
Eur. Phys. J. C (2020) 80:564
https://doi.org/10.1140/epjc/s10052-020-8135-z

Regular Article - Theoretical Physics

Power spectrum of stochastic wave and diffusion equations in the
warm inflation models

Z. Haba1,a

1 Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Poland

Received: 22 April 2020 / Accepted: 10 June 2020 / Published online: 22 June 2020
© The Author(s) 2020

Abstract We discuss dissipative stochastic wave and dif-
fusion equations resulting from an interaction of the inflaton
with an environment in an external expanding homogeneous
metric. We show that a diffusion equation well approximates
the wave equation in a strong friction limit. We calculate the
long wave power spectrum of the wave equation under the
assumption that the perturbations are slowly varying in time
and the expansion is almost exponential. Under the assump-
tion that the noise has a form invariant under the coordi-
nate transformations we obtain the power spectrum close to
the scale invariant one. In the diffusion approximation we
go beyond the slow variation assumption. We calculate the
power spectrum exactly in models with exponential inflation
and polynomial potentials and with power-law inflation and
exponential potentials.

1 Introduction

It has been discovered long time ago by Harrison [1] and
Zeldovich [2] that the scale invariant spectrum of galaxy
distribution plays an essential role in the galaxy formation
after the Big Bang. The spectrum close to the scale invari-
ant one has been confirmed by WMAP observations [3,4].
Since then the power spectrum is a substantial criterion for a
validity of cosmological models. The power spectrum results
from quantization of the quadratic fluctuations around the
homogeneous solution [5–11]. The formalism is explicitly
gauge invariant [12,13]. It treats quantum gravitational fluc-
tuations and inflaton fluctuations on the same footing. Never-
theless, it has been shown [14–17] that if the quantum infla-
ton fluctuations are expressed by stochastic fluctuations in
e-fold time then the inflaton fluctuations already contain the
gravitational fluctuations leading to the same power spec-
trum as in [13]. The scalar field models can be considered
as effective field theories of scalar cosmological perturba-
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tions. The power spectrum close to the scale invariant one
has also been obtained in warm inflation models [18,19].
The model of warm inflation is treated as an effective field
theory of an inflaton interacting with a large number of other
fields [20,21]. The inflaton wave equation becomes stochas-
tic as a result of an interaction with other fields whose effect is
described on the the basis of their contribution to the entropy
and to the energy density [18,22,23]. In this paper we study
in detail the stochastic wave equation in the form derived
from an interaction of scalar fields with an environment [24–
26]. In this model the heat bath is an initial state of an infinite
set of scalar massive fields χn interacting with the inflaton.
The fields χn are treated as unobservable degrees of free-
dom. We average over these degrees of freedom. As a result
of the interaction with χn the inflaton acquires a friction and
a noise term. The stochastic model is considered as a Marko-
vian approximation to the Hamiltonian model of the χn fields
interacting with the inflaton. Such an approach is analogous
to the treatment of a Brownian particle in an environment of
other particles.

In this paper we first repeat a calculation of the power
spectrum in an extended model of the inflaton-environment
interaction [26] on the basis of previously developed meth-
ods [27,28] under the assumption that the perturbations of
the non-linear wave equation are slowly varying in time (are
almost constant). However, the main objective here is a devel-
opment of another tool for a computation of the power spec-
trum based on the approximation of the dissipative wave
equation by a diffusion equation. In the case of a random
diffusion the calculation of the power spectrum is much sim-
pler. Its dependence on the evolution law can be seen in a
more transparent way. We are able to calculate the power
spectrum with parameters which can substantially vary in
time.

The plan of the paper is the following. In Sect. 2 we repeat
the main steps of the derivation [26] of the model emphasiz-
ing the extra terms which appear in comparison to the warm
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inflation inflaton equation [21]. We discuss the resulting dis-
sipative stochastic wave equation for an inflaton interacting
with an environment by means of a potentialU . In Sect. 3 we
show that at strong friction the solutions of the wave equation
tend to the solutions of a diffusion equation. In Sect. 4 we
calculate the power spectrum of the stochastic wave equation
under the assumption that the evolution of the scale factor is
almost exponential and the variables in this equation can be
treated as constants. This is a repetition of the standard calcu-
lations [19,27,28] but in a model with different potentials and
a different noise. In Sect. 5 we calculate the power spectrum
of the stochastic diffusion equation assuming again that the
expansion of the metric is almost exponential and that the
variables in this equation can be treated as constants. We
obtain the same power spectrum as in the case of the wave
equation,i.e., an almost scale invariant spectrum, which is
shown to be a consequence of the form of the noise. We
discuss a relation of our results to the ones in the literature.
In Sect. 6 we study solutions of the diffusion equation with
almost exponential expansion but with varying potentials.
We obtain a shift in the formula for the spectral index. Then,
we explore exponential potentials in a power-law expand-
ing metric when the method of constant parameters does not
apply. The diffusion equation reveals a sensitive dependence
of the power spectrum on the potentials. In Appendix A we
show in a simple way that the form of the noise that leads
to the scale invariant spectrum follows from its invariance
under coordinate transformations. In Appendix B we give a
simplified derivation of the scale invariant spectrum showing
the crucial role of the form of the noise and the exponential
expansion.

2 The model of an environment

We recall the basic ingredients of the model [24–26] of an
interaction of the inflaton with an environment. We consider
the Lagrangian

L = 1

2
∂μφ∂μφ − V (φ)

+
∑

n

(
1

2
∂μχn∂

μχn − 1

2
m2

nχnχn − λnU (φ)χn

)
, (1)

where U (φ) is a certain interaction potential. Equations of
motion read

g− 1
2 ∂μ(g

1
2 ∂μφ) = −V ′ −U ′(φ)

∑

n

λnχn, (2)

g− 1
2 ∂μ(g

1
2 ∂μχn) + m2

nχn = −λnU (φ), (3)

where gμν is the metric tensor and g = | det[gμν]|. We
restrict ourselves to the flat expanding metric

ds2 = gμνdx
μdxν = dt2 − a2dx2 (4)

We write

χn = a− 3
2 χ̃n . (5)

Then, in the momentum space Eq. (3) reads

∂2
t χ̃n + ω2

nχ̃n = −λna
3
2U (φ), (6)

where

ω2
n = a−2k2 + m2

n − 3

2
∂t H − 9

4
H2

H = a−1∂t a. Let us consider low momenta a−1k << H
so that for a large time we can neglect a−2k2 term. We also
assume that H is slowly varying and ω2

n > 0.
We can solve Eq. (3) for χn

χn = χcl
n − λn

∫
dx ′Gn(x, x

′)U (x ′), (7)

where we denote U (x) = U (φ(x)), χcl
n are solutions of the

linear equation and Gn is the Green function. When we insert
χn of Eq. (7) in Eq. (2) then it takes the form

g− 1
2 ∂μ(g

1
2 ∂μφ)+V ′ = −U ′ ∑

n
λ2
nGnU+U ′η ≡ δφ+U ′η̃,

(8)

where

η̃ = −
∑

n

λnχ
cl
n . (9)

When we calculate the expectation value of η̃ over the free
field solutions χcl

n with respect to the Gibbs measure (with
temperature β−1) then approximately

〈η̃(x)η̃(x ′)〉 = β−1(2π)−3
∫

dk exp(ik(x − x′))
∑

n
λ2
nω

−2
n cos(ωn(t − t ′)). (10)

We assume that λ2
nω

−2
n � γ 2 is a constant. Then

〈η̃(x)η̃(x ′)〉 = β−1γ 2a−3δ(x − x′)δ(t − t ′). (11)

The friction δφ in Eq. (8) can be expressed by means of an
approximate Green function

sin(ωn(t − s))

ωn
= ∂s

(cos(ωn(t − s))

ω2
n

)
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(in Eq.(7) x = (t, x) and x ′ = (s, x′)). After an integration
by parts in GnU the friction term takes the form

−a(t)−
3
2U ′ ∑

n

λ2
n

∫
ω−2
n cos(ωn(t − s))∂s(a(s)

3
2U )ds.

(12)

We have got the same kernel as the one in Eq. (10) which we
approximated by δ(t − s) in Eq. (11) for the correlation of
the noise. With these approximations, when we perform the
differentiation in Eq. (12), then Eq. (2)in the flat expanding
metric (4) reads (we change the notation φ → φη)

∂2
t φη − a−2�φη + (3H + γ 2(U ′)2)∂tφη

+ V ′(φη) + 3

2
γ 2HUU ′(φη) = β− 1

2 γ a− 3
2U ′η, (13)

where we wrote η̃ = γβ− 1
2 a− 3

2 η so that

〈ηs(x)ηt (y)〉 = δ(t − s)δ(x − y). (14)

We consider a linearized form of Eq. (13) resulting from
an expansion around its homogeneous (space-independent)
solution

∂2
t φc+(3H+γ 2U ′(φc)

2)∂tφc+V ′(φc)+3

2
γ 2HUU ′(φc)=0

(15)

We write φη = φc + φ. The initial conditions are contained
in φc, so we assume zero as the intitial condition for φ. The
linearization of Eq. (13) expanded about φc reads

∂2
t φ − a−2�φ + (3H + γ 2U ′(φc)

2)∂tφ + V ′′(φc)φ

+ 2γ 2U ′U ′′(φc)∂tφcφ + 3

2
γ 2H((U ′)2 +UU ′′)φ

= β− 1
2 γ a− 3

2U ′(φc)η. (16)

We can transform Eq. (16) to another form . Let

φ = a− 3
2 exp

(
− 1

2
γ 2

∫ t

0
U ′(φc)

2
)
Φ. (17)

Then

∂2
t Φ − a−2�Φ − Ω2Φ

= β− 1
2 γ exp

(1

2
γ 2

∫ t

0
U ′(φc)

2
)
U ′(φc)ηt , (18)

where

Ω2 = −V ′′ − 1

2
γ 2∂t (U

′)2 + 3

2
∂t H

−3

2
γ 2H((U ′)2 +UU ′′) + 1

4
(3H + γ 2(U ′)2)2.

The wave equation with friction is transformed into a wave
equation with a complex mass Ω . Note that large 3H +
γ 2(U ′)2 means large Ω .

3 Diffusion approximation

In this section we show that the diffusion approximation to
Eq. (16) , i.e., the omission of ∂2

t φ, is equivalent to the neglect
of fast decaying modes (for a large Ω) in the solution of
Eqs. (17)–(18). The diffusion approximation to Eq. (16) in
the momentum space reads (we denote the Fourier transform
φ̃(k) by the same letter as its spatial form φ(x))

(3H + γ 2U ′(φc)
2)∂tφ + a−2k2φ + +V ′′(φc)φ

+ 2γ 2U ′U ′′(φc)∂tφcφ

+ 3

2
γ 2H((U ′)2 +UU ′′)φ = β− 1

2 γ a− 3
2U ′(φc)η. (19)

On the other hand we may express the solution of Eq. (18)
(momentum space) with zero initial condition at t0 by means
of the Green function G

Φ(t) = β− 1
2 γ

∫ t

t0
G(t, s) exp

(1

2
γ 2

∫ s

0
U ′(φc)

2
)
U ′(φc)ηsds,

(20)

where the approximate Green function (for large slowly vary-
ing ω) is

G(t, s) = ω(s)−
1
2 ω(t)−

1
2 sinh

( ∫ t

s
dτω(τ)

)
(21)

with

ω2 = Ω2 − a−2k2. (22)

Expanding ω in powers of (3H + γ̃ 2)−1 where

γ̃ 2 = γ 2(U ′)2 (23)
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we obtain in the lowest order of the expansion

ω = 3

2
H + 1

2
γ̃ 2 + (3H + γ̃ 2)−1

(
− a−2k2 − V ′′

− 2γ 2U ′U ′′∂tφc

− 3

2
γ 2H((U ′)2 +UU ′′) + 3

2
∂t H + 1

2
γ 2∂t (U

′)2
)

≡ 3

2
H + 1

2
γ̃ 2 + 1

2
∂t ln(3H + γ̃ 2) − v, (24)

where

v = (3H + γ̃ 2)−1
(
a−2k2 + V ′′ + 1

2
∂t γ̃

2

+ 3

2
γ 2H((U ′)2 +UU ′′)

)
. (25)

We compare solutions of the wave equation (16) with solu-
tions of the diffusion equation (19). The solution of the dif-
fusion equation (19) is

φt = β− 1
2 γ

∫ t

t0
exp

(
−

∫ t

s
dτv(τ )

)

(3H(s) + γ̃ 2)−1a(s)−
3
2U ′(φc)η(s)ds. (26)

We compare the solution (26) with (20, 21). In the Green
function (21) we have

∫ t

s
dτω(τ) = 1

2

∫ t

s
(3H(τ ) + γ̃ (τ )2)dτ

+ 1

2
ln(3H(t) + γ̃ (t)2) − 1

2
ln(3H(s) + γ̃ (s)2)

−
∫ t

s
dτv(τ ). (27)

If in

sinh(X) = 1

2
exp(X) − 1

2
exp(−X)

we neglect the second term as quickly vanishing (for X > 0)

and in Eq. (21) ω(s)− 1
2 is approximated by ( 3

2 H + 1
2 γ̃ 2)− 1

2

(and the same approximation for ω(t)− 1
2 ) then a simple com-

parison of Eqs. (20, 21) and (26, 27) leads to the conclusion
that for large 3H + γ̃ 2 the solutions of the wave equation and
the diffusion equation (with zero initial conditions) coincide.

4 Power spectrum of the linearized wave equation

We have calculated the power spectrum in the Einstein-
Klein-Gordon system in [28] in the case U (φ) = φ. The
changes corresponding to the replacement φ → U (φ)

are the following:3H + γ 2 → 3H + γ̃ 2, V ′′ → V ′′ +
1
2∂t γ̃

2, 3
2σγ 2H → 3

2γ 2H((U ′)2 + UU ′′). We repeat here

the main steps of [28] in order to fix the stage for the discus-
sion of the extended model. We still rewrite the correspon-
dence in a different way. Let

Γ̃ = (3H)−1γ̃ 2 (28)

replacing Γ from [28],

Q = 1

2
∂t γ̃

2 + γ̃ 2(U ′)−2UU ′′ (29)

and

δ = (V ′′ + Q)(3H2)−1 (30)

replacing η from [28]. If in Eq. (15) we applied the slow roll
approximation then we could express ∂tφc in Q by derivatives
of the potential U .

The power spectrum ρ of fluctuations φ is defined by

〈φt (x)φt (y)〉 =
∫

dkρt (k) exp(ik(x − y)) (31)

or in Fourier transform

〈φt (k)φt (k′)〉 = (2π)3δ(k + k′)ρt (k). (32)

The spectral index 2κ is defined by the low k = |k| behaviour
ρt (k) � k−2κ .

In [28] we have calculated the spectrum under the assump-
tion that δ and Γ̃ are almost constant. If H is varying in time
then estimates by means of the methods [28] (based on [27])
are not reliable for varying parameters. For this reason in the
next section we discuss the diffusion approximation when
the time evolution can be treated in a more controllable way.
We define

ε = −H−2∂t H. (33)

Without the thermal noise (γ = 0) ε can be expressed from
Friedmann equations as 1

8πG (V ′)2V−2 (where G is the New-
ton constant). With the thermal noise and the interaction U
the formula for ε in terms of potentials is more involved
(see [26],eq. (89)). We keep (33) as a definition of ε and do
not attempt to express it by potentials.

We introduce the conformal time

τ =
∫

dta−1. (34)

With a slowly varying H we have approximately

aH = −(1 − ε)−1 1

τ
. (35)
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Equation (35) can be obtained by an integration of the identity
[29]

∂t

(
(1 − ε)Ha

)−1 = −a−1 + ∂tε
(
aH(1 − ε)2

)−1
(36)

and the assumption that the last term on the rhs of Eq. (36)
is small in comparison with the first term.

In terms of τ Eq. (16) for the Fourier transform φ(k) reads
(k = |k|)

(∂2
τ − 2 + 3Γ̃

1 − ε

1

τ
∂τ + k2

+ 3δ + 9
2 Γ̃

(1 − ε)2 τ−2)φ = γβ− 1
2 ητ . (37)

Let

ζ = kτ (38)

and

ν2 = (1 − ε)−2
(

9

4
− 3δ − 3

2
ε + +9

4
Γ̃ 2 − 3

2
εΓ̃

)
(39)

(the term − 3
2ε in Eq. (39) is replaced by + 9

2ε in the corre-
sponding formula in [28] owing to the contribution of grav-
itational modes as expressed by scalar perturbations).

The calculation of the expectation value of the solution of
Eq. (37) over the noise η leads to

〈φ2〉 � k−3ζ 2μY 2
ν (ζ )(U ′(φc))

2 � k−3ζ 2μ−2ν(U ′(φc))
2

(40)

for small k (as the Bessel function Yν(ζ ) � ζ−ν for small
ζ ).Here

μ = (1 − ε)−1
(

3

2
− ε

2
+ 3

2
Γ̃

)
. (41)

In Eq. (40) the time t in φc(t) must be replaced by τ then τ is
expressed as ζ

k . For a small Γ̃ and U ′ � const we have in a
linear approximation in the indices describing the interaction
corrections:

2ν = 3 + 2ε − 2δ, (42)

2μ = 3 + 2ε + 3Γ̃ . (43)

From Eqs. (40–43) if U ′ � const

〈φ2〉 � k−3+2δ+3Γ̃ . (44)

If U (φ) = φ and the term 3
2γ 2Hφ is absent in Eq. (16) then

in [28] we obtained the power spectrum k−3+2η which agrees
with the corresponding result in [19] (in fact, our spectral
index 2μ−2ν in [28] is equal to 2ν −2α of Ref. [19]). For a
generalU (φ) our wave equation (16) is different from that of
Ref. [19]. The spectral indices in models of warm inflation
in [18,22,23] agree with our results when they are concerned
with spectral indices of the inflaton. However, there are other
fields in those models described by their entropy and densities
which additionally contribute to the power spectrum leading
to a different spectral index.

5 The power spectrum of diffusion

The solution φη = φc + φ of Eq. (13) with a given initial
condition is a sum of the solution φc of the homogeneous
equation (15) with this initial condition and φ with 0 as an
initial condition at t0 . From the diffusion approximation (26)
we obtain

ρt (k) = β−1γ 2
∫ t

t0
exp

(
− 2

∫ t

s
v
)

a(s)−3(3H + γ̃ 2)−2U ′(φc)
2ds. (45)

We can have ρt � k−2κ with κ > 0 if t0 = −∞ (oth-
erwise the integral (45) would be finite at k = 0). For
a = exp(

∫ t
t0
H(t ′)dt ′) this means that the initial condition

is at a(t0 = −∞) = 0. If we introduce the e-fold time

dν = Hdt, (46)

then

ρt (k) = β−1γ 2

∫ ν(t)

ν(t0)
exp

(
− 2

∫ ν(t)

τ

(1 + Γ̃ )−1

(
δ + (3H2)−1 exp(−2τ ′)k2 + 3

2
Γ̃

)
dτ ′)

exp(−3τ)(U ′(φc(τ ))2H−1(3H + γ̃ 2)−2dτ. (47)

(it is assumed that in φc(s) the cosmic time has been
expressed by the e-fold time). We assume in this section that
Γ̃ , δ ,U ′(φc) , H and (U ′)−2U ′′U are slowly varying in time,
so that we may approximate them by a constant.

We introduce the variable

u = exp(−2ν) (48)
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and assume that H(ν) � const then

ρt (k) = 1

2H
β−1γ 2 exp

(
(3H2)−1(1 + Γ̃ )−1k2 exp(−2ν)

)

= exp(−2qν)

∫ u(ν0)

u(ν)

(3H + γ̃ 2)−2U ′(φc)
2

exp
(

− (3H2)−1(1 + Γ̃ )−1k2u
)
u

1
2 −qdu, (49)

where

q =
(

δ + 3

2
Γ̃

) (
1 + Γ̃

)−1
. (50)

The result of integration in Eq. (47) assuming that H ,U ′
Γ̃ and q are approximately constant can be expressed by the
incomplete Γ function

ρt (k) = 1

2H
(3H + γ̃ 2)−2 exp(−2qν)γ̃ 2β−1

exp
(
(3H2)−1(1 + Γ̃ )−1k2 exp(−2ν)

)

((
(3H2)−1k2(1 + Γ̃ )−1

)−κ

Γ
(
κ, (3H2)−1(1 + Γ̃ )−1k2 exp(−2ν)

)

−
(
(3H2)−1(1 + Γ̃ )−1k2

)−κ

Γ
(
κ, (3H2)−1(1 + Γ̃ )−1k2 exp(−2ν0)

))
, (51)

where

κ = 3

2
− q. (52)

We have for x << 1

Γ (α, x) = Γ (α) − xα
∑

n≥0

(−x)n
(
n!(α + n)

)−1
, (53)

and for x >> 1

Γ (α, x) = xα−1 exp(−x).

If ν0 → −∞(u(ν0) → +∞) then the second term in Eq.(51)
is vanishing. There remains

ρt (k) = 1

2H
(3H + γ̃ 2)−2 exp(−2qν)γ̃ 2β−1

exp
(
(3H2)−1(1 + Γ̃ )−1k2 exp(−2ν)

)

Γ
(
κ, (3H2)−1(1 + Γ̃ )−1k2 exp(−2ν)

)

(
(3H2)−1k2(1 + Γ̃ )−1

)−κ

. (54)

From Eq. (53) only the last term in Eq. (54) is relevant for a
small k leading to

ρt (k),� k−2κ . (55)

where in a linear approximation in the indices δ and Γ̃ we
get

2κ = 3 − 2δ − 3Γ̃ (56)

This result agrees with the result (44) obtained from the wave
equation in Sect.4. For a large Γ Eqs. (40) and (55) with κ

defined in Eq. (52) also give the same results but power spec-
trum is far from the scale invariant one in contradistinction to
the models in [18] (but in an agreement with the calculations
of the spectrum of the inflaton stochastic equation in [19]).

At γ = 0 the result (56) coincides with the power spec-
trum of quantum fluctuations which are derived by a calcula-
tion of 〈φ2〉 in the Bunch-Davis vacuum [8,9](normalized
so that the scalar modes behave as plane waves at large
k(aH)−1; see also a later discussion in [11,30–32] (sec.
24.3)). Our results agree with the results of [19] (also with
the calculations of [18,23] when the authors calculate the
power spectrum of the stochastic equations). In compari-
son with [19] one should take into account that we have a
different friction term than the authors in[19] and the term
3
2γ 2H(U ′2+UU ′′) is absent in [19]) . ForU (φ) = φ we have
calculated the spectrum of the same model as in [19] in [28]
(we consider there an extra term of the form σ 3

2γ 2Hφ which
for σ = 0 corresponds to the case of [19]). Then, our results
agree. For general U (φ) the spectrum of the inflaton equa-
tion of [19] cannot be compared with Eq. (16) without addi-
tional calculations. It follows from Eq. (54) that the amplitude
of thermal fluctuations is determined by H , κ (known from
CMB measurements [34,35]),β andγ (which this way would
be fixed by ρt (k)). On the other hand the friction γ is related
(depending on the model) to other measurable quantities as
,e.g., the diffusion constant [36]. In this way the amplitude of
stochastic thermal fluctuations depends on many parameters,
whereas the virtue of the quantum result consists in the pre-
diction of its 10−5 magnitude [5–7,10,11] in agreement with
observations. The theory shows that under the assumption of
almost exponential expansion both the quantum fluctuations
and the thermal fluctuations of the inflaton lead to a small
deviation from the scale invariant spectral index ( this index
is crucial for distinguishing various inflation models on the
basis of observational data [34,35]). The assumption that
thermal fluctuations are of quantum origin does not change
essentially the results as at high temperatures at the early
stage of the universe quantum theory is well approximated by
the classical one. Although CMB shows the quantum Planck
spectrum (at all wave lengths) the perturbations of the homo-
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geneous solutions at large wave lengths exhibit no quantum
effects.

In the next section we show that the potential U describ-
ing an interaction of the inflaton with the environment can
shift the spectral index. It may be difficult on the basis of a
study of the power spectrum to determine whether the devia-
tion from the scale invariant spectrum discovered in WAMP
observations comes from quantum or thermal fluctuations. If
the initial state of the universe is Gaussian then further evo-
lution of quantum cosmological perturbations proceeds in a
squeezed state with a classical evolution as shown in [37–
39]. In such a case it would be difficult to discover whether
the origin of the universe is of quantum nature. The even-
tual observation of non-Gaussian correlations [40] in CMB
could show that a decoherence of quantum superpositions
really takes palace.

6 Beyond the slowly varying corrections

In the calculations of the spectrum of the stochastic wave
equation in Sect. 4 as well as of the spectrum of the diffusion
equation in Sect. 5 we assumed that H ,δ and Γ̃ vary so slowly
that we can approximate them by constants in the calcula-
tion of the power spectrum. The slow variation is consistent
with the slow roll approximation usually made for inflation.
The calculations in Sect. 4 relied heavily on the assump-
tion of the slow variation. For varying potentials we return
to the approximation of Sect. 3 of the wave equation by the
diffusion equation. The replacement of the wave equation by
diffusion equation is legitimate if 3H+γ 2(U ′)2 is large. The
estimates of the solutions of the diffusion equation based on
Eq. (26) are much easier then the study of the corresponding
wave equation. We rewrite the formula (45) for the spectrum
in the form

ρt (k) == β−1γ 2

∫ t

t0
exp

(
− 2

∫ t

s
(3H(t ′) + γ̃ 2)−1

(
V ′′ + a−2k2 + 1

2
∂ ′
t γ̃

2 + 3

2
γ 2H((U ′)2 +U ′′U )

)

a(s)−3(3H + γ 2U ′(φc(s))
2)−2(U ′(φc(s))

2ds.
(57)

In this formula we admit that V ′′(φc(t)) and U ′(φc(t)) have
a substantial variation in time. This property depends on
the potentials as well as on H . First, we assume that H is
(almost) constant. In the damped wave equation the large
time behaviour does not depend on the term ∂2

t φ. For small
time in order to neglect ∂2

t φ we must make the assumptions
that (V ′V−1)2 and V ′′V−1 are small and slowly varying in
time (this is the slow-roll approximation). Neglecting ∂2

t φc

in Eq. (15) we can represent this equation in an integral form

∫
(V ′(φc)+3

2
γ 2HUU ′(φc))

−1(3H+γ 2U ′(φc)
2)dφc = −t

(58)

Equation (15) will have solutions decaying to zero (or to a
constant) as from Eq. (58) ∂tφc is negative if V ′ + 3

2γ 2UU ′
is positive. If the decay is exponential

φc � exp(−bt) (59)

so that

U ′(φc(t)) � exp(−r t) (60)

then, as follows from the estimates of Sect. 5 after an insertion
of (60) in Eq. (57)

ρt (k) � k−3−2r+2δ+3Γ̃ . (61)

Hence, the decay (60) leads to a shift of the spectral index.
The behaviour (61) can really happen as we can see assuming
that V ′ is negligible and γ 2(U ′)2 >> 3H . Then, Eq. (58)
has the solution

U (φc(t)) = A exp

(
−3H

2
t

)
. (62)

IfU � φn then r = 3H(n−1)
2n . An exponential decay will be a

common behaviour for polynomial V and U in Eq. (58). Let
us consider some examples. V = m2

2 φ2,U = φ gives a linear
equation (15) with the decay rate b = (m2 + 3

2γ 2H)(3H +
γ 2)−1. Easily calculated integral (58) for V = m2

2 φ2 and
U = 1

2φ2 gives

b = r = m2

3K
. (63)

As a next example if V = g
4 φ4, U = φ then b = 1

2γ 2, but
r = 0 (no effect on the power spectrum in Eq. (61)). The
decay can be non-exponential as can be seen if V = g

4 φ4

and U = 1
2φ2 then

φ−2
c = φ−2

0 + 4g + 3Hγ 2

6H
t.

In such a case b = r = 0 and the power spectrum is changed
only by logarithmic corrections.

As a different class of models let us consider the power-
law inflation a = tα , H = α

t . Consider the potentials

V (φ) = λ exp(4uφ) (64)

and

U (φ) = Λ exp(uφ). (65)
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Equation (15) has a solution of the form

φ = − 1

2u
ln(t) (66)

if the parameters satisfy the relation

α = 1

3

1 − u2γ 2Λ2 + 8λu2

1 − u2γ 2Λ2 . (67)

We require α > 1, hence u2γ 2Λ2 < 1.
The s-integral in Eq. (57) reads (we choose t0 = 0 so that

a(t0) = 0 )

ρt = K (t, k)
∫ t

0
dss−3α+h+1 exp

(
−B(2α−2)−1k2s2−2α

)
,

(68)

where K is a certain function bounded for a small k,

h = 2(3α + γ 2Λ2u2)−1
(

16λu2 − 1

2
γ 2Λ2u2

+ γ 2Λ2u2 1 + 8λu2 − γ 2Λ2u2

1 − γ 2Λ2u2

)
, (69)

B = 2(3α + γ 2Λ2u2)−1. (70)

Performing the integral (68) we obtain the power spectrum
(55) with

κ = 3α − h

2(α − 1)
. (71)

For h = 1 the result is the same as in the case of a power
spectrum of quantum fields [30] in a metric a � tα (this is
the almost scale invariant spectrum for a large α).

7 Summary and outlook

The stochastic wave equation can be considered as a phe-
nomenological effective field theory of an inflaton. In gen-
eral, in addition to the inflaton there will be other fields which
contribute to the power spectrum. In our model the stochastic
wave equation arises from an average over an infinite set of
scalar fields interacting with the inflaton. We have investi-
gated its long wave power spectrum on a basis of some well-
controlled approximations. We have shown that the scale
invariant spectrum is related to the coordinate-independent
form of the noise and to the accelerated expansion of the met-
ric. The diffusion approximation derived in this paper allows
to study the inflaton power spectrum beyond the assumption
of an almost exponential expansion and small variation of
the potentials. We considered a potential U describing inter-
action with an environment which in the case of an almost

exponential expansion shifted the spectral index. In an exam-
ple of a power-law inflation we have obtained a power spec-
trum close to the scale invariant one in models with exponen-
tial potentials. For a small friction and an almost exponen-
tial expansion the departure from the scale invariant spec-
trum is determined by the same formula as the one obtained
from quantization of the scalar field on an external expand-
ing space-time. If there is a friction then Hamiltonian quan-
tum mechanics is not well-defined. However, we suppose
that the proper formulation as a dissipative Lindblad theory
would lead the same formula for the power spectral index.
Our stochastic methods suggest that the spectral long wave
index cannot distinguish between quantum inflaton fluctua-
tions and classical thermal fluctuations. The time evolution of
cosmological perturbations has been studied in [37,38] with
the conclusion that if the inflation starts from a Gaussian
state then it quickly becomes classical (decoherence without
the environment). The CMB spectrum satisfying the Planck
law is certainly quantum but we could not see this in the
long wave limit. If we admitted non-Gaussian states then a
complete decoherence theory based on the Lindbald equation
would be needed [39] in order to explain the structure for-
mation and detect when the classical behaviour begins. From
the formula for ρt (k) in this paper we could conclude that
ρt (k) � k−1 for large k. This is a quantum behaviour of 〈φ2〉.
However, for large k the stochastic equation discussed in this
paper is not reliable. One should rather study the interaction
with an environment at high momenta initiated in [26].
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8 Appendix A: Invariance under a change of
coordinates

We give a simple proof that the stochastic wave equation
without friction (friction comes from an interaction of φ with
an environment as in [26], the low momentum approximation
is not invariant under change of coordinates)
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g− 1
2 ∂μg

1
2 ∂μφ + V ′ = g− 1

4 η

is invariant under a change of coordinates, where g =
| det[gμν]|. Under the change of coordinates x → y

〈η(x)η(x ′)〉 = δ(x − x ′) = δ
(
x(y) − x ′(y′)

)

= δ(y − y′)|∂x
∂y

|−1 = |∂x
∂y

|−1〈η(y)η(y′)〉
(72)

where ∂x
∂y | is the Jacobian. So

η(x) = |∂x
∂y

|− 1
2 η(y) (73)

On the other hand

g(x) = g(y)|∂x
∂y

|2 (74)

Hence, g− 1
4 η is invariant (in a flat expanding metric this is

a− 3
2 η).

9 Appendix B: Exact formula for the exponential
expansion

When a(t) = exp(Ht) then the solution of the diffusion can
be obtained explicitly. Assume U (φ) = φ, denote

M2 = V ′′ + 3

2
H γ̃ 2. (75)

and assume that M2 can be approximated by a constant. The
solution of the linear diffusion equation (19) with zero initial
condition at t0 = −∞ ( a(−∞) = 0) is

φt = β− 1
2 γ̃

∫ t

−∞
ds

1

3H + γ̃ 2 ηs exp(−3

2
H(t − s))

exp
(

− k2

3H + γ̃ 2 (exp(−2Hs) − exp(−2Ht))

− M2

3H2 + H γ̃ 2 (t − s)
)

(76)

Let

u(s) = exp(−2Hs)

R = 3H2
(

1 + 1

3
γ̃ 2H−1) = 3H2(1 + Γ̃

)
(77)

Then

ρt (k) = γ̃ 2

2Hβ

(
1

3H + γ̃ 2

)2

exp

(
k2 exp(−2Ht)

R

)

∫ ∞

u(t)
exp

(
−k2u

R

)
uκ−1du (78)

where

κ = 3

2
− M2

R
(79)

The integral can be expressed by the incomplete Γ

ρt (k) = γ̃ 2

2Hβ

(
1

3H + γ̃ 2

)2

exp

(
k2 exp(−2Ht)

R

)

(
k2

R

)−κ

Γ

(
κ,

k2

R
u(t)

)
. (80)

From Eqs.(53) and (80)

ρt (k) � k−2κ (81)

If γ = 0 then

κ = 3

2
− δ (82)

with δ = M2

3H2 .
This is exactly the index resulting from a quantization

of the scalar field in an exponentially expanding universe
[11,30–32].
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