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Abstract We consider the Hamiltonian formulation of
Hořava gravity in arbitrary dimensions, which has been pro-
posed as a renormalizable gravity model for quantum grav-
ity without the ghost problem. We study the full constraint
analysis of the non-projectable Hořava gravity whose poten-
tial, V(R), is an arbitrary function of the (intrinsic) Ricci
scalar R but without the extension terms which depend on the
proper acceleration ai . We find that there exist generally three
distinct cases of this theory, A, B, and C, depending on (i)
whether the Hamiltonian constraint generates new (second-
class) constraints or just fixes the associated Lagrange multi-
pliers, or (ii) whether the IR Lorentz-deformation parameter
λ is at the conformal point or not. It is found that, for Cases
A and C, the dynamical degrees of freedom are the same
as in general relativity, while, for Case B, there is one addi-
tional phase-space degree of freedom, representing an extra
(odd) scalar graviton mode. This would achieve the dynam-
ical consistency of a restricted model at the fully non-linear
level and be a positive result in resolving the long-standing
debates about the extra graviton modes of the Hořava grav-
ity. Several exact solutions are also studied as some explicit
examples of the new constraints. The structure of the newly
obtained, “extended” constraint algebra seems to be generic
to Hořava gravity and its general proof would be a chal-
lenging problem. Some other challenging problems, which
include the path integral quantization and the Dirac bracket
quantization are discussed also.

1 Introduction

11 years ago, Hořava proposed a renormalizable, higher-
derivative gravity theory, without the ghost problem in the
usual tensor graviton modes, which reduces to Einstein grav-
ity in low energy (IR) at the full action level but with improved
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high-energy (UV) behaviors, by abandoning the Lorentz
symmetry from non-equal-footing treatment of space and
time [1,2]. However, due to absence of the full diffeomor-
phisms (Diff), extra graviton modes can be expected gen-
erally and there have been questions about the recovery of
general relativity (GR) in IR, and more generally, the consis-
tency of Hořava gravity [3–16].

In this paper, we reconsider the Hamiltonian formulation
of the non-projectableHořava gravity whose potential,V(R),
is an arbitrary function of the (intrinsic) Ricci scalar R in
arbitrary dimensions but without the extension terms which
depend on the proper acceleration ai = ∂i N/N , for simplic-
ity. We study the full constraint analysis and find that there
exist generally three distinct cases of this theory, A, B, and
C, depending on (i) whether the Hamiltonian constraint gen-
erates new (second-class) constraints, or just fixes the associ-
ated Lagrange multipliers, according to Dirac’s method [17],
or (ii) whether the IR Lorentz-deformation parameter λ is
at the conformal point, λ = 1/D, or not. It is found that,
for Cases A and C, the dynamical degrees of freedom are
the same as in general relativity, while, for Case B, there
is one additional phase-space degree of freedom, represent-
ing an extra (odd) scalar graviton mode. This would achieve
the dynamical consistency of a restricted model at the fully
non-linear level and be a positive result in resolving the
long-standing debates about the extra graviton modes of the
Hořava gravity.

The organization of the paper is as follows. In Sect. 2,
we consider the set-up for the Hamiltonian formulation of
the non-projectable Hořava gravity in arbitrary dimensions.
In Sect. 3, we consider Dirac’s constraint analysis when
λ �= 1/D for the IR Lorentz-deformation parameter λ and
study two cases, A and B, depending on whether the Hamil-
tonian constraint generates new (second-class) constraints or
just fixes the associated Lagrange multipliers. In Sect. 4, we
consider the third case, C, when λ = 1/D, which is at a con-
formal point and generates new (second-class) constraints
similar to Case A. We show that the dynamical degrees of
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freedom are the same as in GR for CasesA andC, while there
is one additional phase-space degree of freedom for Case B
which representing an extra (odd) scalar graviton mode. In
Sect. 5, we study several exact solutions as some explicit
examples of the new constraints. In Sect. 6, we conclude
with remarks on several challenging theoretical problems,
which include the path integral quantization and the Dirac
bracket quantization.

2 The Hamiltonian formulation in arbitrary
dimensions: set-up

In this section, we consider the Hamiltonian formulation of
the non-projectable Hořava gravity in arbitrary dimensions.
To this ends, we start by considering the ADM decomposition
of the metric [18]

ds2 = −N 2dt2 + gi j
(
dxi + Nidt

) (
dx j + N jdt

)
(1)

with the arbitrary space-time dependent lapse and shift func-
tions1, N , Ni , and induced metric gi j (i, j = 1, 2, . . . D) on
a time-slicing hypersurface �t . Then, the action on a (D+1)-
dimensional manifold M with the boundary ∂M is given by

S =
∫

M
dtdDx

√
gN

{
2

κ2

(
Ki j K

i j − λK 2
)

− V[gi j ]
}

+S∂M (2)

with an appropriate boundary action2 S∂M and the potential
V[gi j ], which depends only on the metric gi j and its spatial
derivatives [1,2]3. Here,

Ki j = 1

2N

(
ġi j − ∇i N j − ∇ j Ni

)
(3)

is the extrinsic curvature (the overdot ( ˙ ) denotes the time
derivative) of the hypersurface �t and K ≡ gi j K i j denotes
its trace.

1 For the projectable case, where the lapse function depends only on
time coordinate, i.e., N (t), there is no “local” Hamiltonian constraint
so that there is no smooth way to recover the usual constraint algebra in
GR [1,6]. Later, we will comment about other alternative formulation
which can provide a smooth limit to the non-projectable case.
2 The explicit form of boundary terms is not essential in this paper
and will not be considered in detail. But, due to the similarity to GR
or its Lorentz invariant higher-curvature gravity theories, the required
boundary terms are also quite close [19], whose IR limit agrees with
those of [20,21], for example.
3 The UV Lorentz violation due to higher-spatial-derivative terms in
the potential part is originated from the works of Lifshitz [22] in the
study of, so called, “Lifshitz field theories”. On the other hand, the IR
Lorentz violation due to the deformation parameter λ �= 1 in the kinetic
part was first studied by DeWitt in the study of “canonical quantum
gravity” [23]. So, it would be desirable to call the bulk part of action
(2) as DeWitt-Hořava-Lifshitz (DHL)’s action, more precisely.

It is well known that GR is not renormalizable in the con-
ventional way. Its Lorentz invariant higher-curvature modifi-
cations have some improvements of UV behaviors but there
are more dynamical degrees of freedom than those of GR
generally, and the existence of negative kinetic energy modes
in the additional degrees of freedom, called ghost modes, is
unavoidable due to higher-time derivatives [24–26]. In order
to avoid the possible problems of ghost degrees of freedom,
we do not simply consider the higher-time-derivative terms,
like K 4, (Ki j K i j )2, etc., but only consider the second-order
time-derivative terms, like Ki j K i j and K 2, in the kinetic part
of the action (2). Whereas, in order to achieve the renormal-
izable theory with the improved UV behaviors, we consider
the higher-spatial-derivative terms, like R2, Ri j Ri j , etc., in
the potential part V[gi j ] with the intrinsic Ricci curvature
Ri j and its trace R ≡ gi j Ri j . In order that the theory be
power-counting renormalizable, the potential part needs to
contain “2 × D” (spatial) derivatives at least, which is some-
times represented by the dynamical critical exponent, z = D
[2]. In order that this construction of a renormalizable action
is not spoiled by the mixing of space and time (derivatives)
in the general coordinate transformations, we need to fur-
ther constrain the allowed coordinate transformations into
the foliation-preserving diffeomorphisms (DiffF ),

δxi = −ζ i (t, x), δt = − f (t),

δgi j = ∂iζ
kg jk + ∂ jζ

kgik + ζ k∂kgi j + f ġi j ,

δNi = ∂iζ
j N j + ζ j∂ j Ni + ζ̇ j gi j + f Ṅi + ḟ Ni ,

δN = ζ j∂ j N + f Ṅ + ḟ N . (4)

In DiffF , each term in the kinetic part is invariant sepa-
rately and λ can be arbitrary4 [23]. If we consider λ = 1
and V[gi j ] = −(2/κ2)R − � as in GR, then there is an
“accidental” symmetry enhancement which mixes each term
in the action so that the full Diff is recovered [8]. So, there
are two sources of the Lorentz violations, either from the
higher-spatial-derivative (UV) terms in the potential part or
from the deformation of kinetic part with an arbitrary λ in
IR, generally.

For the potential part, one may consider any function hav-
ing 2D spatial derivatives for the power-counting renormal-
izability, but in this paper we consider only the function of
Ricci curvature scalar, R, i.e., V[gi j ] ≡ V(R), for simplic-
ity5. Then, the first-order formulation of the action (2) is
given by

4 For the case λ = 1/D, where the theory becomes singular, a separate
consideration is needed [10,21]. We will consider this case later, in
Sect. 4.
5 The terms of ∇2R, Ri j Ri j , etc. could also produce some other pecu-
liar UV behaviors due to ingenious combinations of terms depending
on space-time dimensions, but we will not consider this possibility in
this paper.
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S =
∫

M
dtdDx

{
π i j ġi j − NH − NiHi − ∂iγ

i
}

(5)

with appropriate boundary terms, ∂iγ
i , the conjugate

momenta,

π i j ≡ δS

δġi j
= 2

√
g

κ2

(
Ki j − λKgi j

)
, (6)

and

H ≡ κ2

2
√
g

[
π i jπi j −

(
λ

Dλ − 1

)
π2
]

+ √
gV, (7)

Hi ≡ −2∇ jπ
i j , (8)

where π ≡ gi jπ i j . Here, we first consider the case λ �= 1/D
so that H in (7) and the first-order action (5) are not singular.

The Poisson brackets for the canonical variables are given
by

{gi j (x), πkl(y)} = δkli j δ
D(x − y) (9)

with δkli j ≡ (δki δ
l
j + δli δ

k
j )/2.

3 Constraint analysis à la Dirac (λ �= 1/D)

The primary constraints of the action (2) are given by

�t ≡ πN ≈ 0, �i ≡ π i ≈ 0, (10)

from the definition of conjugate momenta, πN ≡ δS/δ Ṅ
and π i ≡ δS/δ Ṅi . Here, the weak equality ‘≈’ means that
the constraint equations are used only after calculating the
Poisson brackets.

The preservation of the primary constraints, �μ ≡
(�t ,�i ), i.e., �̇μ = {�μ, HC } ≈ 0, as being required by
the consistency of the constraints, with the canonical Hamil-
tonian,

HC =
∫

�t

d Dx
{
NH + NiHi

}
+ HB (11)

produces the secondary constraints,

H ≈ 0, Hi ≈ 0. (12)

Here, HB is an appropriate boundary Hamiltonian, HB =∮
B dDx n̂iγ i , for the intersection B of an arbitrary time-like

boundary (n̂i is its unit normal) with a time slice �t so that
the total boundaries are ∂M = �t f ∪ �ti ∪ B. On the other
hand, the dynamical equations for gi j and πkl are obtained
as follows, neglecting boundary contributions (see Appendix
A for the details),

ġi j = {gi j , HC } = δHC

δπ i j

=
(

κ2

2

)
2N√
g

(
πi j − λ̃gi jπ

)+ ∇i N j + ∇ j Ni , (13)

π̇ i j = {π i j , HC } = −δHC

δgi j

=
(

κ2

2

)
N√
g

[
1

2
gi j
(
πmnπ

mn − λ̃π2
)

−2
(
π imπ

j
m − λ̃ππ i j

)]

−N
√
g

[
1

2
gi jV(R) − Ri jV ′(R)

]

−√
g
[
∇ i∇ j (NV ′(R)

)− gi j∇m∇m (NV ′(R)
)]

+∇m

(
Nmπ i j

)
−
(
∇mN

i
)

π jm −
(
∇mN

j
)

π im,

(14)

where λ̃ ≡ λ/(Dλ − 1) and ( )′ ≡ d( )/dR.
With the primary constraints in (10), one can consider the

extended Hamiltonian with the Lagrange multipliers uμ,

HE = HC +
∫

�t

d Dx (uμ�μ), (15)

from the arbitrariness in the equations of motion, due to the
primary constraints.

Then, after tedious computations, we obtain the following
constraint algebra (see Appendix A for the details),

{H(x),H(y)} = Ci (x)∇x
i δD(x − y)

−Ci (y)∇ y
i δD(x − y), (16)

{H(x),Hi (y)} = −H(y)∇ y
i δD(x − y), (17)

{Hi (x),H j (y)} = Hi (y)∇x
j δ

D(x − y)

+H j (x)∇x
i δD(x − y), (18)

or, for the smeared constraints, 〈ηH〉 ≡ ∫ dDx ηH, etc., with
the smearing functions η and ηi ,

{〈ηH〉, 〈ζH〉} = 〈(η∇iζ − ζ∇iη)Ci 〉, (19)

{〈ηH〉, 〈ζ iHi 〉} = −〈ζ i∇iηH〉, (20)

{〈ηiHi 〉, 〈ζ jH j 〉} =
〈(

ηi∇iζ
j − ζ i∇iη

j
)
H j

〉
, (21)

where6

Ci ≡ √
gV ′2(R)∇ j

(
Ki j

V ′(R)

)

=
(

κ2

2

)
2V ′2(R)∇ j

(
π i j − λ̂gi jπ

V ′(R)

)

6 From the Jacobi’s identity, one may obtain some non-trivial
relations about Ci . For example, from {{〈ηH〉, 〈ζH〉}, 〈ρH〉} +
{{〈ζH〉, 〈ρH〉}, 〈ηH〉} + {{〈ρH〉, 〈ηH〉}, 〈ζH〉} = 0, one obtains
“〈(η∇i ζ − ζ∇iη) �i |N→ρ〉 +(cyclic permutations about η, ζ, ρ) = 0”,
where �i is defined by �i ≡ {Ci , 〈NH〉} and its explicit form is given
by (34), wherein the momentum constraint, Hi ≈ 0, is imposed.
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=
(

−κ2

2

)[(
Hi + 2̂λ∇ iπ

)
V ′(R)

+2
(
π i j − λ̂gi jπ

)
∇ jV ′(R)

]
(22)

with λ̂ ≡ (λ − 1)/(Dλ − 1). If we consider −V(R) ≡ � +
ξ R + αRn as a typical example with an arbitrary power n,
we can obtain

Ci =
(

κ2

2

)[(
Hi + 2̂λ∇ iπ

) (
ξ + αnRn−1

)

+2
(
π i j − λ̂gi jπ

)
αn∇ j R

n−1
]
. (23)

Note that, when the higher-derivative contributions are
absent, i.e., α = 0, (23) reduces toCi = (κ2/2)ξHi ≈ 0 and
the Hamiltonian constraint, H ≈ 0, becomes the first-class
constraint as in GR, for either (i) λ = 1, i.e., λ̂ = 0, or (ii)
π ≈ 0, representing the maximal slicing, for an arbitrary λ

[18]. However, when the higher-derivative terms are present,
Ci does not vanish generally, so that “ the Hamiltonian con-
straint, H ≈ 0, becomes the second-class constraint ” even
for the maximal slicing, π ≈ 0, due to the genuine dynamical
degrees of freedom in π i j , other than the trace part, π .

On the other hand, we note that the momentum constraint,
Hi ≈ 0, in (12) has the same canonical form as in GR with no
higher-derivative corrections7 so that we also have the same
constraint algebra for Hi , (18) or (21), which representing
the spatial Diff generator,

δζ gi j = {gi j , 〈ζ kHk〉} = δ〈ζ kHk〉
δπ i j

= ∇iζ j + ∇ jζ j , (24)

δζ π
i j = {π i j , 〈ζ kHk〉} = −δ〈ζ kHk〉

δgi j

= ∇m

(
ζmπ i j

)
−
(
∇mζ i

)
π jm −

(
∇mζ j

)
π im,

(25)

as in GR. Moreover, the algebras (17) and (18) show that

δζH = {H, 〈ζ kHk〉} = ∇k

(
ζ kH

)
, (26)

δζHi = {Hi , 〈ζ kHk〉} = ∇k

(
ζ kHi

)
+
(
∇iζ

k
)
Hk, (27)

which tells that H and Hi behave as, under the spatial Diff,
the scalar and vector densities, respectively, as in GR.

Using the above constraint algebra, one can easily find
that the preservation of the secondary constraints give

Ḣ = {H, HE }
= 1

N
∇i (N

2Ci ) + ∇i (N
iH) ≈ 1

N
∇i (N

2C̃i ), (28)

7 This is a key observation for the proof of Birkhoff’s theorem in Hořava
gravity [27], in contrast to other general higher-curvature gravities [25,
26]. But the IR Lorentz-deformation parameter λ enters still in the
momentum constraint through the relation (6).

Ḣi = {Hi , HE }
= H∇i N + ∇ j (N

jHi ) + H j∇i N
j ≈ 0, (29)

which produces the tertiary constraint,

�̃ ≡ ∇i (N
2C̃i ) ≈ 0, (30)

where

C̃i ≡ Ci |Hi≈0 =
(

κ2

2

)[
2̂λ∇ iπ

(
ξ + αnRn−1

)

+2
(
π i j − λ̂gi jπ

)
αn∇ j R

n−1
]

(31)

from the preservation of H ≈ 0 in (28), excluding the trivial
case of N = 0 for all space-time. Here we note that, in
the above computations, there are no contributions from the
multiplier terms in HE so that we need to consider further
steps of preserving the constraints until the multipliers are
determined.

Now, one more step of preserving the new tertiary con-
straint, �̃ ≈ 0, gives

˙̃� = {�̃, HE }
= {�̃, HC } + 2�̃

(ut
N

)
+ 2C̃i N 2∇i

(ut
N

)

≈ {�̃, HC } + 2C̃i N 2∇i

(ut
N

)
≈ 0. (32)

Then, there are two different constraint systems, with differ-
ent subsequent procedures, depending on whether C̃i = 0 or
C̃i �= 0.

A. Case C̃i = 0: In this case8, (32) does not determine
the multiplier ut but reduces to

˙̃� ≈ {�̃, HC }
≈ ∇i

(
N 2�̃i

)
≡ �̃ ≈ 0 (33)

for preserving the tertiary constraint �̃ with

�̃i ≡ {C̃i , 〈NH〉}

= −
(

κ2

2

)2
2̂λ

(λD − 1)
√
g
V ′(R)

{[
(2λ + 1)gi jπ

−2(λD − 1)π i j
]
N∇ jπ + π2∇ i N

}

−
(

κ2

2

)
2̂λ(D − 1)

√
gV ′(R)∇ i

[
(ξ R

+ �D

D − 1
+ D − n

D − 1
αRn

)
N + ∇2(NV ′)

]

8 Here, the condition C̃i = 0 does not necessarily mean the constraint
equation, which is stronger than the original constraint (30). Actually,
the constraint (30) implies that all the components of C̃i are not indepen-
dent so that the condition C̃i = 0 may be subject to more fundamental
conditions or constraints.
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−
(

κ2

2

)[
2̂λ∇iπ{V ′(R), 〈NH〉}

+{2(π i j − λ̂gi jπ)∇ jV ′(R), 〈NH〉}
]
, (34)

where−V ′(R) ≡ (ξ + αnRn−1
)
. Here, the higher-derivative

contributions come, either from the constraint (30), �̃, i.e., C̃i

in (31), or from the Hamiltonian constraint H in (7) and (11).
One can compute the explicit forms of the higher-derivative
contributions with the help of (13) and (14) (see Appendix
B for some more details; see also [15] for the case of n = 2)
but, due to its messy expression, we will not consider the
explicit forms in the analysis below unless it is crucial.

Then, one more time-evolution of the new constraint, �̃ ≈
0, will read,

˙̃� = {�̃, HE }
= {�̃, HC } + ∇i

(
N 2 �̃i |N→ut + 2Nut�̃

i
)

≈ 0. (35)

After a long computation, we obtain (see also Appendix B
for the details)9

∇i

[
N 2 �̃i |N→(ut−Ni∇i N ) + 2(ut − Ni∇ i N )N�̃i

]

≈ −{�̃, HC } =
(

κ2

2

)2

4ξ λ̂(D − 1)∇i

×
{
N 2
[

2Nπ i j∇ j

[(
ξ R + �D

D − 1

)
N − ξ∇2N

]

+ ξ∇ i
[
π jk

(
R jk N

2 − 2N∇ j∇k N − ∇ j N∇k N

)]]}

−∇ j

(
N j �̃

)

+(π,∇iπ − dependent terms)

+(higher-derivative contributions). (36)

Here, it is important to note that the multipliers, ut ,∇ i ut , etc.,
have generally non-vanishing coefficients in the left-hand
side so that (36) may provide the equation for determining the
multiplier ut . However, the similar equation for ui does not
exist and ui is still undetermined but this is just a reflection
of the first-class nature of the constraint, π i ≈ 0, in (10).
This would now complete the Dirac’s procedure for finding
the complete set of constraints, though we would not try to
solve for the explicit solution of the multiplier ut . Then, the
full set of constraints are given by χA ≡ (πN ,H, �̃, �̃) ≈
0, �B ≡ (π i ,Hi ) ≈ 0. Here, the constraints χA ≈ 0 are the

9 For convenience, we consider the modified momentum constraint
[28], Hi ≡ Hi + πN∇ i N , by redefining the multiplier, ut → ut −
Ni∇ i N in (15) so that HE = HC + 〈(ut − Ni∇ i N )πN + uiπ i 〉,
HC ≡ 〈NH + NiHi 〉 and {�, 〈N jH j 〉} = ∇ j (N j �̃). In this way,
one can compactly collect all Ni -dependent terms in the left hand side,
up to the weakly vanishing term, ∇ j (N j �̃) ≈ 0. Interestingly, this

modified constraint Hi
satisfies the same constraint algebra (16)–(18)

or (19)–(21).

second-class constraints with the constraint algebra,

{πN (x),H(y)} = 0,

{πN (x), �̃(y)} = −2∇ y
i

(
NC̃i (y)δD(x − y)

)
≈ 0,

{πN (x), �̃(y)} = �(x − y),

{H(x),H(y)} = Ci (x)∇x
i δD(x − y)

−Ci (y)∇ y
i δD(x − y) ≈ 0,

{H(x), �̃(y)} ≈ {πN (x), �̃(y)}, etc., (37)

whose determinant, det{χA, χB}, is generally non-vanishing,

det{χA(x), χB(y)}
≈ (det{H(x), �̃(y)})2 (det{�̃(x),H(y)})2
≈ (det[�(x − y)�(y − x)])2 , (38)

where

�(x − y) ≡ −∇ y
i

[
2N�̃i (y) δD(x − y)

+N 2(y)

(
δ�̃i (y)

δN (x)

)]

= −2�̃δD(x − y) − 2N 2�̃i (x)∇x
i

(
δD(x − y)

N (x)

)

−∇ y
i

[
N 2(y)

(
δ�̃i (y)

δN (x)

)]
(39)

with

(
δ�̃i (y)

δN (x)

)
= −

(
κ2

2

)2
2̂λV ′

(λD − 1)
√
g

{[
(2λ + 1)gi jπ

−2(λD − 1)π i j
] (

∇ jπ(y) + π2∇ i
y

)
δD(x − y)

}

−
(

κ2

2

)
2̂λ(D − 1)

√
gV ′∇ i

y

[(
ξ R + �D

D − 1

+D − n

D − 1
αRn

)
δD(x − y) + ∇2

(
V ′δD(x − y)

)]

−
(

κ2

2

)[
2̂λ∇iπ{V ′(R)(y),H(x)}

+{2(π i j − λ̂gi jπ)∇ jV ′(R)(y),H(x)}
]
. (40)

On the other hand, the constraints, �A ≡ (π i ,Hi ) ≈ 0,
are the first-class constraints with the vanishing determinant,
det({�A, �B}) = 0. Then, the resulting number of dynamical
degrees of freedom in the “configuration” space is given by

s = 1

2
(P − 2N1 − N2)

= 1

2
[(D + 1)(D + 2) − 2 × 2D − “4”]

= 1

2
(D + 1)(D − 2), (41)

123



597 Page 6 of 16 Eur. Phys. J. C (2020) 80 :597

where P = (D+ 1)(D+ 2) is the number of canonical vari-
ables in the “phase” space (N , πN , Ni , π

i , gi j , πi j ), N1 =
2D is the number of the first-class constraints (π i ,Hi ) ≈ 0,
and N2 = “4” is the number of the second-class constraints,
(πN ,H, �̃, �̃) ≈ 0. Note that, for Case A, the dynamical
degrees of freedom are the same as that of GR (in arbi-
trary dimensions) though the constraint structure is differ-
ent:10 Actually, in GR, i.e., λ̂ = 0, α = 0 or the λ-
deformed GR (λR model) with the condition, π = 0, we
have N1 = 2(D + 1), N2 = 0 so that the 2 first-class con-
straints, (πN ,H) ≈ 0, in GR or λ-deformed GR, transform
into the 4 second-class constraints, (πN ,H, �̃, �̃) ≈ 0, in
the Case A of full Hořava gravity, with maintaining the same
dynamical degrees of freedom s. This completes the previous
linear analysis in [10,33], but now at the “fully non-linear”
level. (cf. [14,27]).

B. Case C̃i �= 0: This is the more generic case where
the conjugate momenta π i j and the (scalar) curvature R are
arbitrary, with the generic higher-derivative potential, V(R).
In this case, (32) does not yield new constraints but deter-
mines the multiplier ut generally11 so that the Dirac’s pro-
cedure may be completed, without further iterations. Then,
in contrast to Case A, there are the second-class constraints,
χ̃A ≡ (πN ,H,�) ≈ 0, whose determinant det({χ̃A, χ̃B}) is
non-vanishing, generally,

det{χ̃A(x), χ̃B(y)}
= −det{πN (x), �̃(y)}

×det{H(x),H(y)} det{�̃(x), πN (y)}
≈ 4 det

(
NC̃ j (y)∇ y

j δ
D(x − y)

)

×det
(
NC̃k(x)∇x

k δD(x − y)
)

det
(
Ci (x)∇x

i δD(x − y)
)

− (x ↔ y),

(42)

whereas the first-class constraints, �A ≡ (π i ,Hi ), are the
same as in CaseA. Hence, the resulting number of dynamical
degrees of freedom is

s = 1

2
[(D + 1)(D + 2) − 2 × 2D − “3”]

= 1

2
(D + 1)(D − 2) + 1

2
, (43)

with N1 = 2D and N2 = “3”, which shows one extra degree
of freedom in phase space, in addition to the usual (D +
1)(D − 2) graviton (transverse traceless) modes in arbitrary
(D + 1)-dimensions.12 In particular, in (2 + 1)-dimensions,

10 Recent constructions of, so called, “minimally-modified” gravity
theories [29–32] may correspond to this case also.
11 For some detailed discussion about the determination of the multi-
plier ut , see [15] (see also [13] for an earlier discussion).
12 Here, we do not consider the extension terms which depend on the
proper acceleration, ai = ∂i N/N , for simplicity. If we include these
terms, in addition to the standard action (2) [1,2], the extra modes have
“two” phase space degrees of freedom, like the ordinary scalar fields

the extra mode is the only dynamical degree of freedom.
This result supports the previous case-by-case results [15,27]
but in a more generic set-up with arbitrary dimensions and
cosmological constant.

The usual increase of dynamical degrees of freedom
with higher-time derivatives is the result of the compe-
tition between the increased canonical momenta for the
higher-time derivative fields and their increased, associ-
ated new constraints [25,26]. However, for Hořava gravity,
there are no increased canonical momenta but exist only the
increased second-class constraints: For CaseA, the increased
second-class constraints are enough to preserve the dynami-
cal degrees of freedom of GR, whereas for Case B, they are
not enough and one extra degree of freedom persists in the
phase-space.

4 Constraint analysis at the conformal point, λ = 1/D:
Case C

The kinetic part of Hořava action (2) can be written formally
as,

SK ≡
(

2

κ2

)∫
dtdDx

√
gN
(
Ki jG

i jkl Kkl

)
, (44)

where Gi jkl ≡ δi jkl − λgi j gkl is the (generalized) DeWitt
metric [1,2,23]13. In the previous sections, we have consid-
ered the case, λ �= 1/D, so that the DeWitt metric is not
degenerated. Then the first-order action (5) can be obtained
by considering the Legendre transformation of SK ,

SK =
(

κ2

2

)∫
dtdDx

N

2
√
g

(
π i jGi jklπkl

)
, (45)

with the conjugate momenta, π i j = (2
√
g/κ2)Gi jkl Kkl , and

the inverse DeWitt metric, Gi jkl = δi jkl −λgi j gkl/(Dλ−1),

satisfying Gi jmnGmnkl = GklmnGmni j = δ
i j
kl [1,2].

On the other hand, for λ = 1/D, the DeWitt met-
ric is degenerated and we need to project out the non-
degenerate parts only when considering the appropriate
inverse of the DeWitt metric. Actually, using the fact that
Ĝi jkl ≡ Gi jkl |λ=1/D has a null eigenvector gi j ,

Ĝi jkl gi j = 0, (46)

it is easy to see that its inverse, Ĝi jkl , is given by

Ĝi jkl = δi jkl − 1

D
gi j gkl ,

[7,20,21,34], and this may become another different case, say, Case
D. Actually, this corresponds to an alternative formulation of the pro-
jectable case but now a smooth limit to the non-projectable case exists
[7].
13 λHorava = −λDeWitt/2.
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Ĝi jkl gi j = 0, Ĝi jmnĜ
mnkl = δ̃kli j (47)

with the (projected) Kronecker-delta, δ̂kli j = δkli j − gi j gkl/D,

satisfying δ̂kli j g
i j = δ̂kli j gkl = 0 [10]. (See also [25,26] for the

corresponding analyses inLorentz invarianthigher-curvature
gravities.)

In the Hamiltonian formulation, the existence of a null
eigenvector in gi j is reflected in the primary constraint,

χ ≡ π̂ i
i ≡ gi j π̂

i j ≈ 0 (48)

for the momenta,

π̂ i j ≡ δS

δġi j
= 2

√
g

κ2 Ĝi jkl Kkl , (49)

in addition to the usual primary constraints, �μ, in (10).
Then, one can find the canonical Hamiltonian, up to

boundary terms,

ĤC =
∫

�t

d Dx
{
NĤ + NiĤi

}
(50)

with

Ĥ ≡ κ2

2
√
g
π̂ i j π̂i j + √

gV, (51)

Ĥi ≡ −2∇ j π̂
i j . (52)

Now, the preservation of the additional primary constraint
(48),

χ̇ = {χ, ĤC }
≡ � ≈ 0 (53)

produces a new secondary constraint,

� ≡
(

κ2

2

)(
D

2

)
N√
g
π̂mnπ̂

mn

−N
√
g

[(
D

2

)
V(R) − RV ′(R)

]

+√
g(D − 1)∇2 (NV ′(R)

)

= D

2
NĤ − N

√
g
[
DV(R) − RV ′(R)

]

+√
g(D − 1)∇2 (NV ′(R)

) ≈ 0 (54)

from (A18), in addition to the usual (reduced) Hamiltonian
and momentum constraints in (12),

Ĥ ≈ 0, Ĥi ≈ 0. (55)

The extended Hamiltonian is then given by

ĤE = ĤC +
∫

�t

d Dx(uμ�μ + vχ) (56)

with a new Lagrange multiplier v. The constraint algebra,
(16)–(18), are reduced to

{Ĥ(x), Ĥ(y)} = Ĉi (x)∇x
i δD(x − y)

−Ĉi (y)∇ y
i δD(x − y), (57)

{Ĥ(x), Ĥi (y)} = −Ĥ(y)∇ y
i δD(x − y), (58)

{Ĥi (x), Ĥ j (y)} = Ĥi (y)∇x
j δ

D(x − y)

+Ĥ j (x)∇x
i δD(x − y), (59)

where

Ĉi =
(

−κ2

2

)[(
Ĥi + 2∇ i π̂

)
V ′(R)

+2
(
π̂ i j − gi j π̂

)
∇ jV ′(R)

]
. (60)

Using the above reduced constraint algebra, one can find
that
˙̂H = {Ĥ, ĤE }

= 1

N
∇i (N

2Ĉi ) + ∇i (N
iĤ) + {Ĥ, 〈vπ〉}, (61)

˙̂Hi = {Ĥi , ĤE }
= Ĥ∇i N + ∇ j (N

jĤi ) + Ĥ j∇i N
j + π̂∇iv ≈ 0, (62)

where

{Ĥ, 〈vπ〉} =
[
− v

N
� + √

g(D − 1)
( v

N
∇2 (NV ′(R)

)

−V ′(R)∇2v
)]

. (63)

For the potential, −V(R) ≡ � + ξ R + αRn , (63) becomes

{Ĥ, 〈vπ〉} = −
[

v

N
� + √

g(D − 1)

(
− v

N
∇2
(
N

(
ξ

+αnRn−1
))

+
(
ξ + αnRn−1

)
∇2v

)]
.(64)

Since we are considering the non-trivial case of −V ′(R) ≡
ξ + αnRn−1 �= 0, preserving the Hamiltonian constraint,

Ĥ ≈ 0, i.e., ˙̂H ≈ 0 in (61), does not produce new constraints
but determines the Lagrange multiplier v: For the λ-deformed
GR (α = 0), where Ĉi = 0, (61) and (64) determine v = N .

On the other hand, for the preservation of the secondary
constraint, �̃ ≡ �Ĥ≈0,

�̃ ≡ N
√
g
[
D� + (D − 1)ξ R + (D − n)αRn]

+√
g(D − 1)∇2 (NV ′), (65)

one can find that

˙̃� = {�̃, ĤE }
= {�̃, ĤC } + {�̃, 〈utπN 〉} + {�̃, 〈vπ̂〉}, (66)

where14

{�̃, 〈utπN 〉} = ut
N

�̃ + √
g(D − 1)

(
∇2 (utV ′)

14 Useful relations for these computations are {√g(x), π(y)} =
(D/2)

√
g(x)δD(x − y) and {R(x), π(y)} = −R(x)δD(x − y)− (D−

1)∇2
x δ

D(x − y) from (A7).
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−ut
N

∇2 (NV ′)) , (67)

{�̃, 〈vπ〉} = vN
√
g

[
D2

2
� + (D − 1)(D − 2)

2
ξ R

+ (D − 2)(D − 2n)

2
αRn

]

+√
g(D − 1)

[
(D − 2)

2
∇i

(
v∇ i (NV ′))

−N∇2v
(
(D − 1)ξ

+(D − n)αnRn−1
)]

+αn(n − 1)(D − 1)
√
g∇2

[
Rn−2N

(
Rv

+(D − 1)∇2v
)]

. (68)

Now, (61) and (66) determine the multipliers v andut , respec-
tively, so that one can finish the Dirac’s procedure without
generating further constraints. Then, the complete set of con-
straints are χ̂A ≡ (πN , Ĥ, π, �̃) ≈ 0 and �A ≡ (π i ,Hi ) ≈
0. Here, the constraints, χ̂A ≈ 0, are the second-class con-
straints with the algebra,

{πN (x), Ĥ(y)} = 0, {πN (x), χ(y)} = 0,

{πN (x), �̃(y)} = �̂(x − y),

{Ĥ(x), Ĥ(y)} = Ĉi (x)∇x
i δD(x − y)

−Ĉi (y)∇ y
i δD(x − y),

{Ĥ(x), π(y)} ≈ {πN (x), �̃(y)}, etc., (69)

whose determinant, det({χ̂A, χ̂B}), is generally
non-vanishing,

det{χ̂A, χ̂B} ≈ (det{Ĥ(x), π(y)})2 (det{π(x), Ĥ(y)})2

≈ (det
[
�̂(x − y)�̂(y − x)

])2
, (70)

where

�̂(x − y)

≡ −√
g
[
D� + (D − 1)ξ R + (D − n)αRn] δD(x − y)

+√
g(D − 1)∇2

y

[
δD(x − y)

(
ξ + αnRn−1

)
(y)
]
.

(71)

On the other hand, the constraints, �A ≡ (π i ,Hi ) ≈ 0,
are the first-class constraints, as in Cases A and B. So, the
resulting number of dynamical degrees of freedom is the
same as in Case A,

s = 1

2
(P − 2N1 − N2)

= 1

2
(D + 1)(D − 2), (72)

which is the same as in GR. This provides the fully non-
perturbative proof of the previous perturbative analysis (see
also [35] for an earlier work), which does not show the
extra degrees of freedom at the linear level [10]. There may
exist some similarities with Case A due to the same physical
degrees of freedom. Actually, one can consider the maximal
slicing condition, i.e., π = 0, for λ-deformed GR (with an
arbitrary λ), as an example satisfying the condition, C̃i = 0
for CaseA. But, an importance difference is that CaseC does
not depend whether Ĉi = 0, i.e., commuting Hamiltonian
constraint Ĥ, or Ĉi �= 0, i.e., non-commuting Hamiltonian
constraint Ĥ: If we consider the maximal slicing, π = 0,
for Case B with an arbitrary λ �= 1/D, we have basically
the same results as Case C ! This implies that the constraint
structure of CaseC and so its number of dynamical degrees of
freedom do not depend on spatially-higher-derivative terms
in the potential, which are important for distinguishing Cases
A and B. In other words, Case C does not depend on the UV
conformal symmetry for the Cotton square term, Ci jCi j , in
the Hořava’s original potential [1,2] and this is essentially
due to the kinematic origin of the constraint, χ = π̂ ≈ 0, in
(48).15

5 Examples

In this section, we consider several exact solutions for our
typical potential, −V(R) ≡ ξ R+αRn +�, as some explicit
examples of the constraint analysis.

5.1 Non-rotating black holes in arbitrary dimensions

For non-rotating, spherically symmetric black holes with
Ni ≡ 0, the extrinsic curvature, Ki j , and the conjugate
momentum, πi j , vanish so that the Hamiltonian constraint
becomes simply H = √

gV(R) ≈ 0. The general solution is
‘R = constant’, whose constant value depends on the the-
ory parameters, ξ, α,�, and n. If we consider, as an explicit
example, D = 3, n = 2, i.e., z = 2 case in 3+1 dimensions
[36],16 then the solution is given by

ds2 = −N 2(r)dt2 + dr2

f (r)
+ r2dθ2 + r2sin2θdφ2 (73)

15 This case corresponds to the β̇ = 0 case in the Birkhoff’s analysis
of spherically symmetric system since π ∼ β̇ and the results are in a
good agreement [27].
16 This can be also the solution for z = 3 case with the Cot-
ton square term, Ci jCi j , since the Cotton tensor vanishes, Ci j ≡
εikl∇k

(
R j

l − δ j
l R/4

) = 0, for the spherically symmetric cases.
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with

N 2 = f = 1 − 2M

r
+
(

ξ −√ξ2 − 4α�

12α

)
r2, (74)

R = −ξ +√ξ2 − 4α�

2α
. (75)

In this case, even though there are higher-derivative contribu-
tions, we have C̃i = 0, trivially, due to πi j = 0 in (31). This
would be a trivial example though its result is generally valid
for arbitrary power n and dimension D. If we consider the
more general, spherically symmetric solutions with Nr �= 0
(cf. [37]), it would be a more non-trivial example with the
extrinsic curvature and conjugate momenta.

5.2 Black string solutions in 3 + 1 dimensions

For stationary black strings in 3 + 1 dimensions, the general
ansatz is given by

ds2 = (−N 2 + Nr N
r + NφN

φ)dt2

+2(Nrdr + Nφdφ)dt + dr2

f
+ r2dφ2 + gdz2, (76)

where all the metric functions, N , Ni , f , and g depend on
the radial coordinate r . For z = 2 black string solution which
satisfies the vanishing Cotton tensor, Ci j = 0, for simplicity,
a simple solution with g = constant, Nφ = 0, and λ = 1,
which is called BTZ-type black string, is given by (with g ≡
1)

N 2 = f = ηr2 − m, (77)

N 2
r = f −1

[
δ + κ4μ2

64

(
η2 − 2(�W + ω) − 3�2

W

)]
, (78)

where η,m, δ are integration constants [38] and the other
parameters κ, μ,�W , ω are introduced by the usual
parametrization,

ξ ≡ κ4μ2(�W + ω)

8(1 − 3λ)
,

α ≡ κ2μ2(1 − 4λ)

32(1 − 3λ)
,

� ≡ −2κ2μ2�2
W

8(1 − 3λ)
. (79)

In this case, even though the extrinsic curvatures and conju-
gate momenta are non-vanishing, it has a constant curvature,
R ∼ f ′/r = 2η = constant . Since this is the solution for
λ = 1, one can easily find that C̃i = 0 in (31) is trivially
satisfied17: The first term in (31) vanishes due to λ = 1 and
the second term vanishes due to R = constant . If we con-
sider the more general solutions with λ �= 1 or the λ = 1

17 This result is still valid with the angular shift vector, Nφ .

solution without the condition, Ci j = 0, it would be more
non-trivial examples with the non-constant extrinsic curva-
tures and conjugate momenta.

5.3 Rotating black holes in 3 + 1 dimensions

The exact solutions for rotating black holes in 3 + 1 dimen-
sions has not been found yet. However, for slowly rotating
black holes, one can consider the ansatz [39,40],

ds2 = −N 2(r)dt2 + dr2

f (r)
+ r2dθ2 + r2sin2θdφ2

+2ag(r)sin2θdtdφ. (80)

At the linear order in the rotation parameter a, the solution
of g(r) for n = 2 is given by

g(r) = σr2 + γ

r
(81)

with the integration parameters, σ, γ , and the same solution
of N 2 = f (r) as in (74). In this case, the extrinsic cur-
vature has a non-vanishing component, Krφ = O(a) but
K = 0, π = 0, at the linear order in ‘a’. Since the cur-
vature scalar is constant as in (75), we will have the case
C̃i = 0 again and this result is valid for arbitrary power
n and dimensions D.18 If we consider higher orders in the
rotation parameter a so that K or π is non-vanishing or R is
non-constant, it would be a more non-trivial example.

5.4 Rotating black holes in 2 + 1 dimensions

For stationary black holes in 2 + 1 dimensions, the most
general ansatz is given by

ds2 = (−N 2 + Nr N
r + NφN

φ)dt2 + 2(Nrdr + Nφdφ)dt

+dr2

f
+ r2dφ2, (82)

where all the metric functions, N , Ni , f , depend on the radial
coordinate r , as in (76), due to the symmetry property in 2+1
dimensions. The general solution for the metric (82) is not
known yet. For the simple case, however, of Nr = 0, one can
find that the there is non-vanishing conjugate momentum,
πφr = ( f/2N )(Nφ)′, whose trace is vanishing trivially, π =
0, with the solution (for the n = 2 case) [41,42]

18 In [39,40], λ = 1,�W = 0 case for the IR-modified Hořava gravity
was considered. But our result is generally valid for arbitrary λ and �W .
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f = −M + br2

2

[
1 −

√
a + c

r4 +
√

c

r4 ln

(√
c

ar4

+
√

1 + c

ar4

)]
,

N 2/ f = 1/
(

1 + c

ar4

)
,

Nφ = −J
2

√
a

c
ln

[√
c

ar4 +
√

1 + c

ar4

]
, (83)

where

a = 1 − 4α�

ξ2 , b = ξ

2α
, c = 2αJ 2

ξ2 . (84)

In this case, even though K = 0, π = 0 trivially, the curva-
ture scalar is non-constant,

R = − f ′

r
= −b

(
1 −

√
a + c

r4

)
, (85)

so that we have a non-vanishing component of C̃i ,

C̃φ ∼ απφr∂r R �= 0. (86)

But, it easy to find that the constraint �̃ ≈ 0 is satisfied again

�̃ ∼ ∂φ

(
N 2C̃φ

)
= 0, (87)

due to the spherical symmetry, i.e., no φ-dependence, in the
solution. It is important to note that the non-vanishing C̃i is
the genuine result of higher-derivative terms (α �= 0) with a
rotation (πφr �= 0). In other words, if we turn off the higher-
derivative term, i.e., α = 0, similarly to BTZ black hole in
GR, the system is reduced to the case with the vanishing
C̃i ∼ ξ λ̂∇ iπ = 0. Of course, this does not correspond to
Case B but Case C, due to the fact of π = 0 for the solution
(83), as can be seen by checking the constraint, �̃ ≈ 0, in
(65). However, if we consider the Nr �= 0 case, one obtains
π �= 0 generally so that it may correspond to a “genuine”
case of Case B. This example would show the importance
of higher-derivative terms for Case B, where the extra scalar
graviton mode is involved.

6 Concluding remarks

We study the full constraint analysis of the non-projectable
Hořava gravity whose potential, V(R), is an arbitrary func-
tion of the (intrinsic) Ricci scalar R in arbitrary dimensions
but without the extension terms which depend on the proper
acceleration ai , for simplicity. We find that there are gener-
ally three distinct cases in this theory, depending on

(i) whether the Hamiltonian constraint, H ≈ 0, generates
new (second-class) constraints (Cases A, C) or just fixes
the associated Lagrange multipliers (Case B), or

(ii) whether the IR Lorentz-deformation parameter λ is at
the conformal point, λ = 1/D (Case C), or not (Cases
A, B).

We find that, for Cases A and C, the dynamical degrees
of freedom of Hořava gravity are the same as in GR, while
for Case B, there is one extra phase-space degree of freedom,
representing an extra (odd) scalar graviton mode. This would
achieve the dynamical consistency of a restricted model at
the fully non-linear level and be positive in resolving the
long-standing debates about the extra graviton modes of the
Hořava gravity. Several further remarks about other challeng-
ing problems are in order.

1. We have obtained the new “extended” constraint algebra
for the Hamiltonian and momentum constraints, (16)–(18)
((57)–(59) for Case C) or (19)–(21), for the non-projectable
Hořava gravity whose potential is an arbitrary function of
the Ricci scalar R. The structure of the newly obtained
“extended” constraints algebra seems to be generic to Hořava
gravity itself, analogous to that of general higher-curvature
gravities [25,26], where Ci becomes the momentum con-
straint Hi with higher-curvature corrections. An important
difference is that the momentum constraint Hi in Hořava
is the same form as in GR with no higher-derivative cor-
rections and satisfies the same algebra as in GR [23] but
the full algebra with the Hamiltonian constraint, H, is not
closed, whereas the momentum constraints, Hi ≡ Ci , in
generic higher-curvature gravities satisfy exactly the same
closed algebra as in GR, “as has been argued generically in
[43]”, even with the generic higher-curvature terms which
include Riemann tensors also [25,26,44]. We suspect that a
similar general argument in Hořava gravity exists also so that
the extended constraint algebra reflects the generic space-
time structure of our Lorentz violating gravities with Ricci
and Riemann tensors, Ri j , Ri jkl , etc., i.e., with the poten-
tial, V(R, Ri j , Ri jkl , . . .),19 and its general proof would be a
challenging problem.

2. Our constraint analysis shows the dynamical degrees of
freedom in a restricted model of the Hořava gravity at the fully
non-linear level. Comparison to the previous linear perturba-
tion analyses [8,10,33], which do not show the extra degrees
of freedom, implies that the extra modes would be the gen-
uine consequence of non-linear effect (around the homoge-
nous background) with Lorentz-violating higher-derivative
terms [27]: For a direct proof in the n = 2 constraint alge-
bra, see [15]. On the other hand, it has been also argued
that the extra mode may appear when considering (even lin-
ear) perturbations around the spatially-inhomogeneous and
time-dependent background [5], even with the IR Lorentz-
violating terms only, as anticipated from the usual connection

19 This implies the generic absence of the third and second-derivative
terms in (2.24) of [4], which is the case of λ = 1 and V ∼ Ci jCi j .

123



Eur. Phys. J. C (2020) 80 :597 Page 11 of 16 597

between non-linear perturbations for a homogenous back-
ground and linear perturbations for a corresponding inho-
mogeneous background.20 This may be in contrast to the
Birkhoff’s theorem analysis in spherically symmetric, vac-
uum configuration which does not show time-dependent
solutions, representing the “extra gravitational” modes [27].
However, this might be due to its high symmetry, i.e., lower
inhomogeneity, and there might exist still some possibilities
for higher inhomogeneities: This might be consistent with a
related analysis in [15] which does not show the extra mode
only up to the first order of inhomogeneity, L−1. So, a direct
proof of the argument of [5] in the generic constraint algebra
would be an interesting open problem. The role of non-linear,
UV scalar graviton in Big Bang cosmology and gravitational
wave physics for compact objects with strong gravities, like
black holes and neutron stars, would be also a challenging
problem.

3. In the literature, there have been claims of inconsisten-
cies of the Hořava gravity, in its original form. It seems that
some originate from the limited analysis, like linear approx-
imations [7], or incomplete constraint analysis [4,11]. Here,
we consider the second case,21 especially about the claim in
[11], which seems to be the most rigorous criticism against
the (non-projectable) Hořava gravity. The basic claim in [11]
is that “N = 0 is the only possible solution” for the con-
straint (4.1), ∇i (N 2∇ iπ) ≈ 0, which corresponds to our
constraint (30), �̃ ≡ ∇i (N 2C̃i ) ≈ 0, for the asymptotically
flat (� = 0) and λ-deformed GR, otherwise N blows up at
infinity, generically.22 But, the elaborate analysis in [11] is
just another proof of an adequacy of the condition, π = 0,
in that example, which is the only remaining solution for
the constraint (4.1) in [11] or (30) in this paper, as has been
argued also in [14,15]. Actually, contrary to the argument
in [11], the perturbations from π = 0 are not arbitrary but
restricted by another constraint (33), �̃ ≈ 0 in this paper
(or (20) in [14]), when λ �= 1. Moreover, when the metric is
not asymptotically flat (� �= 0), the argument of [14] (and
possibly of [11] or [5] also) would not be valid generally, as
can be seen in the general, (2+1)-dimensional solution, (82)
with Nr �= 0, which shows the non-vanishing π and N .

4. With the full set of constraints, we can now consider
Feynman’s path-integral for the S-matrix elements [45,46],
whose Hamiltonian expression for Case A, for example, is
given by

20 MIP thank Koyama and Gumrukcuoglu for discussion about this
matter.
21 The first case has been discussed in several places, like [15] (footnote
3) and [4] (Note added).
22 This result corresponds to exactly what has been argued in [5], which
shows “instabilities for perturbations around a non-vanishing K back-
ground”, though given at the linear level.

Z =
∫

Dgi jDπ i jDNDNiδ(Hi )δ(γ j )δ(H)δ(�̃)

×
∫

Dc jDc̄i exp

{
i
∫

dtdDx c̄i
[{Hi , γ j }|π i≈0

]
c j

}

×
∫

DbDb̄ exp

{
i
∫

dtdDx b̄
[{H, �̃}{�̃,H}|πN≈0

]
b

+i S/h̄

}
, (88)

where we have integrated out for the primary constraints
πN , π i ≈ 0 with the Faddeev–Popov’s anti-commuting
fields, c j , c̄i , b, b̄, the gauge-fixing conditions, γ j = 0,
for the first-class constraint, Hi ≈ 0, and the determinant
factor for the second-class constraints, (det{χA, χB})1/2 ≈
det
({H, �̃}{�̃,H}). One can obtain similarly the path inte-

gral for Cases B and C also. It would be desirable to study
the renormalizability for the non-projectable Hořava grav-
ity, based on the above S-matrix elements, beyond the recent
proof of (perturbative) renormalizability for the projectable
cases [47–49].23

5. In the canonical quantization with the second-class con-
straints, we need to compute the Dirac brackets [17],24 whose
definition for Case A, for example, is given by, for any vari-
able P, Q,

{P, Q}∗ ≡ {P, Q}
−
∫

dDz
∫

dDw {P, χA(z)}C−1
AB(z, w){χB(w), Q},

(89)

where C−1
AB is defined as

∫
dDz C−1

AB(x, z)CBC (z, y) =∫
dDz CCB(y, z)C−1

BA(z, x) = δACδD(x− y) for the Poisson
brackets of the second-class constraints CAB ≡ {χA, χB},
and given by

C−1
AB(x, z) =

⎛
⎜⎜⎝

0 −�−1(z − x) 0 0
�−1(x − z) 0 0 0

0 0 0 −�−1(z − x)
0 0 �−1(x − z) 0

⎞
⎟⎟⎠

�−1, defined by
∫
dDz �−1(x−z)�(z− y) = ∫ dDz �(y−

z)�−1(z−x) = δD(x−y). The bracket satisfies {χA, Q}∗ =
0 for any variable Q so that the second-class constraints,
χA ≈ 0, can be imposed consistently in the Hamiltonian
dynamics, i.e., {H,H}∗ = 0, {H,Hi }∗ = 0, etc.,25 which
corresponds to the delta-function insertions for the con-
straints, χA ≈ 0, in the path integral, (88). If we consider the
gauge-fixing conditions as in the path integral formalism, we

23 For an earlier work on non-projectable case in (2 + 1)-dimensions,
see also [50] (Case C).
24 After this paper appeared in the archive, we became aware of [52]
in which the Dirac brackets were computed for the linearized Hořava
gravity. We thank Ghosh for informing us about his work.
25 This algebra looks like that of the “ultra-local” theory of gravity
[1,2,51].
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can obtain further corrections to the Dirac brackets. Then the
Dirac’s quantization rule is given by [P̂, Q̂] ≡ (i/h̄){P, Q}∗
for the quantum operators, P̂ and Q̂, corresponding to clas-
sical variables P and Q, respectively, with the“appropriate”
operator orderings. One can consider also Cases B and C
similarly, but it would be more involved for the former case.

Note added: After finishing this paper, a related paper [53]
appeared which is overlapping with ours for D = 2 case. But
due to the (full) ai extensions in [53], it shows a different
constraint structure, as noted in our footnote No. 9.
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AppendixA:Computing {H,H}, {H,Hi }, and {Hi ,H j }

In this Appendix, we compute the constraint algebra,
{H,H}, {H,Hi }, and {Hi ,H j } in (16)–(18). To this ends,
it is useful to consider the variations of the smeared con-
straints, 〈ηH〉 ≡ ∫

dDx ηH ≈ 0, etc., with the smearing
functions, η, ηi (neglecting the boundary terms),

δ〈ηH〉 = 〈Aklδgkl + Bklδπ
kl〉, (A1)

δ〈ηiHi 〉 = 〈Cklδgkl + Dklδπ
kl〉. (A2)

After long computations, one can obtain the coefficients,
A, B,C, D as follows:

Akl ≡ δ〈ηH〉
δgkl

=
(

κ2

2

)
η√
g

[
−1

2
gkl
(
πmnπ

mn − λ̃π2
)

+2
(
πkmπ l

m − λ̃ππkl
)]

+η
√
g

[
1

2
gklV(R) − RklV ′(R)

]

+√
g
[
∇k∇l (ηV ′(R)

)− gkl∇m∇m (ηV ′(R)
)]

,

(A3)

Bkl ≡ δ〈ηH〉
δπkl

=
(

κ2

2

)
2η√
g

(
πkl − λ̃gklπ

)
, (A4)

Ckl ≡ δ〈ηiHi 〉
δgkl

= −∇m

(
ηmπkl

)

+
(
∇mηk

)
π lm +

(
∇mηl

)
πkm, (A5)

Dkl ≡ δ〈ηiHi 〉
δπkl

= ∇kηl + ∇lηk . (A6)

As a byproduct, one can also obtain a useful formula,

{R(x), πkl(y)} = δR(x)

δgkl(y)
= −Rkl(x)δD(x − y)

+ ∇k
x∇l

xδ
D(x − y) − gkl∇2

x δ
D(x − y).

(A7)

Then, after some manipulations, one can find the Poisson
bracket algebras for the smeared constraints as follows:

{〈ηH〉, 〈ζH〉}
=
∫

dDz

[
δ〈ηH〉
δgkl(z)

δ〈ζH〉
δπkl(z)

− δ〈ηH〉
δπkl(z)

δ〈ζH〉
δgkl(z)

]

= 〈(η∇iζ − ζ∇iη)Ci 〉, (A8)

{〈ηH〉, 〈ζ iHi 〉}
=
∫

dDz

[
δ〈ηH〉
δgkl(z)

δ〈ζ iHi 〉
δπkl(z)

− δ〈ηH〉
δπkl(z)

δ〈ζ iHi 〉
δgkl(z)

]

= −〈 ζ i∇iηH〉, (A9)

{〈ζ iHi 〉, 〈ζ jH j 〉}

=
∫

dDz

[
δ〈ζ iHi 〉
δgkl(z)

δ〈ζ jH j 〉
δπkl(z)

− δ〈ζ iHi 〉
δπkl(z)

δ〈ζ jH j 〉
δgkl(z)

]

=
〈(

ζ i∇iζ
j − ζ i∇iζ

j
)
H j

〉
, (A10)

where

Ci =
(

−κ2

2

)[(
Hi + 2̂λ∇ iπ

)
V ′(R)

+2
(
π i j − λ̂gi jπ

)
∇ jV ′(R)

]
. (A11)

Now, one can easily check that the Poisson algebra for the
local constraints are given by (16)–(18):

{H(x),H(y)} = Ci (x)∇x
i δD(x − y)

−Ci (y)∇ y
i δD(x − y), (A12)

{H(x),Hi (y)} = −H(y)∇ y
i δD(x − y), (A13)

{Hi (x),H j (y)} = Hi (y)∇x
j δ

D(x − y)

+H j (x)∇x
i δD(x − y). (A14)

Moreover, from (A1)–(A6), one can easily obtain the
dynamical equations of motion (13)–(14) as follows,
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ġi j = {gi j , 〈NH + NiHi 〉} = δ〈NH〉
δπ i j

+ δ〈NiHi 〉
δπ i j

=
(

κ2

2

)
2N√
g

(
πi j − λ̃gi jπ

)+ ∇i N j + ∇ j Ni , (A15)

π̇ i j = {π i j , 〈NH + NiHi 〉} = −δ〈NH〉
δgi j

− δ〈NiHi 〉
δgi j

=
(

κ2

2

)
N√
g

[
1

2
gi j
(
πmnπ

mn − λ̃π2
)

−2
(
π imπ

j
m − λ̃ππ i j

)]

− N
√
g

[
1

2
gi jV(R) − Ri jV ′(R)

]

− √
g
[
∇ i∇ j (NV ′(R)

)− gi j∇m∇m (NV ′(R)
)]

+ ∇m

(
Nmπ i j

)
−
(
∇mN

i
)

π jm −
(
∇mN

j
)

π im .

(A16)

Combining (A15) and (A16), one can also obtain the dynam-
ical equation for

√
g and the momentum trace π as follows,

√
ġ =

(
κ2

2

)
Nπ

1 − Dλ
+ 2∇i N

i , (A17)

π̇ =
(

κ2

2

)(
D

2

)
N√
g

(
πmnπ

mn − λ̃π2
)

+ ∇m
(
Nmπ

)

−N
√
g

[(
D

2

)
V(R) − RV ′(R)

]

+√
g(D − 1)∇2 (NV ′(R)

)

= D

2
NH − N

√
g
[
DV(R) − RV ′(R)

]

+√
g(D − 1)∇2 (NV ′(R)

)+ ∇m
(
Nmπ

)
. (A18)

Appendix B: More details of computations in Sect. 3 A

In this Appendix, we present some more details of the com-
putations in Sect. 3 A.

First, we consider the variations of the smeared con-
straints, 〈η�̃〉 ≡ ∫

dDx η�̃ and 〈ζ �̃〉 ≡ ∫
dDx ζ �̃ with

the smearing functions η and ζ ,

δ〈η�̃〉 = 〈Emnδgmn + Fmnδπ
mn〉, (B1)

δ〈ζ �̃〉 = 〈Gmnδgmn + Hmnδπ
mn〉. (B2)

After quite tedious computations, we obtain the coefficients,
E, F,G, H as follows26:

Emn ≡ δ〈η�̃〉
δgmn

= −
(

κ2

2

)
2̂λV ′(R)

[
πmn∇i (N

2∇ iη)

26 Due to the messy expressions, we have used “xAct” for cross-
checking our computations.

−1

2
gmn∇i (N

2π∇ iη) + N 2∇(mπ∇n)η

]

−
(

κ2

2

)
2̂λ

〈
η∇i

[
N 2∇ iπ

δV ′(R)

δgmn

+N 2
(
π i j − λ̂gi jπ

) δ∇ jV ′(R)

δgmn

−N 2
(
δi j mnπ + gi jπmn

)
∇ jV ′(R)

]〉
, (B3)

Fmn ≡ δ〈η�̃〉
δπmn

= −
(

κ2

2

)
2̂λV ′(R)∇i

[
gmnN

2∇ iη
]

−
(

κ2

2

)
2
〈
η∇i

[
N 2
(
δi j mn − λ̂gi j gmn

)
∇ jV ′(R)

] 〉
,

(B4)

Gmn ≡ δ〈ζ �̃〉
δgmn

=
(

κ2

2

)
2(D − 1)ξ 2̂λ

√
g

{
1

2
gmnN 2

×∇iζ(∇ i∇ j∇ j N − N∇ i R − R∇ i N )

+N 2
[
∇i (N Rmn)∇ iζ − ∇(m∇i∇ i N ∇n)ζ

+∇(m(N R)∇n)ζ − ∇i∇m∇nN∇ iζ
]

+ �D

2ξ(D − 1)

[
2N 2∇(mN∇n)ζ − gmnN 2∇ i N∇iζ

]

+∇i

[
N 2(Ximnkl

l∇ j∇k N ∇ jζ

+2Ximnk jl∇l∇k N ∇ jζ − N Rmn∇ iζ )
]

+∇k∇i

[
N 2(Xkmnl

l
i − Xkmnil

l)∇ j N∇ jζ

−N 2Xkmnjl
l∇ j N∇ iζ

]

+∇k∇ j∇i

[
N 3∇ iζ(Xkmnjl

l − Xkmnl
l
j )
]}

+
(

κ2

2

)2
ξ λ̂

(λD − 1)
√
g

{
(2λ + 1)

[
2πmnπ

×∇i (N
3∇ iζ ) − gmn∇i (N

3π2∇ iζ )

+gmnN 3π∇ iπ∇iζ + 2N 3π∇(mπ∇n)ζ
]

+N 2
[
gmnπ2∇i N∇ iζ + 2π2∇(mN∇n)ζ

−4πmnπ∇i N∇ iζ
]

+ 4(λD − 1)

×
[(

1

2
gmnπ i jπ − πmnπ i j

)
∇ j (N

3∇iζ )

]}

+(higher-derivative contributions), (B5)

Hmn ≡ δ〈ζ �̃〉
δπmn

=
(

κ2

2

)2
4ξ√
g
λ̂

{
N 3∇(mπ∇n)ζ − gmn∇i (N

3π i j∇ jζ )

+ N 2gmn

2(λD − 1)

[
(2λ + 1)Nπ∇i∇ iζ

+(6λ + 1)π∇i N∇ iζ
] }
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+(higher-derivative contributions), (B6)

where f(i j) ≡ ( fi j + f j i )/2, −V ′(R) ≡ (ξ + αnRn−1
)
, and

− δV ′(R)(y)

δgmn(x)
= αn(n − 1)Rn−2 δR(y)

δgmn(x)

= −αn(n − 1)Rn−2
(
RmnδD(x − y)

+Amnpq
kl g

kl∇p∇qδ
D(x − y)

)

= −αn(n − 1)Rn−2
[
RmnδD(x − y)

−(∇n∇m − gmn∇2)δD(x − y)
]
, (B7)

Amnpq
kl ≡ gpi Xqmn

ikl − gi j Xqmn
i j (kδ

p
l),

Xmi j
nkl ≡ 1

2

[
gmkg

(i
l g

j)
n + gmlg

(i
ng

j)
k

−gmng
(i
k g

j)
l

]
. (B8)

Then, after some manipulations one can find the Poisson
bracket algebras as follows:

{〈η�̃〉, 〈ζ �̃〉} =
(

κ2

2

)
λ̂(D − 2)

∫
dDz

[
∇iη∇ j (N

2∇ jζ )

−∇iζ∇ j (N
2∇ jη)

]
V ′(R)N 2C̃i

+(higher-derivative contributions),

{〈η�̃〉, 〈ζH〉} ≈ −
∫

dDz (∇iη)ζN �̃i ,

{〈η�̃〉, 〈ζ kHk〉} = −
∫

dDz ζ k
[
(∇kη) �̃ − (∇k N

2) C̃i∇iη
]
,

{〈η�̃〉, 〈ζH〉} ≈ −
∫

dDz (∇iη)ζN �̃i

+(higher-derivative contributions),

{〈η�̃〉, 〈ζ kHk〉} = −
∫

dDz ζ k
[
(∇kη)�̃ − (∇k N

2) �̃i∇iη

−∇k N
〈
N 2
(

δ�̃i

δN (z)

)
∇iη
〉]

,

+(higher-derivative contributions) (B9)

where,

�̃i =
(

κ2

2

)
2(D − 1)N

[
(2λ + 1)

(λD − 1)
π �̃i − 2π i

k �̃k
]

+
(

κ2

2

)2

2ξ2(D − 1)̂λ

[
∇ iU + 2V i

(λD − 1)

]

+
(

κ2

2

)3
8ξ λ̂√
g
W i , (B10)

U ≡ (2N∇ j∇k N + ∇k N∇ j N
) [

2π jk − (2λ − 1)

(λD − 1)
π g jk

]

+2N 2
[

λ

(λD − 1)
πR − π jk R jk

]
,

V i ≡ π
(
−N 2∇ i R − ∇ i N∇ j∇ j N + N∇ i∇ j∇ j N

)

+∇ iπ

[
�(D + 2)

2ξ(D − 1)
N 2

− (2λ − D − 1)

2(D − 1)

(
N 2R − N∇ j∇ j N

)]

+ (λD − 1)

(D − 1)
∇ jπ

(
N 2Ri j − N∇ j∇ i N

)

−(λ − 1)∇ i (N 2∇ j∇ jπ) − (6λ − 5)

2
∇ i (∇ jπN∇ j N ),

W i ≡ − (2λ + 1)(D − 2)

2(λD − 1)2 π3N∇ i N

− (2λ + 1)(D(2λ + 1) − 3λ − 2)

2(λD − 1)2 N 2π2∇ iπ

+ (D − 2)

(λD − 1)
π i jπ2N∇ j N − (2D − 3)N 2π ikπ jk∇ jπ

+ (4D(2λ + 1) − 12λ − 7)

2(λD − 1)
N 2π i jπ∇ jπ. (B11)

The Poisson algebra for the local constraints are given by

{�̃(x), �̃(y)} =
(

κ2

2

)
λ̂(D − 2)∇x

i

[
V ′(R)N 2C̃i (x)∇ y

j

×
(
N 2∇ j

y δ
D(x − y)

)]

+(higher-derivative contributions),

{�̃(x),H(y)} ≈ N�̃i (y)∇x
i δD(x − y),

{�̃(x),Hk(y)} = −�̃(y)∇ y
k δD(x − y)

−C̃i∇x
i δD(x − y)∇k N

2(y),

{�̃(x),H(y)} ≈ N �̃i (y) ∇x
i δD(x − y)

+(higher-derivative contributions),

{�̃(x),Hk(y)} = −�̃(y)∇ y
k δD(x − y) − �̃i (y)∇x

i δD(x

−y)∇k N
2(y)

−∇x
i

[
N 2(x)

(
δ�̃i (x)

δN (y)

)]
∇k N (y)

+(higher-derivative contributions). (B12)

Here, we have used

{�̃(x), πN (y)} = ∇x
i

[
2NC̃i (x)δD(x − y)

]
, (B13)

{�̃(x), πN (y)} = ∇x
i

[
2N�̃i (x)δD(x − y)

+N 2(x)

(
δ�i (x)

δN (y)

)]
, (B14)

where
(

δ�̃i (x)

δN (y)

)

= −
(

κ2

2

)2
2̂λ

(λD − 1)
√
g
V ′ {[(2λ + 1)gi jπ

−2(λD − 1)π i j
]
∇ jπ(x)δD(x − y)
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+π2(x)∇ i
xδ

D(x − y)
}

−
(

κ2

2

)
2̂λ(D − 1)

×√
gV ′∇ i

x

[(
ξ R + �D

D − 1
+ D − n

D − 1
αRn

)
δD(x − y)

+∇2
(
V ′δD(x − y)

)]

−
(

κ2

2

) [
2̂λ∇iπ{V ′(R)(x),H(y)}

+{2(π i j − λ̂gi jπ)∇ jV ′(R)(x),H(y)}
]
. (B15)

From (B9) or (B12), one can now compute

{�̃, HC } = {�̃, 〈NH + NiHi 〉}
≈ ∇i

[
N 2�̃i − Nk(∇k N

2)C̃i
]

+ ∇k(N
k�̃),

(B16)

{�̃(x), HC } = {�̃(x), 〈NH + NiHi 〉}
≈ ∇i

[
N 2 �̃i − Nk(∇k N

2)�̃i
]

+ ∇k(N
k�̃)

− ∇x
i

[
N 2(x)

〈(
δ�̃i (x)

δN

)
Nk∇k N

〉]

+ (higher-derivative contributions), (B17)

which reduce to (33) and (36), respectively, for the case C̃i =
0.
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mological perturbations in Hořava–Lifshitz gravity. Phys. Rev. D
81, 084053 (2010). arXiv:1002.1429 [hep-th]

13. J.M. Pons, P. Talavera, Remarks on the consistency of minimal
deviations from General Relativity. Phys. Rev. D 82, 044011
(2010). arXiv:1003.3811 [gr-qc]

14. J. Bellorin, A. Restuccia, On the consistency of the Horava Theory.
Int. J. Mod. Phys. D 21, 1250029 (2012). arXiv:1004.0055 [hep-th]

15. J. Bellorin, A. Restuccia, Closure of the algebra of constraints for
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