
Eur. Phys. J. C (2020) 80:558
https://doi.org/10.1140/epjc/s10052-020-8109-1

Regular Article - Theoretical Physics

Curvature and thermal corrections in tree-level CPT-Violating
Leptogenesis

Nick E. Mavromatosa , Sarben Sarkar

Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London, Strand, London WC2R 2LS, UK

Received: 27 April 2020 / Accepted: 1 June 2020 / Published online: 19 June 2020
© The Author(s) 2020

Abstract In a model for leptogenesis based on spontaneous
breaking of Lorentz and CPT symmetry [1–3], we examine
the consistency of using the approximation of plane-wave
solutions for a free spin- 1

2 Dirac (or Majorana) fermion field

propagating in a Friedmann–Lemaître–Robertson–Walker
space time augmented with a cosmic time-dependent (or,
equivalently, a temperature-dependent) Kalb–Ramond (KR)
background. For the range of parameters relevant for leptoge-
nesis, our analysis fully justifies the use of plane-wave solu-
tions in our study of leptogenesis with Boltzmann equations;
any corrections induced by space-time-curvature are negligi-
ble. We also elaborate further on how the lepton asymmetry is
communicated to the Baryon sector. We demonstrate that the
KR background (KRB) does not contribute to the anomaly
equations that determine the baryon asymmetry (a) through
an explicit evaluation of a triangle Feynman graph and (b)
indirectly, on topological grounds, by identifying the KRB
as torsion (in the effective string-inspired low energy gravi-
tational field theory).

1 Motivation and summary

In Refs. [1–3] we proposed and discussed a new scenario
for leptogenesis induced by an axial background vector field
that violates spontaneously Lorentz and CPT (C(charge con-
jugation), P(parity) and T (time)) symmetry [4]. In string-
inspired models such backgrounds might be provided by the
spin-one antisymmetric tensor Kalb–Ramond (KR) field [5],
part of the massless gravitational string multiplet [6]. Our
model for leptogenesis involves heavy sterile Majorana right-
handed neutrinos (RHN), which have tree-level decays into
lepton and Higgs particles (of the Standard Model (SM)) and
their antiparticles to produce a lepton asymmetry �L . When
the universe is at a temperature T ,
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where s is the entropy density of the universe and s ∝ T 3

[7]; mN is the RHN mass; z ≡ mN
T ; zD ≡ mN/TD � 1, with

TD the decoupling temperature of RHN; q is a numerical
coefficient of order O(1) [2,3].1 The constant � has mass
dimension +1, which equals the temporal component of the
Lorentz-(LV) and CPT Violating (CPTV) axial background
B0 evaluated at a decoupling temperature T = TD . In string-
inspired cosmological models of [1–3] for four-dimensional
space time , B0 is given by the gradient form

B0(z) = d

dt
b(t) = � f (z) (2)

where b(t) is the massless KR axion field and t is the cosmic
time. The analysis of [1–3] assumes that, at temperatures near
decoupling, one has

B0(T ∼ TD) � mN , (3)

so that the lepton asymmetry is evaluated to leading order in
an expansion in powers of B0/mN .

For f (z) = 1, B0 is constant in the local Friedmann–
Lemaître–Robertson–Walker (FLRW) frame [1,2]. In [3] we
discussed microscopic models for CPTV leptogenesis for
which f (z) = z−3 [3] and B0 varies slowly with T as

B0 = �
( T

mN

)3
. (4)

We shall concentrate on this scaling with temperature in this
work. In the model of [3], we took

TD ∼ mN ∼ 105GeV, B0(TD) ∼ O(1keV), (5)

in order for the lepton asymmetry in (1) to have the phe-
nomenologically required [7,8] value �L/s ∼ 8 × 10−11.
This is consistent with (3).

1 The function f (z) depends on the details of the model.
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The result (1) for the lepton asymmetry is obtained on
using the standard formalism of Boltzmann equations [7] for
leptogenesis. The quantum field-theoretic scattering ampli-
tudes in the collision integral in Boltzmann equations were
evaluated approximately, ignoring both space-time curvature
effects and variation (4) of B0 with T (or, equivalently cos-
mic time) [1–3]. Consequently we used plane-wave solutions
for spinors in evaluating the amplitudes corresponding to the
decay of RHN into SM particles. However, at a space-time
point xμ in a curved manifold, plane-wave solutions of Dirac
or Majorana equations exist only on the tangent space at that
point. The use of plane-wave solutions and dispersion rela-
tions is thus an approximation, which ignores effects of cur-
vature. Motivated by the current cosmological data [8], we
have taken [1–3], the manifold to be that of an expanding
universe, with a spatially-flat FLRW metric, corresponding
to the line element:

ds2 = dt2 − a2(t) dxidx jδi j , (6)

with xi , i = 1, 2, 3, Cartesian spatial coordinates, t the
FLRW time coordinate, and a(t) the scale factor of the uni-
verse in units of today’s scale factor a0. The curvature of
the manifold has components proportional to ( d

dt a(t))2 and
d2

dt2
a (t) .
Hence, because of the explicit time-dependence in the

Dirac (or Majorana) equation, it is important to check that
curved space-time effects and the variation of B0 with t have
been consistently accounted for in arriving at (1). During the
radiation era of the early universe, when leptogenesis takes
place in the scenario of [1–3], the scale factor of the universe
scales as

a(t)rad ∼ t1/2 ∼ 1/T, (7)

and thus, for a spatially-flat FLRW universe, the scalar space-

time curvature (R = 6
(
ä
a + ( ȧ

a

)2
)

, at high temperatures

of relevance to leptogenesis [3], exhibits a scaling with T
(∼ T 4) comparable to that from B0(T ) (4). It is necessary to
examine in detail whether such temperature scaling affects
significantly the Boltzmann analysis of [3] which leads to the
lepton asymmetry (1).

In this work we shall demonstrate that the expansion of
the FLRW universe does not affect the results of [3] for
the lepton asymmetry. Our model for leptogenesis requires
us to take into account only tree-level decays of RHN to
SM particles for the generation of the lepton asymmetry
(1); curvature effects will enter through the solution for the
spinors, which will be modified compared to the flat space-
time case by terms proportional to powers of the Hubble
parameter. Energy-momentum dispersion relations for the
various modes will also receive such corrections.

We will present a systematic derivation of curvature-
induced corrections to plane-wave solutions of the Dirac (and
Majorana) equation in an axial vector background given in
(2). For the range (5) of the parameters of the model, we
will show that the corresponding corrections to the plane-
wave solutions of the Dirac (and Majorana) equations for the
spinors are negligible . Our derivation extends the analysis of
[9] to the standard Dirac equation in both a curved space time
and an axial vector background. Such a perturbative analy-
sis is applicable to space times which vary slowly in time,
as is the case for spatially flat FLRW space time in the KR
background (4) during the era of radiation domination.

Once we have leptogenesis, we use it to induce baryo-
genesis [1]. The lepton asymmetry generated by the KR
background (4) is communicated to the baryon sector via
sphaleron processes [10,11] in the SM sector. Sphaleron pro-
cesses preserve the difference B−L between baryon (B) and
lepton (L) numbers [12]. This is the route to baryogenesis
in the conventional leptogenesis scenario [13]. However we
need to check that the presence of the KR background B0

(known to play the rôle of totally antisymmetric torsion [14–
16] in string theories) does not affect [17,18] the anomaly
equations [19] for the baryon and lepton numbers needed in
the route [12] to baryogengesis.

The structure of our article is the following:
In Sect.2 we discuss how the expansion of the universe and

the KR background affects the collision terms of the Boltz-
mann equations used in the leptogenesis scenario of [1–3].
We also compare our study with recent results on Boltzmann
equations in curved space-times [20,21].

In Sect.3, we obtain systematic corrections to plane-wave
solutions of the Dirac equation (in Sect. 3.1) and of the Majo-
rana equation (in Sect. 3.2) on a spatially-flat FLRW space
time in the presence of the KR background (4). The results
are similar in the two cases.

In Sect.3.3, for the parameter range (5), we demonstrate
that any space-time curvature corrections to the flat space-
time result for the Boltzmann collision term are negligible;
hence the conclusions in [3] remain unaffected. We provide a
further check on the consistency of our calculation by relating
the scattering amplitudes in the Boltzmann collision term, to
the proper polarisation spinors for the Hermitian Hamilto-
nian, associated with the relativistic equation of motion for
fermions in time-dependent metrics [22,23].

In Sect.4 we discuss in detail how the lepton asymmetry
generated in our CPT violating leptogenesis scenario com-
municates to the baryon sector, via sphaleron processes in
the Standard Model sector of the theory. Special attention
is paid to discussing some properties of the KR background
that are crucial to this effect, namely its non contribution to
the baryon- and lepton-number anomaly equations.

Conclusions and outlook are given in Sect.5. Technical
aspects of our approach are given in several Appendices.
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Specifically, in Appendix A we set up our notation and con-
ventions, and discuss some formal properties of the Dirac
equation in (spatially flat) FLRW expanding Universe space-
times, in the presence of axial backgrounds of relevance to
the leptogenesis scenario of [1–3]. In Appendix B we show,
following [22], that Hermiticity of the associated Hamilto-
nian is ensured upon taking proper account of (space-time
curvature) effects, proportional to time derivatives of the
metric. This procedure defines the appropriate polarisation
spinors to enter the Boltzmann collision term, and justifies
the mathematical self consistency of our model for leptoge-
nesis. In Appendix C, we describe the details of the deriva-
tion of the (adiabatic) space-time curvature corrections to the
plane-wave solutions of the Dirac equation in an expanding
universe, expressed in a perturbative expansion in powers of
the Hubble parameter H . In Appendix D, we discuss some
thermodynamical aspects of sphaleron-induced baryogene-
sis, which completes our discussion in Sect.4 by incorporat-
ing high temperature effects properly. Finally, in AppendixE,
we discuss a topological approach to demonstrating the non-
contribution of the Kalb-Ramond torsion to the anomalies,
which is of relevance to our baryogenesis considerations in
Sect. 4.

2 Boltzmann Equations for tree-level CPT -violating
Leptogenesis

In our study of leptogenesis [1–3], we considered the Boltz-
mann equation for the number density nr of a fermion with
helicity λr = (−1)r−1 (r = 1, 2), in a homogenous and
isotropic spatially flat FLRW space time [8]. The Boltzmann
equation reads

d

dt
nr + 3Hnr − ǧ

2
√−g π2 2λr H

B0

T
T 3

×
∫ ∞

0
du u fr (E(B0 = 0), u)

= ǧ

8π3

∫
d3k√−g E(B0 	= 0)

C[ fr ] + O(B2
0/m

2
N ) (8)

where fr (E, t) is the phase space density associated with nr
(nr = ǧ

8π3

∫

d3k fr (E, t)),2 H is the Hubble parameter and
g is the determinant of the metric tensor; it is assumed [1–3]
that B0 � min(T,mN ).

On summing over the helicity λr of the fermion [1–3],
makes the second term on the left-hand side of (8) vanish.
The term on the right-hand side of (8) is the collision inte-
gral C[ fr ]. In general for a species χ the collision integral
describes the process

2 ǧ denotes the total number of internal degrees of freedom and should
not confused with the metric.

χ + a + b + · · · ←→ i + j + · · · .

In curved space time, the collision integral is proportional to
the square of the modulus of the amplitude of the scattering
operator M for the decay processes relevant to leptogenesis:

C[ f ] ∝
∫

�i
d3k(i)√−g 2E(2π)3 (2π)4

× |〈kout
1 , |〈kout

1 , · · · |M|kin
1 · · · 〉|2 √−g δ(4)

(
∑

i

k(i)

)

.

(9)

The delta function in (9) ensures conservation of the four-
momenta kμ

(i) ≡ k(i), i = 1, . . . N , the number of scat-
tered particles at the interaction point, for both incoming and
outgoing particles. In curved space time, we have used the
covariant momentum integration element

∫
d3k√−g (2π)3 Ek

, (10)

where
√−g δ(4)(

∑

i k(i)) is the curved-space-time-

momentum delta-function δ
(4)
g (k).

For the spatially flat FLRW metric (6), we have that√−g ∼ a3(t), and so

δ(4)
g (p) = a3(t)δ(4)(k) → a3(t)δ(3)(a�k′)δ(E)

= δ(3)(�k′) δ(E), (11)

where �k′ [7] is “physical” spatial momentum,3

�k → �k = �k
a(t)

. (12)

Energy does not change under the redefinition of �k to include
the scale factor a(t) of the expanding universe. As standard,
the scattering amplitudes for the appropriate interaction pro-
cesses can be expressed, in terms of creation â†

i and annihi-
lation ai operators of the respective quantum fields partici-
pating in the processes [20]:

〈

f out
m+1, . . . f

out
n |M| f in

1 · · · f in
m

〉

=
〈

0|Tâm+1(∞) · · · âm+1(∞)â†
1(−∞) · · · â†

n(−∞)|0
〉

,

(13)

with T denoting time-ordered product; a (generic) quantum
field operator φ̂(x) can be expanded in terms of the functions

3 We note that, in a conformal(η)-time formalism, the amplitude of
the “physical” four-momentum k′ = k/a(t) would be conjugate to
the proper distance x̃ = a(t)x . Here we work throughout in FRW
coordinates (6).
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fi (x) which are solutions to the classical equations of motion
for the (free) field φ(x) in curved space time:

φ̂(x) =
∑

i

(

fi (x)â + f †
i (x)â†

)

. (14)

In a curved space time with metric gμν(x), the inner product
between two functions fi (x) and g j (x) is defined as [20]

( fi , g j ) ≡ −i
∫

d3x
√−g(x)

(

f †
i (t, �x) ↔

∂t g j (t, �x)
)

. (15)

The normalised solutions fi satisfy

( fi , f j ) = δi j , ( f †
i , f †

j ) = −δi j , fi ,

( f †
i , f j ) = ( fi , f †

j ) = 0. (16)

From this, it becomes evident that the functions fi in curved
space time will be proportional to a normalisation factor that
depends on the square root of the covariant volume V ∝√−g(x) at a given space time point x :

fi ∝ 1/
√
V = 1/(

√−g)1/2. (17)

On account of (14), (15) and (16), one obtains the relations

âi (t) = ( fi , φ̂(x)), â†
i (t) = ( f †

i , φ̂(x)) (18)

which implies that the creation and annhiliation operators are
independent of

√−g.
Hence, on account of (18), such volume normalisation fac-

tors will cancel out in the expression for the squared ampli-
tude for the heavy-neutrino decay processes (13). However
there remain space-time curvature corrections in the scatter-
ing amplitudes per se, as a result of modifications of the polar-
isation tensor and spinors entering such amplitudes, and, in
loop cases, due to the curved space-time modifications of the
dispersion relations of the fields circulating in the loops.

In our scenario of CPTV-induced leptogenesis [1–3], due
to the non trivial background B0 	= 0, the dominant ampli-
tudes of relevance to our discussion are the ones describ-
ing tree level decays of a right-handed neutrino N to stan-
dard model Higgs (h = h±, h0)) and lepton (
 = (
±, νL)

fields (all to be considered massless at the high tempera-
tures of interest). In a plane-wave (i.e. Minkowski space-
time) approximation, a generic amplitude has the structure
[1]

iMMinkowski
rs (N → 
± h∓, h0 νL)

= −iY us(p
)
1

2
(1 ± γ 5) vr (pN ), (19)

where the factor (1 ± γ 5)/2 depends on the particular prod-
ucts of the decay; Y is the Yukawa coupling that appears

in the so-called Higgs portal interaction of the model and
connects the right-handed neutrino sector to the Standard
Model sector; pi , i = 
, N are the relevant field momenta;
us(p), ur (p′) are the Dirac polarisation spinors with helic-
ities λr,s = (−1)(r,s)−1, s, r = 1, 2. (The (Higgs) scalar
polarisation is 1, independent of the space-time metric).

There are restrictions in the various decay channels, as dis-
cussed in detail in [1–3]. These details will not be relevant
for our discussion here, as we shall only restrict our attention
to the potential effects on the amplitude of the slowly varying
time dependence of a(t) and the KR field, through the rele-
vant modifications of the spinor polarisation and the modified
energy-momentum dispersion relations. This t-dependence
implies that the spinors have also an explicit t-dependence
in addition to the four-momentum dependence: us(p, t) and
vr (p′, t) are solutions of the free Dirac equation in a spatially
flat FLRW and KR backgrounds (4) [3].

In Appendix C we will discuss in detail, an n-th-order
expansion in powers of H [9] for the spinor solutions of
the Dirac equation in our time-dependent backgrounds. The
respective spinor polarisation (of a given helicity λ) assumes
the form (in the standard helicity basis ξλ):

uλ(E, �k, a(t))(n−th) = 1
√

(2π)3 a3 (t)
ei

−→
k.−→x

(

h↑
k (t) ξλ

h↓
k (t) σ i ki

k ξλ

)

= ei �k·�x ei
∫ t

ϕn−th

(2π)3
√

a3(t)
⎛

⎝

[

h↑(0)
λ (E (0),

�k
a(t) ) + {nth order adiabatic corrections}

]

ξλ
[

h↓(0)
λ ([E (0),

�k
a(t) ) + {nth order adiabatic corrections}

]
σ i ki
k ξλ

⎞

⎠

(20)

where ϕn is a phase with corrections up to and including order

n [9], and u↑,↓(0)
λ (E (0),

�k
a(t) ) has the form of the correspond-

ing polarization spinor in Minkowski space time, but with the
spatial momenta being replaced by the “physical” momenta
(12), while the energy E (0) is given by the Minkowski-form
of the dispersion relation, but with the replacement (12) and
contribution form the KR field(C11). The total energy E
receives corrections from the expansion of the universe and
the time-dependence of the KR field. (As shown in Appendix
C, the phase ϕnth coincides with the total energy E to this
order. In our case, such phase factors are not relevant, since
we are interested only in the collision terms (9) of the Boltz-
mann equation (8), which involve the square of the modulus
of the scattering amplitudes and so phase contributions can-
cel out.)

We note that in (20) the presence of the volume factors
V ∼ √−g ∼ a3(t). However, as we shall discuss in this
article, it is important to note that the quantities which appear
in the scattering amplitudes should have the volume factors
removed. This will be linked with thehermiticityof the proper
form of the Dirac Hamiltonian in time-dependent space-time
geometries [22] and will result in the elimination of any

123



Eur. Phys. J. C (2020) 80 :558 Page 5 of 26 558

potential dependence of the scattering amplitudes from such
factors, although the space-time curvature-dependent correc-
tions will remain.4

The above corrections are assumed adiabatic, as appro-
priate for a slowly-expanding universe, and a background B0

(4), which also exhibits comparable mild cosmic-time depen-
dence, as appropriate for the conditions of leptogenesis in the
model of [3]. As we shall show in this work, such corrections
are proportional to powers of the Hubble parameter and the
background B0. For the conditions of leptogenesis described
in [3], the dominant corrections are of order H , and turn out to
be negligible for the relevant range of the model parameters
(5). Therefore, upon integrating over the redefined spatial
momenta (12), one obtains the same Boltzmann equations
as in [1–3], proving that, for spatially flat Robertson-Walker
Universes, the flat space-time formalism to solve the Boltz-
mann suffices to produce results that are both qualitatively
and quantitatively correct.

Before closing this section, we would also like to remark
that the scaling (4), is found in [3] by computing in a flat
space-time background the thermal condensate of the axial
current for the fermions, summed over helicities λ, and show-
ing that such a condensate vanishes:

∑

λ

〈ψγ 0 γ5 ψ〉T = 0. (21)

The temperature-dependent background (4) emerges in that
case as a consistent solution of the equations of motion of the
KR field [3]. In fact our analysis in [3] also implies that the
result (21) remains valid in our expanding universe case with
curved metric (6), despite the presence of the scale factor in
the “physical” momenta (12).

4 Our results differ somewhat from those given in Ref. [21], which
were based on a detailed derivation of the Boltzmann equation from
the Kadanoff–Baym formalism in the context of a scalar field theory.
In [21] it was claimed that the only effect of the curved space-time
appears on the left-hand-side of the Boltzmann equation, describing the
dilution of the particle number density due to the Hubble expansion H .
These authors assume that the collision terms in the Boltzmann equa-
tion for the scalar-field scattering amplitudes are the same as for the
case of flat space time, upon redefining their momenta to the “physical
ones” (12). For us this is not the case. There are adiabatic corrections
to the spinor polarisations; when loop contributions to the leptogene-
sis scenario are considered, there will be corrections as well to field
propagators (including, in our case, the Higgs-scalar propagator). Such
corrections for scattering amplitudes have been demonstrated clearly in
[20]. Using Riemann normal coordinates (RNC), the corrections were
shown to be proportional to positive powers of the space-time curva-
ture. In the case of a spatially-flat Robertson–Walker universe, such
corrections are expected to be encoded in the higher-order terms of the
adiabatic (WKB-like) expansion (20) discussed here and in [9]. The
explicit connection between the two works, via appropriate coordinate
transformations that link the RNC expansion to the adiabatic expansion
is still lacking. Nonetheless, for our purposes in Ref. [1–3] all such
corrections turn out to be negligible.

Since the scaling of B0 is not affected, compared to the
case studied in [3] this will yield the same value for B0 today
as the one determined in that work. To an excellent approxi-
mation (for the parameter range (5)) the entire phenomenol-
ogy of the flat space-time analysis of our earlier work [1–3]
carries over to the full curved space time case,.

We now proceed to evaluate the space-time curvature
corrections to the spinors due to the expansion of the uni-
verse. Although the RHN in the model [1–3] are Majorana,
nonetheless our analysis is valid for both Dirac and Majorana
spinors.5

3 Spinors in spatially-flat expanding universe
space-times with axial Kalb–Ramond (KR)
backgrounds

In our model of leptogenesis, particle interactions occur on a
background of a string gravitational multiplet which consists
of graviton, Kalb-Ramond and dilaton6 fields. The graviton
background will be that of flat FLRW cosmological space-
time and the Kalb-Ramond field varies inversely as a power
of temperature(2). Since in our leptogenesis scenarios both
type of spinors, Dirac and Majorana, are involved in general,
we cover here both case. We commence our discussion with
the Dirac case

3.1 Dirac spinors in FLRW and KR axial backgrounds

The spatially flat FLRW space-time is described by the line-
element (6). The Dirac equation reads (for notations and con-
ventions see Appendix A):

{

iγ 0
(

∂t + 3

2

ȧ

a

)

+ i

a (t)
γ j∂ j +m−B0γ

0γ 5
}

� (x)=0,

Bd = −1

4
εabcd Habc, (22)

where the Dirac matrices are tangent space ones, γ 5, γ 0, γ j ,

j = 1, 2, 3, satisfying the Clifford algebra (A4), and we
adopt the chiral representation (A3).

In Appendix C we solve (22) using an adiabatic (WKB-
like) perturbative method, appropriate for slowly varying
a(t), and B0(t) which is of relevance to our leptogenesis
scenario [3]. The method we shall follow is developed in [9].
The corrections can be expanded in appropriate powers of the
Hubble parameter H ; it follows from the parameter range (5)

5 The Majorana case only differs by a factor of 1/2 in the spinor equa-
tions which does not affect our conclusions (see 3.2).
6 The dilaton is assumed to contribute a constant background in [1–3],
and will not be considered here.

123



558 Page 6 of 26 Eur. Phys. J. C (2020) 80 :558

of the leptogenesis model [3] that |B0| � H and that we are
in the high temperature regime T � TD ∼ mN .

As shown in Appendix C, (cf. (C3), (C48), (C49), up to
and including second order terms in an expansion in powers
of H , we find the Dirac spinor for a fermion of mass m (of
mass m) and helicity λ to be:

uλ(E, �k, a(t))(2) = 1
√

(2π)3 a3 (t)
ei

−→
k.−→x

(

h↑
k (t) ξλ(

−→
k )

h↓
k (t) σ i ki

k ξλ(
−→
k )

)

(23)

with

h
↑ λ (2)
−1 = exp

(

−i
∫ t

ω2,λ

)

×
⎡

⎢
⎣h

↑ λ (0)
−1

(

1 − H (t)2

(
λk
a(t) + n B0 (t)

)2
m2

32 ω0,λ(t)6

)

−i h↓ λ (0)
−1

λmH (t)

4 ω0,λ(t)3

(

αλ (t) + (n − 1) B0 (t)
)]

,

(24)

and

h
↓ λ (2)
−1 = exp

(

−i
∫ t

ω2,λ

)

×
⎡

⎢
⎣h

↓ λ (0)
−1

(

1 − H (t)2

(
λk
a(t) + n B0 (t)

)2
m2

32ω0,λ(t)6

)

+i λ h
↑ λ (0)
−1

mH (t)

4ω0,λ(t)3

(

αλ (t) + (n − 1) B0 (t)
)]

,

(25)

wheren = 3 for the model of [3]; we will restrict our attention

to this case. The quantities h↑ ,↓ λ (0)
−1 are given by (C47)

h
↑ λ (0)
−1 =

√
ω0,λ + αλ
√

2 ω0,λ

= 1
√

2 ω0,λ

√

ω0,λ − λ
k

a(t)
− B0,

h
↓ λ (0)
−1 = −λ

√
ω0,λ − αλ
√

2 ω0,λ

= − λ
√

2 ω0,λ

√

ω0,λ + λ
k

a(t)
+ B0,

αλ (t) = −
(

λk

a (t)
+ B0

)

,

ω0,λ =
√
(

λk

a (t)
+ B0

)2

+ m2 > 0, (26)

and we assume [1–3] a fixed sign for B0 > 0, the energies
(frequencies) and ω0 are taken to be positive.

The reader should notice that for m 	= 0, one passes from
(24) to (25), upon flipping the sign of m, m → −m and
changing ↑ to ↓, and vice versa, where appropriate. More-
over, the expanding universe corrections vanish for massless
fermions m → 0, as is the case of the SM leptons in the
decay channels (19). Hence such spinors remain unaffected
by the inclusion of curvature effects, apart from the overall
factor a−3(t) which appears as a result of their normalisation
(C4).

The adiabatic corrections in (24), (25), will enter the
expression for the modulus squared of the scattering ampli-
tudes (19) that appears in the interaction terms in the Boltz-
man equations for leptogenesis in the scenario of [3]. The
phase factors in these expressions are irrelevant as they can-
cel out in the Boltzmann collision term (9). The zero-th order
term in the expansion coincides formally with the plane-
wave solutions discussed in [1], provided one uses physical
momenta (12).7 As we shall demonstrate below, for the range
of parameters (5), the curvature corrections in (24), (25), that
take proper account of the Universe expansion, are negligi-
ble. Hence, the plane-wave approximation used in [1–3] to
calculate the lepton asymmetry is fully justified in this case.

3.2 Extension to Majorana–Fermion case

Although the RHN in (19) is a right-handed field NR , with
a Majorana mass M term, the results remain the same as in
the Dirac case, apart from a relative normalisation factor of
1
2 in the kinetic terms of Majorana spinors in the Lagrangian.
Indeed, if NR is the right-handed Neutrino spinor, then the
Majorana mass term in the Lagrangian can be written as

1

2
M
(

NR
C
NR + NR NC

R

)

= 1

2
M N N (27)

where NC
R is the Dirac-charge-conjugate field, and N denotes

the corresponding Majorana field defined as

N = NR + NC
R . (28)

On the other hand, the kinetic term is also expressed (up to
total derivative terms) in terms of the Majorana field N as

Lkinetic = 1

2
NR i γ̃

μ∇μ NR + 1

2
NC
R i γ̃ μ∇μ NC

R

= 1

2
Ni γ̃ μ∇μ N , (29)

7 In our case the phase factor exp(−i
∫ t

ω0,λ) differs from
exp(−iω0,λ t), because of the a(t) dependence of the integrand. How-
ever, because these phase factors are irrelevant, as already mentioned,
the zeroth order approximation will lead to the results for lepton asym-
metry derived in [1–3].
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Compared to the corresponding term in the Dirac case there
is a factor of a 1

2 . (Majorana spinors, unlike Dirac fermions,
do not couple to gauge fields, as they cannot be charged. They
couple but only to gravity and so only ∇μ the gravitational
covariant derivative appears in their kinetic term.)

The coupling of NR to the axial KR background now takes
the form

Laxial = −Bμ

(

NR
C

γ μNC
R − NR γ μNR

)

= −Bμ N γ μγ 5 N . (30)

In addition, the model of [1,3] involves the Higgs-portal
interactions which give rise to the decays (19). The Higgs
field is viewed as an excitation from the standard vacuum,
since in the leptogenesis scenario of [3] we are in the unbro-
ken electroweak symmetry breaking phase.

From (27), (29), (30), we therefore obtain the analogue of
(22) for Majorana N spinors (28) in the model of [1–3]:

{
1

2

[

iγ 0
(

∂t + 3

2

ȧ

a

)

+ i

a (t)
γ j∂ j + M

]

− B0γ
0γ 5

}

� (x) = 0, Bd = −1

4
εabcd Habc, (31)

where the axial background is of the form (2), Bμ = ∂μb =
B0 δ0μ, with B0 > 0 given in (4).

Thus, apart from the relative factors of 1
2 , the analysis of

the Majorana case would proceed in the same way as the
Dirac case (24), (25), and will not be repeated here. (Such
factors can be absorbed into the definition of the axial back-
ground field.)

3.3 Eastimates of curvature effects and connection with the
plane-wave approximation for leptogenesis

We will now estimate the order of magnitude of the leading
correction, proportional to H in (24) (or, equivalently, (25)).
For the leptogenesis scenario of [3], we have ((5)): m =
mN � 105GeV, and T � mN � TD � B0. Also, during the
radiation era of the universe, we have a(t)rad ∼ 1/T , and the
Hubble parameter

H ∼ 1.66 ǧ1/2 T 2

MPl
, (32)

where MPl ∼ 2.4 × 1018GeV is the reduced Planck mass,
and ǧ is the number of effective degrees of freedom of the
system under consideration. For Standard Model like theories
ǧ ∼ 100, while for supersymmetric extensions this number
is larger, but a natural range is

102 � ǧ � 103, (33)

which we assume for our purposes here (and in [1–3]).

The decays (19) preserve the helicity [1]. As follows from
(26), for massless fermions such as the SM leptons in these
decays, the zeroth order solution vanishes for one of the helic-
ities [1–3], e.g.:

h
↑ λ=+1 (0)
−1 → 0, h

↓ λ=+1 (0)
−1 → −1, for m → 0,

h
↑ λ=−1 (0)
−1 → 1, h

↓ λ=−1 (0)
−1 → 0, for k/a ≥ B0, m → 0

h
↑ λ=−1 (0)
−1 → 0, h

↓ λ=−1 (0)
−1 → 1, for k/a < B0, m → 0.

(34)

For massive spinors, on the other hand, the leading O(H)

effects are easily estimated from from (24), (25). However,
in view of the integration over momenta k ≡ k/a(t) in the
collision term of the Boltzmann equation, we shall treat k as
an integration variable, independent of a(t), and discuss the
order of both quantities:

|h↑↓, λ (0)
−1 | , |mN H (αλ + 2B0)

4 ω3
0,λ

| (35)

at various k regimes. The temperatureT (and, hence, H ((32))
is kept fixed, assuming that the universe in the radiation era
behaves as a black body, and we are interested in the RHN
decoupling temperature region T ∼ TD ∼ mN for the regime
of parameters of the model of [3], (5), (33). We have:

• (I) Region k → 0:

|h↑↓, λ (0)
−1 | = O(1),

|mN H (αλ + 2B0)

4 ω3
0,λ

| ∼ 1.66N 1/2 |B0|
4 MPl

� 1. (36)

for the regime (5), (33).
• (II) Region k → +∞:

|h↑↓, λ (0)
−1 | = asin(34)fork ≡ k/a > B0,

|mN H (αλ + 2B0)

4 ω3
0,λ

| ∼ 1.66N 1/2 m3
N

4 k
2
MPl

k→+∞→ 0.

(37)

• (III) Region +∞ > k > mN ∼ TD � |B0|:

|h↑ λ (0)
−1 |

�
(

1 − m2
N

4 k
2

)
√

1 − λ

2
+ O

(

max{m
2
N

k
2 ,

B0

k
}
)

, λ = ±1,

|h↓ λ (0)
−1 |

� −λ
(

1 − m2
N

4 k
2

)
√

1 + λ

2
+ O

(

max{m
2
N

k
2 ,

B0

k
}
)

, λ = ±1,
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|mN H (αλ + 2B0)

4 ω3
0,λ

|

∼ 1.66N 1/2 m3
N

4 k
2
MPl

� 1,
(mN

k

)2
< 1,

mN

MPl
∼ 4 · 10−14,

(38)

for the regime (5), (33).
• (IV) Region +∞ > k ∼ T ∼ TD ∼ mN � |B0|:

|h↑ λ (0)
−1 | �

√√
2 − λ

2
√

2
,

|h↓, λ (0)
−1 | � −λ

√√
2 + λ

2
√

2
, λ = ±1,

|mN H (αλ + 2B0)

4 ω3
0,λ

| ∼ 1.66

8
√

2
N 1/2 mN

MPl

� 6 × 10−15 N 1/2 � 1, (39)

for the regime (5), (33).

We will now remark on the dependence of the polarisa-
tion spinors (20) on a(t)3/2. Such volume factors, if present,
would be inconsistent with the general properties of the scat-
tering amplitudes (13), discussed in Sect. 2. Any dependence
of the scattering amplitudes on such factors is absent, due to
the fact that the creation and annihilation operators of states
that define the scattering (S-matrix) amplitudes are defined
through appropriate inner products for curved space time
(18), (15).

In the case of our spinors, therefore, a state a†
i |0〉 = |i〉

entering the corresponding scattering amplitude (19) should
correspond to a spinor polarisation (20) without the a−3/2(t)
factors. This would imply that (for the evaluation of the S-
matrix) the appropriate spinor polarisation, in an expanding
universe, should be

uλ(E, �k, a(t))(2)
S−matrix = a3/2(t) uλ(E, �k, a(t))(2). (40)

In our context, this can be justified on noting [22] that in the
case of time-dependent space-time metrics there are some
subtleties in demonstrating Hermiticity of the Hamiltonian
associated with the Dirac equation in curved space-time.

The naive expression for the Hamiltonian, obtained by
rewriting the Dirac equation as a Schrödinger equation, is
not Hermitian, as explained in Appendix B,. One needs to
appropriately redefine the Hamiltonian, in order to have a
Hermitian Hamiltonian operator (B14). As discussed in detail
in [22], and reviewed briefly in Appendix B, due to diffeo-
morphism invariance in general relativity, there are no time-
independent state-basis vectors (in contrast to the case of
nonrelativistic quantum mechanics). If one uses the appro-
priate time-dependent basis (B10), then the correct generally
covariant, Schrödinger equation with Hermitian Hamiltonian

emerges from the original Dirac equation; in the case of the
FLRW universe with axial KR background, the Dirac equa-
tion assumes the form (B22), i.e.:

(

i γ 0 ∂

∂t
+ i

1

a(t)
γ i ∂i + m − B0 γ 0 γ 5

)

×
(

a3/2(t) ψoriginal(x)
)

= 0 , (41)

in tangent space notation, where ψoriginal(x) ≡ ψoriginal(t, �x)
is the solution of the original Dirac equation (22). We note
that equation (41), apart from the a(t) factors in the spatial
derivative parts, looks like a Minkowski-space-time Dirac
equation (in a B0 background). Its solution is the spinor (40),
uλ(E, �k, a(t))(2)

S−matrix, which is independent of the covariant

volume factor a3/2. The spinor uλ(E, �k, a(t))(2)
S−matrix is used

in the S-matrix amplitude. It is natural for the unitary S-
matrix operator Ŝ, to be related to a Hermitian Hamiltonian
operator, via Ŝ ∼ exp(−iĤ t). Thus, the scattering amplitude
of the collision term (9) in the Boltzmann equation (8), is
independent of any volume factors

√−g, and so in the limit
where the adiabatic corrections to the spinors (24), (25) are
ignored, one obtains exactly the flat Minkowski space-time
results of leptogenesis of [1–3].

The above results demonstrate, therefore, that the adia-
batic effects of the expansion of the universe in the presence
of KR torsion on the Boltzmann collision term are negligible
compared to the zeroth-order terms for the regime of param-
eters (5), (33), for the leptogenesis model of [3]. Thus the
plane-wave approximation for the estimation of the lepton
number in [1–3] is a very good one.

4 Generation of baryon asymmetry through the
CPT -violating leptogenesis

In our earlier works [1–3] we simply stated that baryogenesis
can proceed through Baryon (B)-minus-lepton (L)-number
(B-L)-conserving sphaleron processes in the SM sector of
the theory, following the seminal works of [12]. Sphaleron
processes may lead directly to Electroweak Baryogenesis
which, in its original form, however is not currently con-
sidered to be phenomenologically viable. In the spirit of
the pioneering contribution of Ref. [13] we combine these
processes with our Beyond-the-Standard-Model (BSM) lep-
togenesis mechanism, so as to obtain a baryon asymmetry
through leptogenesis. In our context there are some subtleties
and non-trivial mathematical features, due to the presence
of the Kalb–Ramond background field B0 in sphaleron pro-
cesses. For the viability of our scenario for baryogengesis,
we will need to show that the implications for the baryon sec-
tor remains unaltered from our previous work [1–3]. It will
be instructive to first review briefly the electroweak baryoge-
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nesis mechanisms, and then the baryogenesis through lepto-
genesis approach. We will emphasise those features that will
be essential for our approach.

4.1 Review of basic features of electroweak baryogenesis:
sphalerons and triangle anomalies

Triangle anomalies lie behind the nonconservation of B and
L numbers at a quantum level in the field theory of the SM. In
Minkowski space time, for chiral (left-handed) fermion cur-
rents, pertaining to quarks and leptons, one has the anomaly
equations

∂μ J
B μ = N f g2

16π2 Fa
μν F̃

a μν + U(1)Ycontributions,

∂μ J
L f μ = g2

16π2 F
a
μν F̃

a μν + U(1)Ycontributions, (42)

where the corresponding currents JB(L)
μ are defined over chi-

ral (left-handed (
)) fermions, either quarks (B) or leptons
(L) repsectively; Jμ = ∑

species ψ
 γμ ψ
, where the sum is
over the appropriate set of species of fermion. For our pur-
poses here, this compact notation suffices. We do not give the
detailed form of the currents. Nf is the number of fermion
families/generations (f). Lf , denotes the lepton number for
each family, with the total lepton number being defined as
the sum L = ∑

f Lf . We will restrict ourselves to SM where
Nf = 3; f = e, μ, τ for leptons; Fa

μν is the field strength of
the weak SU(2)L gauge bosons, with a = 1, 2, 3 the SU(2)
adjoint-representation index; g is the weak SU(2)L coupling;
the hypercharge (Y) U(1)Y has anomalous gauge field con-
tributions which are Abelian but are similar in form to the
weak SU(2)L contribution and have not been given explicitly.
The standard notation F̃a μν = 1

2εμνρσ Fa
ρσ denotes the dual

tensor with εμνρσ the (totally antisymmetric) contravariant
Levi–Civita tensor.

Since the combinations Fa
μν F̃

a μν = ∂μKμ are total
derivatives, the integral

1

16π2

∫

d4x Fa
μν F̃

a μν = N ∈ Z, (43)

is an integer, and a topological winding number. For pertur-
bative gauge field configurations N = 0, but there are non-
perturbative configurations for which this number is nonzero,
and such configurations for the SM theory are instantons, and
sphalerons [10,11]; the latter are unstable saddle-point (local
maxima) solutions of the electroweak theory, for which the
potential exhibits a periodic form, with a height separating
the minima (at zero) of order mW/g2, where mW is the elec-
troweak scale. This is the barrier that has to be overcome for
B+L violation to occur. At zero temperatures, the instantons
lead to tunneling through the periodic vacua, which leads to a

very strong suppression of the baryon and lepton (B+L) num-
ber violation. For high temperatures, however, of relevance
to the early Universe, the unstable sphaleron configurations
can climb up the potential barrier (“thermal jump” on the
saddle point), leading to relatively unsuppressed sphaleron-
mediated (B+L)-violating processes.

By integrating the equations (42) over three space, and
defining the corresponding charges of

∫

d3x J B(L) 0 as
particle-antiparticle asymmetries:

�B(�L)(t) ≡
∫

d3x J B(L) 0(t), (44)

in the B(L) numbers,8 we obtain the important relations:

d

dt
�B(t) = 3

d

dt
�Lf , f = e, μ, τ (45)

which imply the following conservation laws, that are
respected by the sphaleron processes in the SM:

d

dt

(

�B(t) − �L(t)
)

= 0,
d

dt

(

�Le(t) − �Lμ

)

= 0,

d

dt

(

�B(t) − �Lτ

)

= 0. (46)

The notation � refers to particle-antiparticle asymmetry. In
short-hand notation, since the antiparticles carry B and L
numbers of opposite sign but equal in magnitude with the
particle, the conservation laws (45) are expressed as the set
of the following quantities

B − L, Le − Lμ, Le − Lτ , (47)

being conserved by the (B+L)-violating sphaleron processes
during the electroweak baryogenesis in the SM sector [12].

For our purposes here we concentrate on the B − L con-
servation law, (46). Adding the two equations (42), and using
(44) and the B − L conservation (46), we readily obtain

d

dt
�B(t) = d

dt
�L(t) = 1

2

d

dt
�(B + L) (48)

where B + L ≡ NF is the total fermion number in the SM
sector.

From the detailed strudies of [12], we know that the rate

d

dt
�(B + L) = −τ−1�(B + L) (49)

8 This currents have contributions form both spinors and antispinors.
Although several authors [12,13], denote such differences still as B (L),
we prefer to make it explicit in our notation that these quantities refer
to differences in the corresponding quantum numbers between particles
and antiparticles.
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where τ is the rate of the anomalous sphaleron-mediated pro-
cesses for temperatures T, in the range where the sphaleron
proicesses are active [12]: ∼ 1012GeV � T � Tew ∼
100GeV, and Tew denotes the temperature of the electroweak
phase transition. The detailed computation of [12] indicated
that τ−1 = CT, where C is a function depending on the cou-
pling constants of the SM. The temperature dependence of
C can be inferred from the detailed studies of the anomalous
fermion-number nonconservation of [12] but C has not been
calculated analytically. Due to the nonperturbative gauge
dynamics, C can be calculated using lattice gauge theories.
Fortunately, we will not need the precise form of τ−1(T).

From (49), we infer

�(B + L)(t) = �(B + L)(tini ) exp(−τ−1 t), (50)

where tini denotes some initial time within the temperature
range that the sphaleron processes are active and in thermal
equilibrium. Integrating over the time t (48) and using (50),
we readily obtain for the Baryon asymmetry at time t :

�B(t) = �B(tini ) − 1

2

(

�B(tini ) + �L(tini )
)

+ �(Bpg+ pgL)(tini ) exp(−τ−1 t)

� 1

2
�
(

B(tini )pg− pgL(tini )
)

, (51)

where we took into account that for the range of tempera-
tures for which the sphaleron processes are active, the second
(exponential) term on the right-hand-side of the first equality
in (51) is heavily suppressed due to the large absolute value
of the exponent.

The above result was based only on the anomaly equation
and the generic relation (49) but not on any detailed thermal
behaviour of the sphaleron processes. In AppendixD we dis-
cuss a more physical way [12] of deriving (51), which makes
use of the thermal equilibrium properties of the system in the
range of temperatures where sphaleron processes are active.
However, as we shall see, the two separate derivations of the
baryon antisymmetry agree in order of magnitude. When the
more detailed thermal properties are considered the form of
the relation(51) remains unchanged, but the proportionality
coefficient between �B and �B − �L changes from 1/2 in
(51) to 28/79 � 0.354 .

It should be noted that the above result is not affected by an
extension to curved space-times, present in the early universe,
since the triangle gauge anomaly (42), on which it is based
is topological and as such is independent of the metric. For
generic space times in addition to the gauge terms in (42),
there are also gravitational anomaly terms, proportional to
Rμνρσ R̃μνρσ , where ˜(. . . ) again denotes the corresponding
dual in curved space time. For a FLRW universe, however,
the latter terms vanish.

The temperature TD ∼ mN ∼ 100 TeV in the scenario of
[1–3], is well within the range of active sphaleron processes
in the SM. If TD is identified with a freeze-out time tF , then
we can take tini = tF. In the scenario of [1–3], �(B(tini ) =
0, and hence, at the sphaleron-freezout time tsph, which is
later than tF , (tsph > tF ), the sphaleron-induced baryon
asymmetry is of the same order as the lepton asymmetry
generated at tF :

�B(tsph) � −1

2
�L(tini) � −q

2

B0(tini)

mN
, (52)

as asserted in [1–3]. The numerical factor q ∼ O(1) (cf.
(1)) has been estimated in [1–3] and remains approximately
unchanged in the case of a slowly varying KR background
B0(T) ∼ B(T0) ( T

T0
)3 background (where T0 is the CMB

temperature in the current-epoch). The reader should notice
the opposite signs between lepton and baryon asymmetries,
but this is not of concern, given that such a relative minus sign
can be absorbed in the definitions of the baryon and lepton
current in (42). The conventions are such that matter domi-
nates antimatter in both baryon and lepton sectors. A similar
relative sign difference between baryon and lepton asymme-
tries also appears in the approach of [13] and is standard in
scenarios of baryogenesis through leptogenesis.

4.2 Independence of the anomaly equation from the KR
background: two arguments

We shall check if the axial anomaly (42) is affected by the
presence of our CPT -Violating KR background in two ways.
The first uses an explicit calculation of the triangle graph
and the second uses a topological argument . Both methods
show that the KR background does not affect the generic
result (42), and thus the mechanism of baryogenesis through
leptogenesis survives. The arguments used are instructive and
nontrivial and so are worth discussing.

• I. Diagrammatic argument We will follow the stan-
dard procedure and evaluate the one-loop triangle graph
between two vector and one axial-vector vertices (see
Fig. 1). In the presence of a constant KR background
Bμ = B0 δ0

μ the fermion propagator SF for the internal
lines of the graph is

SF ≡ i

/p + /B γ 5 + iε
, ε → 0, (53)

where we have used the standard notation /A = γ μAμ.
Matter fermions, in the triangle anomaly calculation, can
be considered to be massless at high temperatures. For
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Fig. 1 Generic triangle
anomaly diagrams, with one
axial vector (γ μγ 5) and two
vector (γ α,β ) vertices. The wavy
lines indicate external Abelian
(or non-Abelian) gauge bosons

the case of the U(1) chiral anomaly9

g2〈0|J A
μ (0) J Vα (x) J Vβ (y)|0〉

=
∫

d4 p

(2π)4

d4 p

(2π)4 i �μαβ(p, q) ei p·x+i q·y, (54)

where J A(V ) is the axial (vector) fermion current, the · in
the exponent of the exponential denotes the inner product
between two four-vectors, and the Fourier-space quantity
i�μαβ(p, q) is determined by applying the appropriate
Feynman rules (for the U(1) gauge theory):

i �μαβ(p, q)

∫
d4k

(2π)4 Tr
( i

/k − /p + /B γ 5 + iε
γμ

× γ 5 i
/k + /q + /B γ 5 + iε

γα

i
/k + /B γ 5 + iε

γβ

)

+
(

p ↔ q
α ↔ β

)

. (55)

The last terms in the parenthesis on the right-hand side
of above indicates the Bose symmetry of the graph

i �μαβ(p, q) = i �μβα(q, p). (56)

The anomaly equation is obtained by evaluating the quan-
tity

(p + q)μ i �μαβ(q, p), (57)

by contracting it with the polarisatrion tensors for the
external gauge bosons, and by passing into configuration
space time. The external gauge bosons satisfy the on-shell
conditions

p2 = q2 = 0, (58)

since they are massless (at temperatures above the elec-
troweak phase transition). Gauge invariance requires:

pα i �μαβ(p, q) = 0, and qβ i �μαβ(p, q) = 0. (59)

9 Extension to the non-Abelian triangle anomaly, of interest for (42),
is straightforward.

For the high-temperature regime of interest, the momenta
| �p| ∼ T, and hence such propagators can be expanded in
powers of the weak background B0 � T. Hence,

SF ≡ i

/p
+ i

/p
γ 0 i B0 γ 5 i

/p
+ · · ·

= i /p

p2 + i /p

p2 γ 0 i B0 γ 5 i /p

p2 + · · · , (60)

where the · · · denote higher powers of γ 0 i B0γ
5 i

/p
.

This expansion in terms of γ 0 i B0γ
5 i

/p
is actually a gen-

eral way of using the diagrammatic analysis to prove that
the contribution from the (constant) B0 background to
the anomaly vanishes: one may consider switching on
the torsion B0 background adiabatically, starting from an
infinitesimal value.

To first order in the expansion in γ 0 i B0γ
5 i

/p
, a straight-

forward computation of the graphs of Fig. 1 can be per-
formed, using the following identity for the trace of a
product of n-even Dirac matrices

Tr
(

γ ε1 γ ε2 . . . γ εn
)

= Tr
(1

2
{γ ε1, γ ε2 · · · γ εn}

)

=
n
∑

k=2

(−1)k gε1 εk T r
(

γ ε2 · · · ((γ εk )) · · · γ εn
)

,

(61)

where gαβ is the metric tensor, and the notation . . . ((γ εk ))

. . . indicates that this particular Dirac matrix is absent
from the respective product. Using some straightforward
manipulations for the momentum integrals over k, we
find that we need to evaluate the trace (61) for n = 6.
This yields the following structure for the B0-dependent
part of the anomaly

(p + q)μ � αβ
μ (p, q)|B0 = 4 i B0

×
∫

d4k

(2π)4

1

k2

[ X αβ(k, p, q)

(k − p)4 (k + q)2 +
(

p ↔ q
α ↔ β

)]

(62)
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where

X αβ(k, p, q) = gαβY1(k, p, q) + g0β Y α
2 (k, p, q)

+ g0α Y β
3 (k, p, q) + kα qβ Y4(k, p)

+ qα kβ Y5(k, p) + kα pβ Y6(k, p, q)

+ kβ pα Y7(k, p, q)

+ (qα pβ − qβ pα) Y8(k, p), (63)

with

Y1(k, p, q) = (k − p)2
[

k0 (k + q)2 + k0 (k2 + p · q + p · k)
+ q0 (k2 − k · p) + p0 (k2 + k · q)

]

,

Y α
2 (k, p, q) = (k − p)2

[

pα k · (k + q) + qα k · (k − p)

− kα(p · q + 2k · (p + q) + q2)
]

,

Y β
3 (k, p, q) = −(k − p)2

[

kβ q · (q + p) + qβ k · (k − p)

+ pβ k · (k + q)
]

,

Y4(k, p, q) = p0 (k − p)2, Y5(k, p) = (k − p)2 (p0 − 2k0),

Y6(k, p, q) = (k − p)2 (2k0 + q0) − 2(k + q)2 (k0 − p0),

Y7(k, p, q) = (k − p)2 q0 − 2(k + q)2 (k0 − p0),

Y8(k, p) = k0 (k − p)2. (64)

Taking into account the symmetry of the graph under
α ↔ β, and the conditions (59) for (on-shell) gauge
invariance, it can then be seen immediately from (62),
(63) and (64) that all Yi = 0, i = 1, 8̇ Hence the
B0-dependent terms do not contribute to the triangle
anomaly.

It should be also remarked that a generic nonconstant
B0-torsion, also yield zero contributions to the trian-
gle anomaly. This follows from the topological argu-
ment given below. Within the diagrammatic approach the
method of using the expanded propagators (60) leading
to (62), does not apply. One has to treat the field B0 on
the same footing as the background photon field used
for the computation of the triangle anomaly. It can be
shown that the B0 contributions to the anomaly vanish
on account of the Bianchi identity for the field strength
(A13) of the background antisymmetric tensor KR field
Bμν : ∂[μHνρσ ] = 0 (with [. . . ] denoting total antisym-
metrisation of the indices).

• II. Topological argument: There is a topological
method for understanding anomalies which is in terms
of the Atiyah-Singer index theorem [24]. On a 4-
dimensional closed Euclidean manifold X with flat met-

ric, the index theorem requires that

n+ − n− = 1

32π2

∫

X
d4x εμνρσ trFμνFρσ (65)

where n± denotes the number of ± chiral zero modes of
the Dirac operator. This framework can be generalised to
a curved manifold and applied to our case on noting that
the KR-background-dependent terms in an effective low
energy string action, can be interpreted in terms of gen-
eralised curvature and gravitational covariant derivative
terms with torsion (“KR H-torsion”) [1–3].

The pertinent Atiyah–Singer index theorem, associated
with the zero modes of the generalised Dirac operator
corresponding to a space-time manifold (M4) with con-
torted spin-connection (ω + 1

2 H ), is given by :

n+ − n− = ind

(

i γ μ Dμ

(

ω̃ = ω + 1

2
H

))

=
∫

M4
Tr

[

det

(

i R̂(ω + 3
2 H)/(4π)

sinh
[

iR̂(ω + 3
2 H)/(4π)

]

)] ∣
∣
∣
∣
vol

+ . . . , (66)

(omitting, for brevity, the gauge terms (. . . ), see Appendix
E); as for the case of the flat manifold, the index theorem
is related to the triangle anomalies appearing in (42) in
the path-integral method of Fujikawa [25].

Explicit computations [17,18] show that (42) is inde-
pendent of the KR H-torsion. One naively finds KR, H-
torsion contributions to the integrand of the expression
of the index (66), which, however, conspire to yield total
derivatives and thus do not contribute [18]. This cancella-
tion has its roots in the renormalisation-group properties
of the low-energy field theory stemming from the under-
lying microscopic string theory. Indeed, at the level of
the effective action, such H-torsion terms, and hence the
potentialB0(T )-background contributions to the baryon-
asymmetry rates, are renormalisation-scheme dependent;
consequently these contributions, can always be removed
by a judicious choice of renormalisation-group countert-
erms between the gauge and metric sectors of the theory
[17]. More details are given in Appendix E.

This concludes our demonstration of the non contribution
of the KR background to the triangle anomaly, and thus to
the rates for baryon asymmetry during the electroweak baryo-
genesis, based on it. In AppendixD we present yet another
derivation of this result based on thermal-equilibrium aspects
of sphaleron processes.
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5 Conclusions

In this paper, we have given a careful treatment of the Boltz-
mann equation used in the CPT violating tree-level leptoge-
nesis scenario of [1–3] in the presence of time dependence
from the expansion of the universe and the Kalb-Ramond
background field. We have explained quite rigorously why
the flat space-time analysis of the collision term leads to
accurate results.

Following [9] we have explained why the zeroth-order
WKB-expanded (plane-wave) solutions to the equation (22)
(equivalent to a flat space-time analysis, as far as the collision
terms in the Boltzmann equation are concerned) suffice to
produce qualitatively and quantitatively correct results for the
lepton asymmetry. In the specific parameter range (5) of [1–
3], which is phenomenologically relevant, all the space-time
curvature effects that characterise the higher-order WKB
corrections are negligible. It must be stressed though, that
for generic parameters, such curvature effects might lead to
physically relevant corrections in the pertinent Boltzmann
equations.

As an interesting by-product of our analysis of the WKB-
plane-wave solutions of the Dirac equation over space times
with time-dependent metrics, we have related aspects of the
solution to a properly defined Schrödinger equation with a
Hermitian Hamiltonian (for a particular inner product [22])
associated with the Dirac equation.

Finally, we have explained in some detail how the lepton
asymmetry generated by the CPT violating decays of heavy
right-handed neutrinos in the scenarios of [1–3], can be trans-
mitted to the baryon sector by means of sphaleron processes
in the standard model sector of the theory. Some interesting
properties of the KR background, namely its noncontribu-
tion to the anomaly equations relevant for lepton and baryon
number violation, have been highlighted in that discussion.

The results presented here go beyond the particular exam-
ple of the leptogenesis model of [1–3] and are nontrivial.
They pertain to properties of the Dirac equation in curved
space-time and KR backgrounds and attempt to examine in
detail the influence of these backgrounds on the Boltzmann
collision terms. Only a few studies pay attention to these
important issues [20,21] and are not complete.We therefore
hope that, in view of the above results for our particular model
for leptogenesis [1–3], the discussion in this article will also
make a useful contribution to the literature on quantum field
theories in curved space times and the corresponding Boltz-
mann equations and their generalisations.
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Appendix A: Dirac equation in curved space times with
time-dependent metrics: notation and some mathemati-
cal properties

In curved four-dimensional space-time with metric gμν(x) ≡
gμν(t, �x), whose signature is (+,−,−,−) and μ, ν =
0, . . . 3, the motion of a free spin- 1

2 fermion of mass m, is
determined by the Dirac equation [26]:

(

i γ̃ μ Dμ − m
)

ψ(x), x ≡
(

t, �x
)tr

. (A1)

(We use the notation tr for matrix transposition, ψ(x) for
a spinor, and �x for spatial coordinate vectors and the sum-
mation convention for a repeated index.) Dμ is the spinorial
covariant derivative and γ̃ μ is a curved-space-time Dirac 4×4
matrix. The γ̃ μ satisfy the Dirac algebra

{γ̃ μ, γ̃ ν} = 2 gμν, (A2)

where { , } denotes the matrix anticommutator. Denoting
the vielbeins by eaμ (a = 0, . . . 3), the metric gμν(x) =
eaμ ηab ebν where the Minkowski metric ηab has signature
(+,−,−,−) and Latin letters refer to tensor indices on the
tangent space at �x . The γ̃ μ are related to the flat space Dirac
matrices γ a by γ a = eaμ γ̃ μ. In the chiral representation,
used in [1–3] and adopted here, we have γ 0 † = γ 0, γ i † =
−γ i , i = 1, 2, 3, (γ 0)2 = 1, γ i γ j δi j = −3 and

γ 0 =
(

02×2 I2×2

I2×2 02×2

)

, γ i =
(

02×2 σ i

−σ i 02×2

)

,

γ 5 =
(−I2×2 02×2

02×2 I2×2

)

, i = 1, 2, 3, (A3)

where σ i , i = 1, 2, 3 are the Hermitian 2 × 2 Pauli matrices
and I2×2 is the unit matrix. The Dirac matrices γ a satisfy the
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Clifford algebra

{γ a, γ b} = 2ηab. (A4)

In terms of the spin connection10 ωab
μ ,

Dμψ =
(

∂μ + 1

8
[γ a, γ b] ωμ ab

)

ψ(x)=
(

∂μ + �μ

)

ψ(x),

(A5)

where [ , ] denotes a commutator; the Latin indices are raised
or lowered by the Minkowski metric ηab.

The spin connection is is related to the vielbeins and the
Christoffel symbol �

μ
αβ via:

ωab
μ = eaν ∂μ eν b + eaν e

σ b �ν
σμ. (A6)

The quantities �μ in (A5), the Fock–Ivanenko coefficients
[22], can be expressed as:

�μ = −1

4
γa γb e

a
ν g

νλ
(

∂μ δ
ρ
λ − �

ρ
μλ

)

eaρ. (A7)

On using the identity

γ a γ b γ c = ηab γ c + ηbc γ a − ηac γ b − iεabcd γ5 γd ,

(A8)

with εabcd the totally antisymmetric Levi–Civita symbol11,
γ5 = iγ 0 . . . γ 3, and {γ5, γ d} = 0, in the space of spinors,
the Dirac operator γ̃ μ Dμ is

γ̃ μ Dμ = γ a Da = γ a ∂a + 1

4
eμ
c

(

ω c
μ a − ω c

μ a

)

γ a

− i

4
εdbca eμ

d ωμ bc γ5γa ≡ γ a
(

∂a + Aa + i γ5 Ba

)

.

(A9)

where the vector (Aa) and axial vector (Ba) potentials are
given by

Aa = 1

4
eμ
c

(

ω c
μ a − ω c

μ a

)

(A10)

and

Ba = εdbca e
μ
d ωμ bc. (A11)

The vector potential Aa may lead to non-Hermitian terms,
which need to be interpreted through amodified inner product
so as to preserve the Hermiticity of the Hamiltonian operator

10 ωabμ = gβαeaα∇μebβ and ∇μ is the gravitational covariant deriva-
tive.
11 ε0123 = +1 and the other components of εabcd are determined by
antisymmetry.

appearing in the correct “Schrödinger equation” which the
Dirac equation (A5) is mapped to [22].

In our work we will consider Lagrangians rather than
Hamiltonians; the Aα vector potential drops out of the
Lagrangian:

L = − i

2

(

Dμ ψ
)

γ̃ μ ψ + i

2
ψ γ̃ μ Dμ ψ + mψ

ψ = − i

2

(

∂μ ψ
)

γ̃ μ ψ + i

2
ψ γ̃ μ ∂μ ψ + mψ ψ

+ Bμ ψγ̃5 γ̃ μ ψ. (A12)

At this point we remark that in the leptogenesis scenario of
[1–3] the quantity Bμ is associated with an axial background
stemming from the KR antisymmetric tensor Bμν = −Bνμ,
with field strength

Hμνρ = ∂[μ Bνρ], (A13)

with the symbol [. . . ] denoting complete antisymmetrisation
of the respective indices. The three-form acts as torsion in the
effective gravitational field theory [14–16]. On account of
(A6), and for backgrounds with only a temporal component
non trivial,B0 	= 0, it follows from (A12) the following Dirac
equation:

{

iγ 0
(

∂t+ 3

2

ȧ

a

)

+ i

a (t)
γ j∂ j +m − B0γ

0γ 5
}

� (x) = 0,

Bd = −1

4
εabcd Habc, (A14)

where we expressed the equation in tangent space, with
γ a, γ5 the tangent space Dirac and chirality matrices, respec-
tively.12 For a flat FLRW space-time we have the relations:

γ̃ 0 = γ 0, γ̃ i = a(t)−1 γ i . (A16)

In Appendix C we shall solve this equation so as to deter-
mine the effects of the expansion of the Universe on the spinor
solutions of (A14). Before embarking on that task, however,
we remark that the equivalence of the absence ofAa in (A12)
and its presence in the Hamiltonian formalism is discussed
in detail in Ref. [22], and will be reviewed in Appendix B
below.

12 Notice that the chirality matrix γ5 in spatially flat Robertson–Walker
space equals its flat Minkowski counterpart, since it is defined by

γ 5 = 1

4! εμνρσ γ̃ μ γ̃ ν γ̃ ρ γ̃ σ = 1

4! εμνρσ γ μ γ ν γ ρ γ σ , (A15)

where εμνρσ = √−g εμνρσ , with εμνρσ the flat Levi-Civita totally
antisymmetric symbol, ε0123 = +1, etc., and we used

√−g = a3(t)
and (A16).
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Appendix B: Mapping the Dirac equation to a
“Schrödinger” equation with a Hermitian Hamiltonian

By writing the Dirac equation (A1) as a Schrödinger equation
for the wave function of the fermion ψ(x) = ψ(t, �x):

i ∂t ψ = Ĥ ψ, (B1)

we (naively) identify

Ĥ = −i
1

g00 γ̃ 0 γ̃ iDi + i �0 − 1

g00 γ̃ 0 m. (B2)

as the Hamiltonian.
As noted in [22], this Hamiltonian is not hermitian for

time dependent metrics gμν(t, �x), in the usual inner product13

between two wave functions φ1(�x) and φ2(�x) defined as [22]

(φ1, φ2) =
∫

d3x
√−g φ

†
1(�x)γ 0 γ̃ 0(t, �x)φ2(�x) (B3)

(where, in standard bra-ket notation, it is assumed that
φi (�x) = 〈�x |φi 〉 for a bra 〈�x | and a ket |φi 〉, i = 1, 2) since

(φ1, Ĥφ2) − (Ĥφ1, φ2)

= −i
∫

d3x
√−g φ

†
1 γ 0 ∂

∂t

(√−g γ̃ 0
)

φ2

	= 0. (B4)

However, in general relativity, with space and time dependent
metrics, the complete basis to define φ(x) is not the time
independent |�x〉 but rather |t, �x〉. Consequently we write the
Dirac fermion wave function ψ(x)(= ψ(t, �x)) as

ψ(x) = 〈t, �x |ψ〉. (B5)

The completeness relation

∫

d3x |t, �x〉 √−g γ 0 γ̃ 0(t, �x) 〈t, �x | = 1 (B6)

leads to a modified inner product for wave functions:

(φ1, φ2) =
∫

d3x〈φ1| t, �x〉 〈t, �x |φ2〉√−g γ 0 γ̃ 0 (t, �x) .

In view of the time dependence of the basis vectors one has:

i
∂

∂t
ψ(x) = i

∂

∂t

(

〈t, �x |ψ(t, �x)〉
)

= i
( ∂

∂t
〈t, �x |

)

|ψ〉 + i〈t, �x | ∂

∂t
ψ〉

13 Due to the signature of our metric, we use the inner product which
differs in sign from the definition given in [22].

= i
( ∂

∂t
〈t, �x |

)

|ψ〉 + 〈t, �x |Ĥ |ψ〉, (B7)

where in the last equality we have used (B1).
To evaluate the first term in the left hand side of (B7), we

take the time derivative of (B6). Hence, on using the notation
∂t = ∂

∂ t ,

∫

d3x
[

∂t (|t, �x〉)√−gγ 0 γ̃ 0(t, �x)

+ 1

2
|t, �x〉 ∂t

(√−gγ 0 γ̃ 0(t, �x)
)]

〈t, �x |

+ |t, �x〉
[1

2
∂t

(√−gγ 0 γ̃ 0(t, �x)
)

〈t, �x |
+ √−gγ 0 γ̃ 0(t, �x) ∂t (〈t, �x |)

]

= 0. (B8)

Observing that the term in the second line is obtained from
the first line by simply taking the Hermitean conjugate, we
conclude that the equation (B8) is satisfied if the coefficients
of the |t, �x〉 and 〈t, �x | vanish independently,14 which leads
to the relations [22]:

∂

∂t
|t, �x〉 = −1

2

∂

∂t

(√−g γ 0 γ̃ 0(x)
) (√−g γ 0 γ̃ 0(x)

)−1 |t, �x〉,
∂

∂t
〈t, �x | = −1

2

(√−g γ 0 γ̃ 0(x)
)−1 ∂

∂t

(√−g γ 0 γ̃ 0(x)
)

〈t, �x |.
(B9)

From inspection, it can be seen that a solution [22] of (B9)
is

|t, �x〉 = |�x〉
(√−gγ 0γ̃ 0

)−1/2
, (B10)

where the basis |�x〉 is time independent.
Consequently, in view of (B7) and (B9), for time-

dependent metric backgrounds (in general relativity), it
was postulated [22] that the correct quantum-mechanical
Schrödinger equation is

i〈t, �x | ∂

∂t
ψ〉 = 〈t, �x | Ĥ |ψ〉, (B11)

By making use of the completeness relation (B6), we may
express the right-hand side of (B11) as:

〈t, �x | Ĥ |ψ〉
= −

∫

d3y
√−g 〈t, �x | Ĥ|t, �y〉 γ 0 γ̃ 0(t, �y) 〈t, �y||ψ〉,

(B12)

14 It is useful to note that
(

γ 0 γ̃ 0(x)
)−1 = γ̃ 0(x) γ 0

g00 .
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where the matrix elements of the operator Ĥ are defined so
as to satisfy locality in space time:15

〈t, �x | Ĥ|t, �y〉 = −Ĥ′ δ(3)(�x − �y) 1√−g(y)

(

γ 0 γ̃ 0(t, �y)
)−1

,

(B13)

with

Ĥ′ = −i
1

2

γ̃ 0(x) γ 0

g00 √−g

∂

∂t

(√−g γ 0 γ̃ 0(x)
)

− i
1

g00 γ̃ 0 γ̃ i Di − i �0 − 1

g00 γ̃ 0 m, (B14)

the correct Hermitian Hamiltonian operator [22] in spinor
space; its Hermiticity follows from the fact that the first term
on the right-hand side of (B14) cancels the non-Hermitian
part on the right-hand side of (B4), leading to

(φ1, Ĥ′φ2) − (Ĥ′φ1, φ2) = 0,

for matrix elements of Ĥ′ on Dirac-spinor wave functions.
From (B14), we note that the first term on the right-hand side,
contains non-Hermitian parts for time-dependent metrics,
which are cancelled by the the corresponding non-Hermitian
parts of of the covariant derivative Di term, corresponding
to vector potentials Ai (cf. (A9), (A10)).

Notice that in view of (B10), we have that i ∂
∂ t 〈t, �x |ψ〉 	=

i〈t, �x | ∂
∂t ψ〉 and thus the non-Hermitian operator Ĥ in (B2)

is not the proper Hamiltonian of the system. By writing the
left-hand side of (B11) as:

i〈t, �x | ∂

∂t
ψ〉 = i

∂

∂ t

(

〈t, �x |ψ〉
)

−
(

i
∂

∂ t
〈t, �x |

)

|ψ〉, (B15)

and using (B9), (B12), (B13) and (B14), we readily observe
from (B11) that, if one accepts (B14), then the wave function
〈t, �x |ψ〉 satisfies the equation:

i
∂

∂ t

(

〈t, �x |ψ〉
)

= i
∂

∂ t
ψ(x)=

(

i
∂

∂ t
〈t, �x |

)

|ψ〉+〈t, �x |H|ψ〉

=
(

− i
1

g00 γ̃ 0 γ̃ i Di −i �0− 1

g00 γ̃ 0 m
)

〈t, �x |ψ〉
= Ĥψ(x), (B16)

where Ĥ is given by (B2). This equation is identical to Eq.
(B1), and, upon multiplication by γ̃ 0, to the original Dirac
equation (A1).

From (B10) and (B5) we observe that the solution
ψ(t, �x) of the Schrödinger equation (B11), with the hermi-
tian Hamtiltonian (B14), is formally related to the solution

15 Notice the factor −
(

γ 0 γ̃ 0(t, �y)
)−1

on the right-hand side of (B13),

whose presence is a necessary consequence of the form of the com-
pleteness relation (B6) corresponding to the inner product (B3).

ψoriginal(t, �x) of (B1), the naive Schrödinger equation (with
the non-hermitian “Hamiltonian” (B2)) by [22]:

ψherm(t, �x) = 〈�x |ψ〉 =
(√−gγ 0γ̃ 0

)+1/2 〈t, �x |ψ〉

≡
(√−gγ 0γ̃ 0

)+1/2
ψoriginal(t, �x), (B17)

where we have used (B10).
For the case of a spatially-flat Robertson–Walker cosmo-

logical space-time, of interest to us, (B17) becomes

ψherm(x) = a3/2(t) ψoriginal(x), (B18)

with ψherm(x) satisfying the equation:

(

i γ 0 ∂

∂t
+ i

1

a(t)
γ i ∂i + m

)

ψherm(x) = 0. (B19)

Were it not for the factor a(t)−1 this would be the Dirac
equation in Minkowski space-time. However, the effect of
the expansion of a spatially flat universe on the dynamics
of spinors is encoded in that factor. The factor a−3/2(t) in
(B18) is related to the standard normalization factor 1/

√
V

of a quantum field in a covariant volume V ∝ √−g(x) for
FLRW. The hermitian “Schrödinger” Hamiltonian (B14) cor-
responding to (B19) reads [22]:

Ĥ = i
3

2

ȧ

a
+ i

1

a
γ 0 γ i ∂i − i

3

2

ȧ

a
+ γ 0 m

= i
1

a
γ 0 γ i ∂i + γ 0 m, (B20)

where we used (A16) and

�0 = 0, �i = 1

2
ȧ(t) γ 0 γi (B21)

for the Fock–Ivanenko coefficients.
The extension of the above results to the case with a non-

trivial KR axial background with a non-trivial temporal com-
ponent B0 	= 0, as is the case in [1–3], is straightforward. In
that case the analogue of (B19) is

(

i γ 0 ∂

∂t
+ i

1

a(t)
γ i ∂i + m − B0 γ 0 γ 5

)

(

a3/2(t) ψoriginal(x)
)

= 0. (B22)

It is possible to calculate modifications of plane-wave
solutions of (B19), (B22), in a systematic adiabatic approx-
imation following [9]. We do this in Appendix (C) for (B22)
(or, equivalently for (A14)), of interest to us here, in order
to determine the effects of the expansion of the Universe on
the collision term of the Boltzmann equation (8), (19), used
in the leptogenesis scenario of [3].
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Appendix C: Dirac spinors in an expanding universe and
a Kalb–Ramond background

In this Appendix we discuss the corrections to the form of
the Dirac spinors induced by an expanding Universe, up
to quadratic order in a perturbative adiabatic expansion in
the Hubble parameter H . This is only required for massive
fermions, since the massless case can be solved easily. Our
analysis follows that of [9].

We shall be concerned with solutions of the Dirac equation
in the presence of an axial constant background B0, given in
(A14), which we give here again for convenience of the reader
(we use tangent-space γ 0, γ j , j = 1, 2, 3, Dirac matrices):

{

iγ 0
(

∂t + 3

2

ȧ

a

)

+ i

a (t)
γ j∂ j + m − B0γ

0γ 5
}

� (x)=0.

(C1)

Our representation of the Dirac game matrices is the chiral
one (A3).

We use the following notation for the helicity basis

spinors: ξr
(−→p ), σ i pi

p ξr = λrξr , λr = ±1, p = | �p|.
In terms of creation and annihilation operators, spinors,

and antispinors, the corresponding quantum field ψ(t, �x)
reads:

ψ(t, �x) =
∫

d3x
∑

λ=±1/2

(

â�k,λ u�k,λ(t, �x) + b̂†
�k,λ v�k,λ(t, �x)

)

,

(C2)

where the Dirac polarisation spinor in the above helicity basis
in a FRW universe with scale factor a (t) and Hubble param-
eter H = ȧ

a are given by:

u−→
k ,λ

(

t,−→x )= 1
√

(2π)3 a3 (t)
ei

−→
k.−→x

(

h↑
k (t) ξλ(

−→
k )

h↓
k (t) σ i ki

k ξλ(
−→
k )

)

,

v�k,λ = Cu�k,λ = −i γ̃ 2u�
�k,λ, (C3)

with � denoting the operation of complex conjugation and C
the charge conjugation operator. The spinors u�k,λ satisfy the
orthonormality condition in the expanding universe:

∫

d3x a3(t) u†
�k,λ u�k′,λ′ = δ(3)(�k − �k′) δλλ′ , (C4)

with similar relations for the antispinors v�k,λ.
The various terms in (C1) are evaluated with the spinor

ansatz (C3):

iγ 0
(

∂t + 3

2

ȧ

a

)

� = iei
−→
k.−→x a−3/2

⎛

⎝

(

− 3
2λH (t) h↓

k (t) + λḣ↓
k + 3

2λH (t) h↓
k (t)

)

ξλ
(

− 3
2 H (t) h↑

k (t) + ḣ↑
k + 3

2 H (t) h↑
k (t)

)

ξλ

⎞

⎠

i

a (t)
γ j∂ j� = −a−3/2 k

a
ei

−→
k.−→x

(

h↓
k (t) ξλ

−λh↑
k ξλ

)

−B0 γ 0γ 5� = B0 a
−3/2ei

−→
k.−→x

(

−h↓
k (t) λξλ

h↑
k (t) ξλ

)

Putting these terms together (including the mass term)
gives

i ḣ↑
k = −

(

λ
k

a
+ B0

)

h↑
k − λmh↓

k

i ḣ↓
k =

(

λ
k

a
+ B0

)

h↓
k − λmh↑

k

These two equations can be written compactly as:

i∂th
λ−1 = Fλ−1h−1 (C5)

where

hλ−1 =
(

h↑
k

h↓
k

)

(C6)

and

Fλ−1 =
(

αλ (t) βλ (t)
βλ (t) −αλ (t)

)

(C7)

where

αλ (t) = −
(

λk

a (t)
+ B0

)

(C8)

and

βλ (t) = −λm. (C9)

The quantities α and β are both real. We should note that the
machinery, that we will develop, is not needed for the case
m = 0 since Fλ−1 is diagonal.

From the Dirac orthogonality condition
∣
∣
∣h

↑
k,λ (t)

∣
∣
∣

2 +
∣
∣
∣h

↓
k,λ (t)

∣
∣
∣

2 = 1.

If this holds at some t = t0 , it will hold at all t owing to
unitary evolution.

We will derive the adiabatic method to quadratic order in
the Hubble parameter, which suffices for our purposes within
the frameworkl of the leptogenesis scenarios of [1–3].

To this end, we first diagonalise Fλ−1. Let β̂λ = β
|β| =

− λ
|λ| . We have:

Fλ−1 (t) = U0,λ (t) D0,λ (t)U †
0,λ

(t) (C10)
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where D0,λ is diagonal, D0,λ (t) =
(

ω0,λ (t) 0
0 −ω0,λ (t)

)

and

ω0,λ (t) =
√

αλ (t)2 + βλ (t)2 =
√
(

λk

a (t)
+ B0

)2

+ m2.

(C11)

The reader should notice that upon replacing ki → ki ≡
ki/a(t), i = 1, 2, 3, and hence k → k ≡ k/a(t), one obtains
the flat-spacetime dispersion relations used in our previous
leptogenesis works.

In this work we consider models for the time-dependence
of a (t) and B0 (t) in the radiation era, as in [3]:

a (t) = a0 (
t

t0
)

1
2

(where t0 is present time) and

B0 (t) = b0

( t
t0

)
n
2

with the integer n ≥ 3 and a0 and b0 positive. In the lepto-
genesis scenario of [3], we have n = 3 (cf. (4)), but in this
Appendix we keep the general scaling power n. Thus, we
have

αλ (t) = −
(

λk

a0t
1
2

+ b0

t
n
2

)

, (C12)

∂tαλ (t) = H

(
λk

a
+ n B0

)

, (C13)

and

∂2
t αλ (t) = −H2

(
λk

a
+ n(n + 2)B0

)

, (C14)

where H = ȧ(t)
a(t) = 1

2t is the Hubble parameter during the
radiation era we are interested in. For an expanding universe
ȧ > 0. Thus, a perturbative expansion of the spinors in pow-
ers of ∂tα is equivalent to an expansion in powers of H � 1.
Notice that the perturbative expansion measure the deviation
of the scale factor of the Universe from constancy, and as
such is independent of whether the mass of the fermions is
zero or not. Thus, the expansion can equally apply to the
Standard Model leptons, which are approximately massless
at high temperatures in our leptogenesis scenarios, and the
massive right-handed neutrinos.

For clarity, we shall keep explicit the λ dependence in the
expressions below.

U0,λ (t) =
⎛

⎝

√
ω0,λ(t)+αλ(t)

2ω0,λ(t) β̂λ

√
ω0,λ(t)−αλ(t)

2ω0,λ(t)

β̂λ

√
ω0,λ(t)−αλ(t)

2ω0,λ(t) −
√

ω0,λ(t)+αλ(t)
2ω0,λ(t)

⎞

⎠ . (C15)

.
We start the sequence of approximations:

• Let

h0,λ (t) = U †
0,λ (t) h−1 (t)

then

i∂th0,λ (t) = F0,λ (t) h0,λ (t)

withF0,λ (t) = D0,λ (t)−iU †
0,λ (t) ∂tU0,λ (t) = D0,λ (t)

− iUT
0,λ (t) ∂tU0,λ (t) since U0,λ (t) is a real symmetric

matrix. We note that
•
(

UT
0,λ (t) ∂tU0,λ (t)

)

11
=

(

β̂2
λ−1

)

4ω2
0,λ

(

αλ∂tω0,λ − ω0,λ∂tαλ

)

= 0
•
(

UT
0,λ (t) ∂tU0,λ (t)

)

12
= β̂λ(αλ∂tω0,λ−ω0,λ∂tαλ)

2ω0,λ

√

ω2
0,λ−α2

λ

= −
(

UT
0,λ (t) ∂tU0,λ (t)

)

21

•
(

UT
0,λ (t) ∂tU0,λ (t)

)

22
=

(

β̂2
λ−1

)

4ω2
0,λ

(

αλ∂tω0,λ − ω0,λ∂tαλ

)

= 0

This leads to

F0,λ (t) =

⎛

⎜
⎜
⎝

ω0,λ −i
β̂λ{α∂tω0,λ−ω0∂tαλ}

2ω0

√

ω2
0−α2

i
β̂{αλ∂tω0,λ−ω0,λ∂tαλ}

2ω0,λ

√

ω2
0,λ−α2

λ

−ω0,λ

⎞

⎟
⎟
⎠

=
(

α0,λ −iβ0,λ

iβ0,λ −α0,λ

)

.

In contrast to F−1, F0,λ is complex but Hermitian but
somewhat similar in structure. We follow similar steps to
the previous steps otherwise. We diagonalise F0,λ. Let

D1,λ =
(

ω1,λ 0
0 −ω1,λ

)

(C16)

where

ω1,λ =
√
√
√
√

(

ω2
0,λ +

(αλ∂tω0,λ−ω0,λ∂tαλ)
2

4ω2
0,λβ

2
λ

)

(C17)

It is easy to check that

F0,λ = U1,λD1,λU
†
1,λ

and

U1,λ =
⎛

⎝

√
ω1,λ+ω0,λ

2ω1,λ
i β̂λ

√
ω1,λ−ω0,λ

2ω1,λ

i β̂λ

√
ω1,λ−ω0,λ

2ω1,λ

√
ω1,λ+ω0,λ

2ω1,λ

⎞

⎠ (C18)

.
We define

F1,λ = D1,λ − iU †
1,λ∂tU1,λ.
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Now

−iU†
1,λ∂tU1,λ

=

⎛

⎜
⎜
⎝

0 − β̂λ(ω1,λ∂tω0,λ−ω0,λ∂tω1,λ)

2ω1,λ

√

ω2
1,λ−ω2

0,λ

− β̂λ(ω1,λ∂tω0,λ−ω0,λ∂tω1,λ)

2ω1,λ

√

ω2
1,λ−ω2

0,λ

0

⎞

⎟
⎟
⎠

and so

F1,λ =

⎛

⎜
⎜
⎝

ω1,λ − β̂λ(ω1,λ∂tω0,λ−ω0,λ∂tω1,λ)

2ω1,λ

√

ω2
1,λ−ω2

0,λ

− β̂λ(ω1,λ∂tω0,λ−ω0,λ∂tω1,λ)

2ω1,λ

√

ω2
1,λ−ω2

0,λ

−ω1,λ

⎞

⎟
⎟
⎠

=
(

ω1,λ ξ1,λ

ξ1,λ −ω1,λ

)

with

ξ1,λ = β̂λ

(−ω1,λ∂tω0,λ + ω0,λ∂tω1,λ

)

2ω1,λ

√

ω2
1,λ − ω2

0,λ

. (C19)

The structure of F1,λ resembles F−1 and so we can proceed
as before.

We are going to do the iteration one more time.

F1,λ = U2,λD2,λU
†
2,λ

and then

F2,λ = D2,λ − iU †
2,λ∂tU2,λ,

where

U2,λ =
⎛

⎝

√
ω1,λ+ω2,λ

2ω2,λ
ξ̂1,λ

√−ω1,λ+ω2,λ

2ω2

ξ̂1,λ

√−ω1,λ+ω2,λ

2ω2,λ
−
√

ω1,λ+ω2,λ

2ω2,λ

⎞

⎠ (C20)

with

ξ̂1,λ = ξ1,λ

|ξ1| , (C21)

D2,λ =
(

ω2,λ 0
0 −ω2,λ,

)

(C22)

and

ω2,λ =
√

ω2
1,λ + ξ2

1,λ. (C23)

We have emphasised the dependence on λ in this formalism
since it plays an important role in our theory. However, in
order to lessen the burden on our notation, the dependence
on λ will no longer be indicated; any λ dependence can be
found in earlier formulae.

Note that U2 is a real symmetric matrix.The spinor solu-
tion is obtained with the help of

h2 = U †
2 h1 = U †

2U
†
1 h0 = U †

2U
†
1U

†
0 h−1.

Equivalently

h−1 = U0U1U2h2.

We have explicit expressions forU0, U1andU2 except for ξ̂1

which we need to determine. Since

ξ1 = β̂ (−ω1∂tω0 + ω0∂tω1)

2ω1

√

ω2
1 − ω2

0

.

it is clear from (C21) that

ξ̂1 = β̂ sgn

⎛

⎝
−ω1∂tω0 + ω0∂tω1

2ω1

√

ω2
1 − ω2

0

⎞

⎠ (C24)

and we need to determine sgn

(

−ω1∂tω0+ω0∂tω1

2ω1

√

ω2
1−ω2

0

)

on using

(C12), (C13) and (C14). We have from (C17)

ω1 = ω0

√

1 + (α∂tω0 − ω0∂tα)2

4ω4
0m

2

and so

∂tω1 = ∂tω0

[

1 + (α∂tω0 − ω0∂tα)2

4ω4
0m

2

] 1
2

+ω0

2

[

1 + (α∂tω0 − ω0∂tα)2

4ω4
0m

2

]− 1
2

×∂t

{

(α∂tω0 − ω0∂tα)2

4ω4
0m

2

}

.

Now since ω2
1 > ω2

0 (C17)

sgn

⎛

⎝
−ω1∂tω0 + ω0∂tω1

2ω1

√

ω2
1 − ω2

0

⎞

⎠ = sgn (−ω1∂tω0 + ω0∂tω1) .

(C25)

But

−ω1∂tω0 + ω0∂tω1 = �

where

� = 1

2
ω2

0

[

1 + (α∂tω0 − ω0∂tα)2

4ω4
0β

2

]− 1
2

×∂t

(

(α∂tω0 − ω0∂tα)2

4ω4
0m

2

)

.

So, from (C25) and (C24),

ξ̂1 = β̂ sgn

(

∂t

(

(α∂tω0 − ω0∂tα)2

4ω4
0m

2

))

.

Since

α∂tω0 − ω0∂tα = − (∂tα) m2

ω0
,
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∂t

(

(α∂tω0 − ω0∂tα)2

4ω4
0m

2

)

= ∂t

[

(∂tα)2 m2

4ω6
0

]

= m2∂tα

2ω8
0

(

ω2
0∂

2
t α − 3α (∂tα)2

)

.

(C26)

Hence

ξ̂1 = β̂ sgn
(

∂tα
(

ω2
0∂

2
t α − 3α (∂tα)2

))

.

To make further progress we use (C12), (C13) and (C14).

∂2
t α ω2

0 − 3α (∂tα)2 = λk

a
H2

(

2

(
k

a

)2

− m2

)

+ O (B0)

(C27)

In the expression for ξ̂1, B0 will be ignored since it is very
small in comparison to the other terms. Hence

ξ̂1 = β̂ sgn

(

2

(
k

a

)2

− m2

)

. (C28)

For the early Universe regime we are interested in, in the

scenario of [1–3], we have that sgn
(

2
( k
a

)2 − m2
)

= +1,

hence we set from now on

ξ̂1 = β̂. (C29)

We shall now summarise the key formulae for our analysis:

ω2
1 = ω2

0 + (∂tα)2 β2

4ω4
0

⇒ ω1 = ω0

√

1 + (∂tα)2 m2

4ω6
0

,

(C30)

where we keep the positive sign when taking the square root,
due to the positivity of the energy ω1 (assuming ω0 > 0 to
lowest order). Since in our perturbative expansions in this
work we shall not consider terms higher than H2, we may
truncate the above expression to (cf. (C13))

ω1

ω0
� 1 + (∂tα)2 m2

8ω6
0

− m4 (∂tα)4

128ω0
12 . (C31)

We also have from (C30)

∂tω1 = ω0

ω1
∂tω0 + 1

2ω1
∂t

(

(∂tα)2 β2

4ω4
0

)

(C32)

and

ω2
2 = ω2

1 + (−ω1∂tω0 + ω0∂tω1)
2

4ω2
1

(

ω2
1 − ω2

0

) . (C33)

We solve the Dirac equation using an adiabatic proce-
dure, which assumes that the time derivatives of α satisfy

| t0∂ j
t α

∂
j−1
t α

| � 1 for j = 1, 2, . . .. As a bookkeeping device (for

the order of adiabaticity) we will introduce the parameter ε

in front of ∂t . In the context of this notation we can say that

U0 ∼ O
(

ε0
)

, U1 ∼ O
(

ε2
)

and U2 ∼ O
(

ε4
)

. Although,
it will be seen to be, a posteriori, negligible for our applica-
tion to leptogenesis, we shall retain expressions up to second
order in the Hubble parameter H2 (see (C13) and (C14))16.
From C33 we can deduce that approximations

∂tω1 = α ∂tα

ω0
ε + m2 ε3

8ω7
0

(

−5α (∂tα)3 + 2ω2
0 ∂tα ∂2

t α
)

+ · · ·
since ∂tω0 = ε α∂tα

ω0
. Using these expressions

−ω1∂tω0 + ω0∂tω1 = ε3
(

m2ω2
0∂tα∂2

t α − 3m2α(∂tα)3
)

4ω6
0

+ · · ·
and

ω2

ω1
= 1 + m2

(−3α (∂tα)2 + ω2
0∂

2
t α
)2

ε4

8 ω12
0

+ · · · . (C34)

In view of (C13) and (C14), we observe that the ratio ω2
ω1

differs from 1 by terms of order H4, which we ignore in our
analysis.

Let us return to h−1 = U0U1U2h2.

h−1 =
(

h
↑
−1

h
↓
−1

)

= U0U1U2h2.

In this approximation

h2 (t) =
⎛

⎝
exp

(

−i
∫ t

ω2

)

0

0 exp
(

i
∫ t

ω2

)

⎞

⎠

(

1
0

)

= exp

(

−i
∫

ω2

) (

1
0

)

, (C35)

and so the phase in ϕ2 of (20) can be identified with ω2 (on
suppressing the λ dependence).

For β̂ = −1, we have (from now on we denote
∫ t

ω2 =
∫

ω2 for brevity):

h
↑
−1 (λ = 1) = exp

(−i
∫

ω2
)

23/2

[(

i

√

1 + α

ω0

√

1 − ω0

ω1

+
√

1 − α

ω0

√

1 + ω0

ω1

)

×
√

1 − ω1

ω2
+
(

i

√

1 − α

ω0

√

1 − ω0

ω1

+
√

1 + α

ω0

√

1 + ω0

ω1

)√

1 + ω1

ω2

]

.

(C36)

16 In our expressions corrections to O
(

ε4
)

will be computed, and then
subsequently truncated to O

(

ε2
)

.
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and

h
↓
−1 (λ = 1) = exp

(−i
∫

ω2
)

23/2

[(

−i

√

1 − α(t)

ω0(t)

√

1 − ω0(t)

ω1(t)

+
√

α(t)

ω0(t)
+ 1

√

ω0(t)

ω1(t)
+ 1

)

×
√

1 − ω1(t)

ω2(t)
+
(

i

√

α(t)

ω0(t)
+ 1

√

1 − ω0(t)

ω1(t)

−
√

1 − α(t)

ω0(t)

√

1 + ω0(t)

ω1(t)

)√

1 + ω1(t)

ω2(t)

]

(C37)

For β̂ = 1, we have:

h
↑
−1 (λ = −1) = exp

(−i
∫

ω2
)

23/2

[
√

− α(t)

ω0(t)
+ 1

(√

ω0(t)

ω1(t)
+ 1

×
√

−ω1(t)

ω2(t)
+ 1 + i

√

1 − ω0(t)

ω1(t)

√

1 + ω1(t)

ω2(t)

)

+
√

α(t)

ω0(t)
+ 1

(√

ω0(t)

ω1(t)
+ 1

√

ω1(t)

ω2(t)
+ 1

+i

√

1 − ω0(t)

ω1(t)

√

1 − ω1(t)

ω2(t)

)]

(C38)

h
↓
−1 (λ = −1) = exp

(−i
∫

ω2
)

23/2

[

−
√

α(t)

ω0(t)
+ 1

(√

ω0(t)

ω1(t)
+ 1

×
√

−ω1(t)

ω2(t)
+ 1 + i

√

1 − ω0(t)

ω1(t)

√

1 + ω1(t)

ω2(t)

)

+
√

1 − α(t)

ω0(t)

(√

ω0(t)

ω1(t)
+ 1

√

1 + ω1(t)

ω2(t)

+i

√

1 − ω0(t)

ω1(t)

√

−ω1(t)

ω2(t)
+ 1

)]

(C39)

In terms of a generic λ(= ±1), we will now summarise
the above formulae:

h
↑
−1 (λ) = exp

(−i
∫

ω2,λ

)

23/2

[
√

− αλ(t)

ω0,λ(t)
+ 1

(√

ω0,λ(t)

ω1,λ(t)
+ 1

×
√

−ω1,λ(t)

ω2,λ(t)
+ 1 + i

√

1 − ω0,λ(t)

ω1,λ(t)

√

1 + ω1,λ(t)

ω2,λ(t)

)

+
√

αλ(t)

ω0,λ(t)
+ 1

(√

ω0,λ(t)

ω1,λ(t)
+ 1

√

ω1,λ(t)

ω2,λ(t)
+ 1

+i

√

1 − ω0,λ(t)

ω1,λ(t)

√

1 − ω1,λ(t)

ω2,λ(t)

)]

(C40)

and

h
↓
−1 (λ) = exp

(−i
∫

ω2,λ

)

23/2 λ

[

−
√

αλ(t)

ω0,λ(t)
+ 1

(√

ω0,λ(t)

ω1,λ(t)
+ 1

×
√

−ω1,λ(t)

ω2,λ(t)
+ 1 + i

√

1 − ω0,λ(t)

ω1,λ(t)

√

1 + ω1,λ(t)

ω2,λ(t)

)

+
√

1 − αλ(t)

ω0,λ(t)

(√

ω0,λ(t)

ω1,λ(t)
+ 1

√

1 + ω1,λ(t)

ω2,λ(t)

+i

√

1 − ω0,λ(t)

ω1,λ(t)

√

−ω1,λ(t)

ω2,λ(t)
+ 1

)]

(C41)

where now all λ-dependence has been made explicit and (cf.
(C8), (C42))

ω0,λ (t) =
√
(

λk

a (t)
+ B0

)2

+ m2,

αλ (t) = −
(

λk

a (t)
+ B0

)

(C42)

and the various energy ratios have been calculated above and
are given by (cf. (C31), (C34)):

ω1,λ

ω0,λ

� 1 + (∂tαλ)
2 m2

8ω6
0,λ

,

ω2,λ

ω1,λ

= 1 +
m2
(

−3αλ (∂tαλ)
2 + ω2

0,λ∂
2
t αλ

)2

8 ω12
0,λ

(C43)

The above expressions are to be understood as expansions up
to and including second order in the bookkeeping parameter
ε, i.e. of order H2 in the Hubble parameter. Also we have
put λ2 = 1. The phase factor integral is taken from some
initial time ti to t , and the initial data are chosen in such a
way so that the frequencies ωn are positive [9]. These phase
factors drop out of the modulus of the amplitude squared
used in the Boltzmann analysis of leptogenesis; hence we
shall not consider them explicitly from now on. On keeping
terms in (C40) and (C41) to O(H2) (i.e. setting ω1 � ω2),
the expressions simplify to:

h
↑
−1 (λ) = exp

(−i
∫

ω2,λ

)

2

[

i

√

− αλ(t)

ω0,λ(t)
+ 1

√

1 − ω0,λ(t)

ω1,λ(t)

+
√

αλ(t)

ω0,λ(t)
+ 1

√

ω0,λ(t)

ω1,λ(t)
+ 1

]

(C44)

and
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h
↓
−1 (λ) = exp

(−i
∫

ω2,λ

)

2
λ

[

i

√

αλ(t)

ω0,λ(t)
+ 1

√

1 − ω0,λ(t)

ω1,λ(t)

−
√

1 − αλ(t)

ω0,λ(t)

√

ω0,λ(t)

ω1,λ(t)
+ 1

]

(C45)

Let us examine the terms in (C44) and (C45):

√

αλ(t)

ω0,λ(t)
+ 1 = 1

√

ω0,λ(t)

(

ω0,λ(t) − λk

a (t)
− B0 (t)

) 1
2

√

− αλ(t)

ω0,λ(t)
+ 1 = 1

√

ω0,λ(t)

(

ω0,λ(t) + λk

a (t)
+ B0 (t)

) 1
2

√

1 + ω0,λ(t)

ω1,λ(t)
� √

2

⎛

⎜
⎝1 − H (t)2

(
λk
a(t) + n B0 (t)

)2
m2

32ω0,λ(t)6

⎞

⎟
⎠

√

1 − ω0,λ(t)

ω1,λ(t)
� mH (t)

23/2ω0,λ(t)3

(

αλ (t) + (n − 1) B0 (t)
)

(C46)

Using these results, we find that the zeroth order ((. . . )(0))
terms in an expansion in powers of H for h↑,↓

−1 (λ), obtained
on setting ω0,λ = ω1,λ(= ω2,λ), are

h
↑ λ (0)
−1 =

√
ω0,λ + αλ
√

2 ω0,λ

= 1
√

2 ω0,λ

√

ω0,λ − λ
k

a(t)
− B0,

h
↓ λ (0)
−1 = −λ

√
ω0,λ − αλ
√

2 ω0,λ

= −λ
1

√

2 ω0,λ

√

ω0,λ + λ
k

a(t)
+ B0,

(C47)

with ω0,λ > 0 given by (C11) and αλ by (C8), (and we
assume [1–3] a fixed sign for B0 > 0.

Up to the energy-dependent normalisation factors 1√
2 ω0,λ

,

and irrelevant phase factors, this result coincides with the
corresponding expressions for the spinors of [1], for helicity
λ, which provides a self-consistency check of our approach.
The energy ω0 satisfies the dispersion relation (C11), which
is the same as the dispersion relation of [1] upon the corre-
spondence of the momentum with the physical momentum
(12), k = k/a(t), here.

At the next order, we obtain from (C44) and (C45):

h
↑ λ (2)
−1 = exp

(

−i
∫

ω2,λ

)

×
⎡

⎢
⎣h

↑ λ (0)
−1

(

1 − H (t)2

(
λk
a(t) + n B0 (t)

)2
m2

32 ω0,λ(t)6

)

−i h↓ λ (0)
−1

λmH (t)

4 ω0,λ(t)3

(

αλ (t) + (n − 1) B0 (t)
)]

, (C48)

and

h
↓ λ (2)
−1 = exp

(

−i
∫

ω2,λ

)

×
⎡

⎢
⎣h

↓ λ (0)
−1

(

1 − H (t)2

(
λk
a(t) + n B0 (t)

)2
m2

32ω(t)6

)

+i λ h
↑ λ (0)
−1

mH (t)

4ω0,λ(t)3

(

αλ (t) + (n − 1) B0 (t)
)]

,

(C49)

where n ≥ 3, h↑ ,↓ λ (0)
−1 are given in (C47), and we used

(C12), (C13). The energies (frequencies) ω0 > 0 are taken
to be positive. The reader should notice that one passes from
(C48) to (C49) upon flipping the sign of m, m → −m, and
changing ↑ to ↓, and vice versa., where appropriate.

The expanding Universe corrections (proportional to pow-
ers of the Hubble parameter) enter the spinor solutions (C3),
which in turn participate in the expression for the scattering
amplitudes (19) that enter the interaction terms in the Boltz-
man equations for leptogenesis in the scenario of [1–3]. We
estimate the order of such corrections for the range (5) of the
parameters of the model of [3] in section3, and show that they
are negligible, thus justifying the plane-wave approximation
for leptogenesis used in that work.

Appendix D: Thermal-equilibrium treatment of elec-
troweak baryogenesis, and connection with CPT -
violating leptogenesis

In this Appendix we review some thermal-equilibrium
aspects of sphaleron processes, which are relevant for our
discussion of baryogenesis in section4. In our leptogenesis
model [1–3] we have not needed chemical potentials for the
generation of tree-level lepton asymmetries induced by the
KR background B0. A detailed discussion of the communica-
tion of the lepton asymmetry to the baryon sector, requires us,
however, to introduce chemical potentials, that would imple-
ment the pertinent conservation laws (47) in a path integral
formulation of the effective action. Following the second ref-
erence of [12] (see section 11.2.1), in the regime of (high)
temperatures, we may consider the number densities of lep-
tons and quarks in the SM sector to be in thermal equilib-
rium, as is the case where the sphaleron processes are active.
Assuming for simplicitly T � mW, with mW the electroweak
scale, and using the standard finite-temperature distribution
function, we see that the difference �n between particles
and antiparticles in the equlibrium number density of Bosons
(Fermions), with a chemical potential μB(μF) � T , behaves
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as

�nB ∼ 1

3
μB T 2,

�nF ∼ 1

6
μF T 2. (D1)

In the case of a SM sector with N f fermionic generators and
Ns Higgs doublets,17 considered in the second reference in
[12], one has two conservation laws, for which one introduces
chemical potentials: the B−L conservation, corresponding to
a chemical potential μ and the hypercharge U(1)Y comnser-
vation, corresponding to a chemical potential μY. Thus for
the “I-th” particle we introduce the chemical potential

μI = μ (B − L) + μY
Y

2
, (D2)

with the chemical potential for the corresponding antiparticle
being μI = −μI .

From (D1), we obtain for the asymmetry of Higgs-like
particles and for fermions of all N f generations

�nH ∼ Ns μH
T2

3
,

�nF ∼ Nf μF
T2

6
. (D3)

The requirement of “neutrality” of the plasma of particles
under the U(1)Y hypercharge, is expressed as [12]:

∑

I

YI �nI = 0. (D4)

In our case with two chemical potentials, this relation allows
expression of, say, the (B−L) chemical potential μ in terms
of the hypercharge chemical potential μY :

4

3
N f μ = −

(5

3
N f + 1

2
Ns

)

μY . (D5)

The baryon number asymmetry is then determined by
computing the quantity (nB(B) denote number densities of
baryons (antibaryons):

�B = nB − nB

≡ 1

3

[

�nle f t−handed−quarks + �nright−handed−quarks

]

.

(D6)

17 As we consider here only SM fields (and their antiparticles), which
participate in the sphaleron processes, there is no right-handed neutrino.
In our case the RHN has decayed long before the sphaleron processes
freeze out, and baryon asymmetry is generated. Moreover, as we are in
a regime above the electroweak symmetry breaking, the Higgs particle
(antiparticle) spectra contain both charged h± and neutral Higgs h0.

Using then (D3), and the conventional quantum-number
assignments of for the SM particles/antiparticles, we easily
arrive at [12]:

�B � −
(Ns

2
+ N f

) T 2

6
. (D7)

in the high temperature regime of interest,for which μI � T .
The lepton asymmetry at this temperature

�L = �nle f t−handed−lepton−doublets

+ �nright−handed−lepton−singlets

�
(7

4
N f + 9

8
Ns

)T 2

6
, (D8)

where, as we mntioned prefiously, we do not consider the
heavy right-handed neutrino, which had already decoupled at
the temperatures of the creation of the baryon asymmetry we
are interested in (i.e. the freeze out of the sphaleron processes,
which is slightly above the electroweak symmetry breaking
temperature, of O(100)GeV).

We also have

�(B − L) � −
(11

2
N f + 13

8
Ns

)T 2

6
, (D9)

which allows μY to be expressed in terms of �B − �L ,
implying that the baryon asymmetry (D7) can be finally given
as [12]:

�B � 4 Ns + 8 N f

13 Ns + 22 N f
�(B − L), (D10)

which is to be evaluated at the temperature at which the
sphaleron processes decouple, which is of the order of the
electroweak transition, slightly above it.

The relation (D10) needs to be compared with (51). To
this end, the reader should first recall the conservation by the
sphaleron processes of�(B−L), which implies that the latter
quantity can be replaced in (D10) by �(B− L)(tini ) at some
initial time value, in the scenario of [1–3] this can bne taken
as the freezeout point of the heavy right-handed neutrino
decays. In this respect, (D9) should be understood as being
valid for a fixed equilibrium temperature, which does not
change with time. Second, for a SM we have Nf = 3, Ns = 1,
which implies �B � 28

79 �(B − L) for temperatures above
the electroweak phase transition. We thus observe that in
order of magnitude our (51) was in excellent agreement with
the more detailed derivation above.

Before closing we would like to discuss the rôle of the KR
background B0(T ). Its presence could in principle modify
the previous derivation leading to (D10), since the fermion

123



558 Page 24 of 26 Eur. Phys. J. C (2020) 80 :558

dispersion relations get modified

E =
√

[| �p| + λB0]2 + m2 (D11)

with λ the helicity of the spinor (i.e. the projection of the
third component of the spin to the direction of the spatial
momentum). When considering the distribution functions
that enter the expressions for the particle (antiparticle) equi-
librium number densities, taking into account that at the high
temperature regime we are interested in T � B0, one may
expand the integrand in powers of B0/T � 1. Thus, to first
order in this small quantity, the reader can readily verify that
the effects of the KR backround to the thermal equilibrium
�nF in (D3) is to add to their hand side terms of the form
[1–3]

�nKR,λ
F = �nF(B0 = 0) + c1 g�

F λB0 T2, (D12)

with �nF (B0 = 0) given by (D3), g�
F denotes the number

of degrees of freedom of the fermion in question, and the
constant coefficient c1 � −0.16 has been computed in [2]
(cf. Eq. (157) of that work; the equation refers to leptons,
but it can be straightforwardly generalised to quarks). The
dependence on the helicity of the KR-background correction
term is due to the dispersion relation (D11).

The B0-dependence of (D12) disappears though once we
average over quark helicities λ = ±1, as becomes necessary
in order to evaluate the Baryon asymmetry using (D6):

1

2

∑

λ

�nKR,λ
F = �nF (B0 = 0) + 1

2
c1 g

�
F

∑

λ

λB0 T
2

= �nF (B0 = 0), (D13)

given that
∑

λ λ = 0. This is in agreement with our argu-
ments in Sect. 4.2 on the non-contribution of the KR back-
ground to the anomalies, which determine the rate of the
baryon asymmetry �B. As we have seen above, the only
dependence of �B on B0(T ) comes through the chemical
potential term �(B−L) which is conserved, and thus can be
evaluated at the leptogenesis heavy-right-handed-neutrino-
decay freezeout point in the scenario of [1–3], cf. Eq. (52).

Appendix E: Triangle anomaly in the presence of the KR
field: topological arguments for its zero contribution

We consider a path integral approach to anomalies [25]. In
the heat kernel gauge invariant computation of [18], the result
for the index [24] “ind” of the generalised Dirac operator
γ μDμ(ω, H) in a curved space-time with spin connection
ω a

μ b, and totally antisymmetric H-torsion (A13), schemati-

cally is (in form language):

ind
(

i γ μ Dμ(ω̃ = ω + 1

2
H)
)

=
∫

M4
Tr

[

det
( i R̂(ω + 3

2 H)/(4π)

sinh

[

iR̂(ω + 3
2 H)/(4π)

]

)]∣
∣
∣
vol

,

(E1)

where M4 denotes the four-dimensional volume, and the
symbol “vol” implies that we take the appropriate volume
form, the determinant “det” refers to world indices μ, ν

and the Trace “Tr” to tangent space Lorentz indices a, b.
The result of the direct computation is expressed formally
in terms of a generalised curvature two form, with com-
ponents R̂ ν

μ (ω + 3
2 H) ≡ σ ab R̂ab ν

μ (ω + 3
2 H), where

σ ab = i
2 [γ a, γ b]; this curvature two form contains 3 times

more torsion than the generalised Dirac operator. But this
mismatch does not contain any information, given that the
torsion terms conspire to yield globally exact forms that drop
out of the integral in (E1). This can be seen heuristically by
switching on the torsion adiabatically,18 by considering for
instance a very weak torsion (or, equivalently, a KR axion
field b(x) in our case), and weak Riemannian space-time
curvatures (an approximation that describes our leptogene-
sis and subsequent eras of the Universe, of interest in [1–3],
pretty well), so that the perturbative expansion of the inte-
grand in (E1), in powers of the generalised curvature two
forms, truncates to order R̂ ∧ R̂ (or, equivalently, in compo-

nent notation R̂μνρσ (ω + 3
3 H)˜R̂μνρσ (ω + 3

3 H), with ˜(. . . )

denoting the dual tensor in curved spacetime).19 In that case,
using the identity (in form language) for generic manifolds

18 The adiabatic switching on of the torsion is proven to be a rigorous
argument in support of the absence of its contributions to the index, as
discussed in [27].
19 For completeness, we mention that the integrand A(M4)(ω + 3

2 H)

of the index (E1), the so-called Dirac genus, is expanded as:

A(M4)(ω + 3

2
H) = 1 − 1

24
P1((ω + 3

2
H)

+ 7

5760
P2

1 (ω + 3

2
H) − 4P2(ω + 3

2
H) + . . . , (E2)

where Pi(ω+ 3
2 H), i = 1, 2, . . . , denote various generalised (torsional)

Pontryagin indices, defined as [28]

P1(ω + 3

2
H) = −1

2
Tr R̂2(ω + 3

2
H),

P2(ω + 3

2
H) = −1

4
Tr R̂4(ω + 3

2
H) + 1

8

[

Tr R̂2(ω + 3

2
H)
]2

, . . .

(E3)

. Thus we observe that in this way the index can be expanded in terms
of the generic form (E8).
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with torsion

Tr
(

R̂ ∧ R̂
)

= Tr
(

R ∧ R
)

+ dTr
(

K ∧ R + K ∧ D(ω)K + 2

3
K ∧ K ∧ K

)

, (E4)

where R = R(ω) = d ∧ ω + ω ∧ ω is the curvature two-
form and D(ω) the covariant derivative one-form, both with
respect to the torsion-free (Riemannian) connection and K is
a generic contorsion tensor (in our case in (E1)) K ≡ 3

2 H ),
we observe that the torsion-dependent parts integrate to zero,
being exact forms.

The proof can be extended to include a generic higher
order term of order k in the perturbative expansion of the
integrand of (E1) in powers of the gerneralised curvature
form R̂,

P̂k ≡ Tr R̂2k, (E5)

where we use compact notation for brevity, whereby the
square of the curvature two form means a wedge (exterior)
product (cf. (E4)), and the vielbeins are suppressed (their
presence is understood in appropriate numbers, necessary to
imply, through wedge products, the four-correct volume form
of the term (E5)).

This can be most easily seen by first constructing a homo-
topy function: [27]

ω̃ ab
t μ ≡ ω ab

μ + t K ab
μ , t ∈ [0, 1], (E6)

where t is an adiabatic continuous parameter, which inter-
polates smoothly between the torsion-free connection (at
t = 0) and our KR contorted spin connection (with con-
torsion K ab

μ ∝ H ab
μ ) at t = 1. The k-order term (E5) con-

structed out of the homtopic extension of the curvature is
obtained by the replacement of the generalised curvature two-
form by its homotopic extension through (E6):

R̂t = d ∧ ω̃t + ω̃t ∧ ω̃t , (E7)

so (E5) becomes

P̂t k ≡ Tr R̂2k
t . (E8)

We consider the case where the torsion is switched on adia-
batically [27], that is we study infinitesimal changes of the
homotopy parameter t. Our aim is to show that under such
changes, the change of the terms E8 is a closed form, so
the index (E1) for such H-torsion contributions, that differ
infinitesimally from zero, vanishes. A finite H-torsion, cor-
responding to t = 1, is built by such successive infinitesimal
changes in the homotopy parameter.

Under infinitesimal changes of t, appropriate for the adi-
abatic switching on of the H-torsion, the term (E8) changes
as:

Tr
( d

dt
R̂2k
t

)

dt = 2k Tr
(

R̂2k−1
t

d

dt
R̂t

)

dt, with

d

dt
R̂t = d

dt

(

R + t D(ω)K + t2K2
)

. (E9)

It is then easy to show that

Tr
( d

dt
R̂2k
t

)

= 2k Tr
(

D(ω)K + 2tK2
)

R̂2k−1
t

= 2k Tr
(

D̂Qωt
K
)

R̂2k−1
t , (E10)

with D̂ω̃t the covariant derivative with respect to the con-
torted spin connection (E6). On using the Leibniz rule of
covariant differentiation and the Bianchi identity for totally
antisymmetric H-torsion

D̂ω̃t R̂t = 0, (E11)

with the detailed notation

(

D̂ω̃t R̂t

)a

b
≡ d (R̂t)

a
b + ω̃a

t c ∧ (R̂t)
c
b − (R̂t)

a
c ∧ ω̃c

t b,

(E12)

we obtain from (E10):

Tr
( d

dt
R̂2k

t

)

dt = 2k Tr d
(

K R̂2k−1
t

)

≡ Tr dX. (E13)

Thus, under a change in the torsion part of the generalised
spin connection the relevant Pontryagin index changes by an
exact form dX, with X(K, ω) transforming covariantly, as
follows from the covariant transformation properties of both
K and R̂ under tangent-space rotations.

Since the homotopically extended Dirac genus (integrand
of (E1), after homotopic extension through (E6)) is an infinite
series of various polynomials in Pontryagin indices of vari-
ous orders (cf. (E2), (E3)), which are linear combinations of
terms of the form (E8), it will also change under infinitesimal
t-changes by the exterior derivative d of a covariantly trans-
formed form. Indeed, consider a generic polynomial f(Pt i) of
homotopically extended Pontryagin indices Pt i, of order n,
f(Pt i) = ∑n

k=1 αk Pk
t i. Under the action of the t-homotopic

exterior derivative dt, we have:

dtf(Pt i) = d

dt
f (Pt i ) dt =

n
∑

k=1

P̂
d

dt
Pt i Fk(Pt i ) dt,

Fk(Pt i ) = k αk P
k−1
t i , (E14)
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where the symbol P̂ denotes form ordering, given the
“antiderivation of degree 1” character of the exterior deriva-
tive d, when acting on wedge products of forms (d (a∧ b) =
d a ∧ b + (−1)pa ∧ b, where a is a p-form). Since, as we
have seen above (E13) d

dt Pt i dt = d X′, and the functionals
Fk(Pt i ) contain generalised curvature two-forms only, it fol-
lows immediately, on account of the Bianchi identity (E11),
and Stokes theorem, that the volume integral

∫

M4
dt f (Pt i ) = 0, (E15)

for a manifold without boundary, as we assume to be the case
for the FLRW Universe of interest to us here.

Thus the index of the generalised Dirac operator coin-
cides with that in a Riemannian manifold. In particular, this
means that by considering the Dirac operator in the presence
of external gauge potentials in flat Minkowski space times,
the resulting triangle anomalies [25] are independent of the
torsion, and so independent of our KR background field B0,
in the case of [1–3].
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