temperature TBH of the black hole is found to be

TBH = h̄

2πckB
κ̃, (86)

where kB is Boltzmann’s constant. Equivalently, in the vari-
able r = rg/η we obtain for the Hawking temperature of the
black hole the expression

TBH = TH
Meff (ηS)

(
1 + η2 dMeff (η)

dη

)∣∣∣∣
η=ηS

= TH θ(η)|η=ηS
, (87)
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where

TH = h̄c3

8πGkBM0
, (88)

M0 is the standard general relativistic mass of the black hole,
and we have denoted

θ(η) = 1

Meff (η)

(
1 + η2 dMeff (η)

dη

)
. (89)

The specific heat CBH of the black hole is defined as

CBH = dM

dTBH
= dM

dr

dr

dTBH

∣∣∣∣
r=rhor

, (90)

and it takes the dimensionless form

CBH = M0

TH

dMeff (η)

dη

dη

dθ

∣∣∣∣
η=ηS

. (91)

The Hawking entropy SBH of the black hole is found to
be

SBH =
∫ rhor

rin

dM

TBH
=

∫ rhor

rin

1

TBH

dM

dr
dr , (92)

or, in a dimensionless form,

SBH (ηS) = CH

∫ ηS

0

1

θ (η)

dMeff (η)

dη
dη. (93)

The black hole luminosity due to Hawking evaporation
can be found to be

LBH = −dM

dt
= −σ ABHT

4
BH, (94)

where σ is a parameter depending on the adopted physical
model, while

ABH = 4πr2
hor (95)

is the surface area of the event horizon. Then for the black
hole evaporation time τ we find

τ =
∫ t f in

tin
dt = − 1

4πσ

∫ t f in

tin

dM

r2
horT

4
BH

. (96)

Hence for the black hole evaporation time τ we obtain the
expression

τ =
∫ t f in

tin
dt = − 1

4πσ

∫ t f in

tin

dM

r2
horT

4
BH

, (97)

Fig. 19 Variation of the dimensionless Hawking temperature of the
three-form field supported black holes as a function of the event horizon
radius ηS for the case of the Higgs-type three-form field potential, for
μ2 = 10−4, ν = 10−2, u0 ∈ [40, 60], and for different values of ζ0:
ζ0 = 10−5 (solid curve), ζ0 = 2 × 10−5 (dotted curve), ζ0 = 4 × 10−5

(short dashed curve), ζ0 = 8×10−5 (dashed curve), and ζ0 = 16×10−5

(long dashed curve), respectively

or, in an equivalent dimensionless form,

τ (ηS) = −τH

∫ ηS

0

1

η2θ4 (η)

dMeff (η)

dη
dη, (98)

where we have denoted

τH = c4

8πG2σM0T 4
BH

. (99)

6.2 Thermodynamics of the Higgs-type black holes

With the help of the interpolating function for the effective
mass the Hawking temperature of a black hole supported by
a three-form field is obtained explicitly:

TBH (ηS) = TH
1 + η2 (BMH + 2CMHη)

AMH + BMHη + CMHη2

∣∣∣∣
η=ηS

. (100)

The variations of the Hawking temperature of the three-
form field black holes are represented in Fig. 19.

The Hawking temperature depends on the position of the
event horizon of the three-form black hole, and it monotoni-
cally increases in time withηS . ForηS = 0.80,TBH ≈ 1.6TH ,
while for ηS = 0.60, TBH ≈ 1.2TH . The standard Hawk-
ing temperature is of the order of TH = 6.169 × 10−8 ×
(M�/M0), and for astrophysical-type three-form field black
holes, having large masses, the shifts in the position of the
event horizon produce negligible effects.

The specific heat of the Higgs-type three-form field black
hole can be found to be

CBH (ηS) =
{
CH (BMH + 2CMHη) ×

[AMH + η (BMH + CMHη)]2
}/
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Fig. 20 Variation of the dimensionless specific heat of the three-form
field supported black holes as a function of the event horizon radius ηS
for the case of the Higgs-type three-form field potential, for μ2 = 10−4,
ν = 10−2,u0 ∈ [40, 60], and for different values of ζ0: ζ0 = 10−5 (solid
curve), ζ0 = 2 × 10−5 (dotted curve), ζ0 = 4 × 10−5 (short dashed
curve), ζ0 = 8×10−5 (dashed curve), and ζ0 = 16×10−5 (long dashed
curve), respectively

{
BMH

(
2AMHη + 4CMHη3 − 1

)

+η
[
CMH (6AMHη − 2) + 2C2

MHη3
]

+B2
MHη2

}
, (101)

and its variation with respect to the event horizon is repre-
sented in Fig. 20.

The specific heat of the three-form black holes shows a
complicated behavior. After initially increasing as a function
of ηS , CBH reaches a maximum, and then it monotonically
decreases towards a minimum value reached at η)S ≈ 0.90.
In the range ηS ∈ (0.50, 0.65) there is an increase in the
numerical values ofCBH as compared to the standard general
relativistic case, so that, for ηS = 0.65, CBH ≈ 1.45CH .

The variation of the black hole entropy as a function of
the event horizon, as given by Eq. (93), is represented in
Fig. 21. The behavior of the Hawking entropy of the three-
form field black holes has a similar behavior like their specific
heat. The entropies are monotonically increasing functions
for small ηS , they reach a maximum, and they decrease for
larger values of ηS . The maximum values of the entropy are
of the order SBH ≈ 1.5SH .

With the use of the general Eq. (98), the ratio of the black
hole evaporation time and of the Hawking evaporation time
is represented in Fig. 22. As a function of ηS the evaporation
time monotonically decreases from a maximum value τBH ≈
120τH , reached for ηS ≈ 0.55, to a value of τBH ≈ 20τH for
ηS ≈ 0.85. Since the standard Hawking evaporation time of
a black hole is of the order τH ≈ 4.8 × 10−27 × (M0/g)3,
it turns out that the evaporation time for three-form field
supported black holes can be one or two orders of magnitude
higher. Even so, the evaporation time for astrophysical size

Fig. 21 Variation of the dimensionless Hawking entropy of the three-
form field supported black holes as a function of the event horizon
radius ηS for the case of the Higgs-type three-form field potential, for
μ2 = 10−4, ν = 10−2, u0 ∈ [40, 60], and for different values of ζ0:
ζ0 = 10−5 (solid curve), ζ0 = 2 × 10−5 (dotted curve), ζ0 = 4 × 10−5

(short dashed curve), ζ0 = 8×10−5 (dashed curve), and ζ0 = 16×10−5

(long dashed curve), respectively

Fig. 22 Variation of the dimensionless evaporation time of the three-
form field supported black holes as a function of the event horizon
radius ηS for the case of the Higgs-type three-form field potential, for
μ2 = 10−4, ν = 10−2, u0∃[40, 60], and for different values of ζ0:
ζ0 = 10−5 (solid curve), ζ0 = 2 × 10−5 (dotted curve), ζ0 = 4 × 10−5

(short dashed curve), ζ0 = 8×10−5 (dashed curve), and ζ0 = 16×10−5

(long dashed curve), respectively

objects remains very high, with a three-form field black hole
having one solar mass completely evaporating via Hawking
radiation in around 1062 − 1063 years.

6.3 Exponential potential-type black holes

In the presence of an exponential potential of the three-form
field, the metric of the black holes are quasi-Schwarzschild,
with the effective mass a constant for most of the range of the
variation of η. Hence the thermodynamical properties of the
black holes can be obtained by the thermodynamic properties
of the Schwarzschild black holes, with the mass substituted
by the effective mass Meff , as given by Eq. (80). For the
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Hawking temperature of the exponential-type black hole we
obtain

TBH = h̄c3

8πGkBMeff (ηS)
≈ h̄c3

8πGkBA
(exp)

MH (V0, λ, ζ0, u0)
. (102)

Hence the Hawking temperature of the black hole is depen-
dent on the parameters of the potential, and of the initial
conditions at infinity of the field ζ . For the specific heat of
the black hole we obtain

CBH = −8πkBG

h̄G
Meff ≈ −8πkBG

h̄G
A(exp)

MH (V0, λ, ζ0, u0) . (103)

There is a dependence of the specific heat on the potential
parameters, and on the initial values for ζ . The negative sign
indicates that, as a black hole loses mass, and hence energy,
its temperature increases. For the entropy of the black hole
we can write down the standard expression,

SBH = kBc3

4h̄G
ABH = πkBc3

h̄G
r2

hor

= πkBGM2
0

h̄c

1

η2
S (V0, λ, ζ0, u0)

. (104)

The numerical value of the black hole entropy is deter-
mined by the mass of the central compact object, as well as
of the initial condition at infinity of the radial scalar function
ζ . Finally, for the rate of the mass loss we have the relation

dM

dt
= h̄c4

15360πG2

1

M2 , (105)

which yields for the lifetime of the black hole the expression

t = 5120πG2M3
0

h̄c4 M3
eff = 5120πG2M3

0

h̄c4 M3
eff

= 5120πG2M3
0

h̄c4

[
A(exp)

MH (V0, λ, ζ0, u0)
]3

. (106)

The corrections to the black hole lifetime are given by the
third power of the function A(exp)

MH (V0, λ, ζ0, u0), determined
by the parameters of the potential and the initial conditions at
infinity. However, the evaporation time of the black holes is
not significantly influenced by the potential parameters, and
the initial conditions.

7 Discussion and final remarks

In the present paper we have investigated the possible exis-
tence of massive compact astrophysical objects, described
by black hole and naked singularity-type geometries, in the
framework of the three-form field gravitational theory, in
which the standard Hilbert–Einstein action of general rel-
ativity is extended by the addition of the Lagrangian of a

three-form field. In order to investigate the gravitational prop-
erties of the model we have considered the simplest case,
corresponding to a vacuum static and spherically symmet-
ric geometry. In this case the system of gravitational field
equations depend on the scalar radial function ζ , the radial
component of the dual vector Bδ of Aαβγ , and on the arbitrary
potential V (ζ ) of the three-form field.

Even within the simple vacuum spherically symmet-
ric static model the field equations of the theory become
extremely complicated. However, the exact solution of the
field equations can be obtained in the case of a constant poten-
tial. In this case the metric functions can be obtained in a form
similar to the Schwarzschild–de Sitter geometry, but with
the solution containing two arbitrary integration constants
c1 and c2. Similarly to the metric, the radial scalar function
also depends on two arbitrary constants. Depending on the
choice of these constants, several types of compact geome-
tries can be obtained. We can first reproduce the standard
Schwarzschild–de Sitter geometry, in which the three-form
field generates a cosmological constant. However, different
choices of the constants are also possible, with the solutions
corresponding to the Schwarzschild–anti de Sitter geometry,
or, more interestingly, to naked singularities having no event
horizon, and with the singularity located at the center r = 0
of the massive object.

For arbitrary non-constant potentials V (ζ ) in order to
obtain solutions of the vacuum field equations one must use
numerical methods. In order to investigate numerically the
static spherically symmetric Einstein field equations in the
presence of a three-form field we have reformulated them in
a dimensionless form, and, moreover, we have introduced as
the independent variable η the inverse of the radial coordinate
η = rg/r . In this representation the numerical integration
procedure of the field equations is significantly simplified.
On the other hand to proceed with the numerical integration
we need to fix the numerical values of the effective mass,
of the radial scalar field ζ , and of its derivative ζ ′ at infin-
ity. In our present numerical approach we have assumed that
at infinity the geometry is asymptotically flat, and therefore
the metric tensor components take their Minkowskian values
when r → ∞. But at infinity the values of ζ , and of ζ ′ may
be arbitrary (but small), and this choice is consistent with
the interpretation of the radial scalar field as a cosmological
constant.

When integrating numerically the gravitational field equa-
tions two possible behaviors are detected. The presence of a
singular behavior at finite η = ηS in the field equations, or,
more precisely, in the variation with the distance of the met-
ric tensor coefficients, is explained as indicating the existence
of an event horizon. We detect the presence of the horizon
from the conditions eα(ηS) = 0 and e−β(ηS) = 0, respec-
tively. Consequently, a singularity at finite η corresponds to
a black hole-type massive astrophysical object. The physical

123



617 Page 16 of 20 Eur. Phys. J. C (2020) 80 :617

mass of the black hole corresponds to the effective mass of
the three-form field model, which is found to be the sum of
the standard mass of the black hole plus the energy contribu-
tion from the scalar component of the three-form field. The
second situation is related to the location of the singularity
at the center of the massive object r = 0 only, with the cor-
responding object representing a naked singularity, an object
not covered by an event horizon.

We have considered two classes of numerical solutions of
the gravitational field equations in the three-form field theory,
corresponding to two choices of the three-form field potential
V (ζ ). The potentials we have chosen for our investigations
are the Higgs-type potential, and the exponential-type poten-
tial, respectively. In the case of the Higgs potential we have
restricted our investigations to initial conditions that lead to
the formation of an event horizon, and consequently of black
holes. The locations of the event horizons are strongly depen-
dent on the values at infinity of the radial scalar field and of its
derivative (the initial conditions), indicating the existence of
an important and subtle relation between the initial values of
the three-form field at infinity, and the black hole properties.
The location of the event horizon is also strongly dependent
on the parameters μ2 and ν of the potential Higgs-type poten-
tial, indicating a complex multi-parametric dependence of
the position of the event horizon, and of the black hole prop-
erties. The event horizon for three-form field models with
Higgs potential can be located at distances of the order of
2rg from the massive object center, at distance much higher
than those of the standard Schwarzschild black holes, indicat-
ing the formation of more massive black holes than predicted
by standard general relativity. In the case of the Higgs poten-
tial the numerical results can be fitted well by some simple
analytical that depend on the initial conditions at infinity.

In the case of the exponential potential we have identi-
fied numerically two distinct classes of solutions, depend-
ing on the initial values of ζ and ζ ′ at infinity, and on the
potential parameters. These two classes correspond to naked
singularity-type solutions, with the singularity located at the
center, and no event horizon present, and to standard black
holes, characterized by the presence of an event horizon. In
both cases the numerical solutions for the metric functions
can be approximated well by a Schwarzschild-type form with
eα = e−β = 1 ± 2Meff/r , where Meff depends on the initial
conditions at infinity, and on the parameters of the expo-
nential potential. The positive sign indicates the presence of
a naked singularity, while the negative sign corresponds to
an object with an event horizon. The analytical fittings of
the numerical results are extremely useful in the study of
the thermodynamic properties of the three-form field black
holes. They also greatly simplify the study of the dynamics
and motion of matter particles around black holes and naked
singularities.

One important question in the physics of the naked singu-
larities is if the energy conditions are satisfied for this type
of objects. For example, in [53] it was shown that in the case
of a mixture of a null charged strange quark fluid and radia-
tion collapsing in a Vaidya spacetime a naked singularity can
be formed, with the matter satisfying the weak, strong and
dominant energy conditions. The formation of a naked sin-
gularity or of a black hole depends on the initial distribution
of the density and velocity, and on the constitutive nature of
the collapsing matter. In the case of the naked singularities
generated by the three form fields one could also formulate
a number of energy conditions, similar to the case of ordi-
nary matter, as ρ > 0, pr > 0, p > 0, ρ > pr > 0, and
ρ > p > 0. However, from a physical point of view, these
conditions refer to some effective quantities constructed from
the three form field, and generally they are not satisfied for
arbitrary three form field configurations.

The problem of the existence in nature of the naked sin-
gularities is closely related to their stability properties. The
Reissner–Nordström naked singularity with |Q| > M is
unstable under small linear perturbations, and a similar insta-
bility occurs for the rotating (Kerr) solution with angular
momentum a > M [62]. These results suggest that these
spacetimes cannot be the endpoint of physical gravitational
collapse. In [63] it was shown that as a result of the gravita-
tional collapse of a spherically symmetric scalar field the
formation of the naked singularities occurs, but this phe-
nomenon is unstable. However, as compared to the above-
mentioned types of naked singularities, those formed in the
presence of a three form field are of a modified Schwarzschild
type, with the sign of the term M/r changed from negative
to positive. The problem of their stability/instability is a very
interesting one, due to the different nature of the metric. It
is well known that the Schwarzschild black hole is linearly
stable under gravitational and electromagnetic perturbations
[64], so that one may conjecture that a similar property holds
for a three form field supported by Schwarzschild-type naked
singularities. Hence the investigation of the stability prop-
erties of the three form field naked singularities may lead
to different results as compared to the Reissner–Nordström,
Kerr or scalar field collapse cases.

We have also investigated in detail the thermodynamic
properties of the three-form field black hole solutions
obtained by numerical methods. The Hawking temperature is
an interesting and essential physical property of black holes.
The horizon temperature of the three-form black holes indi-
cates a strong dependence on the initial conditions at infinity
of the radial scalar field, and of the properties of the radial
scalar field potential. This is very different from the proper-
ties of the standard general relativistic Hawking temperature,
which depends only on the mass of the black hole, and is
independent of the asymptotic conditions at infinity. Simi-
lar properties characterize the behavior of the specific heat,
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entropy and evaporation time of the three-form field black
holes. The numerical results show that these quantities are
also strongly dependent on the initial conditions of the radial
scalar field ζ at infinity.

Moreover, in the three-form field gravitational theory the
black hole evaporation times may be very different as com-
pared to the similar results in standard general relativity. But
we should note that our results on the thermodynamics of
black holes, obtained for only two radial scalar field poten-
tials and for a limited range of initial conditions at infinity
may be considered of qualitative nature only. But even at this
qualitative level they show the complexity of the compact
objects supported by the three-form fields, and of the inter-
esting physical and astrophysical processes related to them.
In particular, the analytic representations of the numerical
results may be applied for the study of the electromagnetic
properties of the thin accretion disks existing around black
holes. These properties may help in discriminating the three-
form field black holes from other similar theoretical objects
as well as from their general relativistic counterparts, and
for allowing to obtain observational constraints on the model
parameters.

The no-hair theorem [65–68] is an important result in
black hole physics. It states that asymptotically flat black
holes do not allow for the presence of external nontrivial
scalar fields, with non-negative field potential V (φ). The
results obtained in our present investigations indicate that
in its standard formulation the no-hair theorem cannot be
extended to the static spherically symmetric solutions of the
three-form field gravitational theory. All the numerical black
hole solutions we have obtained are asymptotically flat, and
three-form fields with positive radial scalar field potentials
exist around them. Similar results have been obtained for
the black hole solutions in the hybrid metric-Palatini gravity
theory [24], suggesting that the no-hair theorems may not be
valid in some modified gravity theories. But the answer to
the question if such properties are a result of the particular
choice of the three-form field radial scalar potentials, of the
initial conditions and of the scalar potential parameters, or
that they are some generic properties of the theory, requires
further and detailed investigations, at both theoretical and
computational levels.

Different types of physical fields may play an important
role in astrophysics and cosmology, especially as potential
constituents of the dark energy and dark matter components
of the Universe. In particular the role of the scalar fields
has been intensively investigated. From a qualitative point
of view, since there is a dual representation of the three-
form theory to a scalar field [15,16] one may explore partic-
ular astrophysical settings describing objects such as oscil-
latons [69,70] or maybe, their complex relatives, boson stars
[71,72], in the scalar representative frame. In the latter case,
since boson stars are usually constructed from a complex

scalar field (decomposed as two real scalar fields), the exis-
tence of the dual description from a single three-form field
could be arguable. However, it is important to note that this
dual nature, three-form ↔ scalar field, breaks down in some
cases, even for fairly simple self-interactions [5], depending
on the choice for the potential V (A2). This fact, however, is
not problematic, and, on the contrary, simply suggests that
three-forms can provide us with new physics upon richer
cosmological and astrophysical settings, undoubtedly worth
exploring.

In particular, one may mention Bose–Einstein conden-
sates consisting of ultralight bosons, and which can form
localized and coherently oscillating stellar-type configura-
tions [73]. For bosons having a higher mass, the bounded con-
figurations may have typical masses and sizes of the order of
magnitude similar to those of the neutron stars. Such objects
formed from a primordial scalar field are known as boson
stars (for reviews on the structure and properties of boson
stars see [71] and [72]). Usually boson stars are constructed
from a complex scalar field coupled to gravity, with the scalar
field φ (t, �r) decomposed into two real scalar fields φR (t, �r)
and φI (t, �r) so that φ (t, �r) = φR (t, �r)+iφI (t, �r) [72]. The
evolution and properties of a boson star can be obtained from
the action [72]

SBS =
∫

d4x
√−g

(
1

2κ2 R + LSF

)
, (107)

where

LSF = −1

2

[
gμν∇μφ̄ ∇νφ + V

(
|φ|2

)]
, (108)

where φ̄ is the complex conjugate of the field, while V (|φ|2)
is the scalar field potential depending only on the magnitude
of the scalar field. There is a formal analogy between scalar
field models, and the three form field model investigated in
the present paper. In both cases the action is constructed from
the standard Hilbert–Einstein term plus the field Lagrangian,
which in our approach is given by Eq. (2). Hence if one
could map in the complex plane the three-form Lagrangian
LA �→ LSF , then the present three form field extension of
Einstein gravity would become equivalent with a scalar field
model, and the corresponding solutions, assuming that the
mapping three forms field → scalar field does exist, would
describe boson stars of different types.

In our analysis we have considered as a particular case
of the three-form field potential the Higgs-type potential,
given by Eq. (55). In the case of boson stars the gravitation-
ally bounded configuration with the quartic self-interaction
potential V

(|φ|2) = m2 |φ|2 + λ
2 |φ|4 was investigated

in [74]. The physical properties of such a potential can
be parameterized by the quantity � = λM2

Planck/4πGm2,
where MPlanck is the Planck mass. The maximum mass of a
boson star with quartic self-interaction potential is given by
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Mmax ≈ 0.22�1/2MPlanck/m [72,74]. It is also interesting
to point out that in the Thomas–Fermi limit the scalar field
becomes equivalent with a fluid, which in the low or moderate
density limit has the equation of state P ∝ ρ2 [74].

By assuming that the three form field-scalar field corre-
spondence is valid, by parameterizing the Higgs-type poten-
tial with the help of the parameter � = ν/4πGμ2, the
maximum mass of a stable three form field star is given by
Mmax ∝ √

ν/
√

4πGμ3, which could lead to masses of the
same order of magnitude as the Chandrasekhar limit for neu-
tron stars, Mmax ≈ 3M�. However, the similarity (or equiva-
lence) between three-form field stars and boson stars strongly
relies on the fulfilling of the condition pr ∝ ρ2, which, with
the use of Eqs. (16) and (17) becomes

F2 − V ∝
(
F2/48 − V + ζV,ζ

)2
. (109)

If this differential equation has a solution for ζ , then the
corresponding three form field stellar model has similar prop-
erties to a boson star. On the other hand, if no such solution
for the radial function ζ exists, then in the absence of ordi-
nary matter the modified Einstein gravity in the presence of
the three form fields admits only black hole-type solutions.
We would like to point out that the above conclusions about
the relations between boson and three form stars are mostly
of qualitative nature, and in order to fully clarify these issues
a detailed investigation of the properties of the three form
field stars is required. From a technical point of view one
can identify the formation of a star-like object from the con-
ditions eα(ηS) �= 0 and e−β(ηS) �= 0, respectively. Thus, as
mentioned above, since the physical properties of the solu-
tions of the Einstein field equations in the presence of a three
form field are strongly dependent on the parameters μ2 and
ν of the Higgs potential the formation of stellar-type objects
with no event horizon is possible.

In summary, the three-form field gravitational theory pos-
sess a rich mathematical structure, with theoretical properties
that generate an intricate external dynamics. Consequently,
the properties of the black holes in the three-form field theory
are more complex as compared with the standard general rel-
ativistic black holes. These properties are related to the intrin-
sic properties of the three-form fields, which, from a math-
ematical point of view, lead to very complicated, strongly
nonlinear, gravitational field equations. The new physical
and geometrical effects generated by the presence of the
three-form fields can also lead to some specific astrophys-
ical and cosmological effects, whose observational detection
may open new perspectives in the testing of gravitational
theories. The astrophysical and observational implications
of the black holes supported by a three-form field will be
investigated in a future publication.
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