
Eur. Phys. J. C (2020) 80:542
https://doi.org/10.1140/epjc/s10052-020-8108-2

Regular Article - Theoretical Physics

Cyclicity of all anti-NMHV and N2MHV tree amplitudes inN =4
SYM

Junjie Raoa

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam, Germany

Received: 25 April 2020 / Accepted: 1 June 2020 / Published online: 16 June 2020
© The Author(s) 2020

Abstract This article proves the cyclicity of anti-NMHV
and N2MHV tree amplitudes in planar N = 4 SYM up to
any number of external particles as an interesting application
of positive Grassmannian geometry. In this proof the two-
fold simplex-like structures of tree amplitudes introduced in
1609.08627 play a key role, as the cyclicity of amplitudes will
induce similar simplex-like structures for the boundary gen-
erators of homological identities. For this purpose, we only
need a part of all distinct boundary generators, and the rel-
evant identities only involve BCFW-like cells. The manifest
cyclic invariance in this geometric representation reflects one
of the invariant characteristics of amplitudes, though they are
obtained by the scheme-dependent BCFW recursion relation.
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1 Introduction

N = 4 super Yang–Mills theory has been the most under-
stood quantum field theory so far. In recent years, tremendous
progress on the scattering amplitudes of planar N =4 SYM
was made through its connection to positive Grassmannian,
momentum twistors and on-shell diagrams [1,2]. In this new
context, the well known BCFW recursion relation [3] using
massless spinors has an elegant generalization [4] in momen-
tum twistor space. This efficient machinery is powerful for
generating tree amplitudes and loop integrands, and it can
manifest dual superconformal invariance of planar N = 4
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SYM. There is a Mathematica package “positroids”
to implement these results, with investigations on various
mathematical aspects of positive Grassmannian [5]. More
relevant background on amplitudes can be found in [6,7].

In particular, tree amplitudes in planar N = 4 SYM have
an impressive simplicity in the language of positive Grass-
mannian in momentum twistor space, namely the so-called
two-fold simplex-like structures [8], a concise review can be
referred in [9]. In terms of Grassmannian geometry represen-
tatives specifying linear dependencies of different ranks and
empty slots for null columns, information of amplitudes can
be compactly captured by finite numbers of fully-spanning
cells and their growing parameters. Given a fixed k, as (k+2)

is the number of negative helicities, there is no new full cell
beyond n = 4k+1, then after we identify all full cells with
their growing parameters at this critical n, NkMHV ampli-
tudes are known once for all up to any number of external
particles. This is an extension following the logic similar to
[10,11].

With the aid of this purely geometric description, homo-
logical identities can be understood in a much more intuitive
way, and most of them turn out to be the secret incarnation of
the simple NMHV identity. A part of these identities are cru-
cial for interconnecting different BCFW cells, and hence dif-
ferent BCFW recursion schemes [1]. Explicitly in this work,
we would like to manifest the cyclicity of amplitudes of two
specific classes: the anti-NMHV and the N2MHV families,
by applying the simplex-like structures of both the ampli-
tudes and boundary generators of identities. From [8] we
have fully understood the structures of anti-NMHV, NMHV,
N2MHV and N3MHV families, while only the cyclicity of
NMHV family and n=7, 8 anti-NMHV amplitudes has been
shown. It is then desirable to see more nontrivial examples
and attempt to extract the general pattern from them. And the
manifest cyclic invariance reflects one of the invariant char-
acteristics of amplitudes, which is obscured by the scheme-
dependent BCFW recursion relation. This cyclicity is not
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manifest in the amplituhedron setting [12–15] as well, as the
triangulation process usually chooses some fixed labels of
particles for simplicity. Moreover, though the NMHV iden-
tity has an obvious geometric interpretation as different tri-
angulations give the same invariant sum of “volumes”, for
more general NkMHV identities with k ≥ 2 the correspond-
ing geometric pictures are unclear yet. From the perspective
of cyclicity, we may find more intuition of these identities
which interconnect BCFW cells of different Grassmannian
geometric configurations. We may even go further to find
their counterparts in the context of amplituhedron, and in
particular, explore their relation to the sign-flip triangulation
[13,14].

As a helpful warmup exercise, we now reconsider the
cyclicity of NMHV family in a more formal way before we
derive its generalization for k≥2 in this work.

Recall the NMHV n=6 amplitude in terms of empty slots
in the default recursion scheme is given by

Y 1
6 = [6] + [4] + [2], (1.1)

where Y k
n is the Yangian invariant related to the n-particle

amplitude with (k+2) negative helicities, via Ak
n = AMHV

n Y k
n

(the MHV sector means k = 0), and an empty slot [i] of
k = 1, n = 6 denotes the commonly used 5-bracket with
entry i removed [1,8]. Then the difference between Y 1

6 and
its cyclically shifted (by +1) counterpart is

Y 1
6 − Y 1

6,+1 = −[1] + [2] − [3] + [4] − [5] + [6] ≡ I123456,

(1.2)

here the 6-term NMHV identity of labels 1, 2, 3, 4, 5, 6 is
defined as I123456. According to the simplex-like structures of
amplitudes, namely the quadratic mode with growing param-
eters (6, 4, 2), given by (in this triangle-shape sum each entry
is multiplied by its corresponding vertical and horizontal fac-
tors)

Y 1
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[234 . . . n−4] 1
... . .

. ...

[234] 1 · · · [. . . n−2]
[23] 1 [6] · · · [6 . . . n−2]
[2] 1 [5] [56] · · · [56 . . . n−2]
1 1 [4] [45] [456] · · · [456 . . . n−2]

[678 . . . n] [78 . . . n] [8 . . . n] [. . . n] · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.3)

we have the following relation for n=7 as an example:

Y 1
7 − Y 1

7,+1 =
⎛
⎝

[23]
[27] [25]

[67] [47] [45]

⎞
⎠ −

⎛
⎝

[34]
[31] [36]

[71] [51] [56]

⎞
⎠

=
( [3] I124567

[7] I123456 [5] I123467

)
. (1.4)

This already completes the proof of cyclicity for the general
Y 1
n , since the growing parameters (7, 5, 3) of I123456 have

been identified, and as n increases I123456 also follows the
simplex-like growing pattern.

We see that (7, 5, 3) are closely related to (6, 4, 2) of Y 1
n ,

which shows how the cyclicity of amplitudes induces similar
simplex-like structures for the relevant homological iden-
tities. This intriguing feature will appear in a much more
nontrivial form for N2MHV amplitudes.

2 Cyclicity of anti-NMHV amplitudes

Before moving to the N2MHV family, let’s first consider
the cyclicity of all anti-NMHV amplitudes, since this is in
fact the nontrivial starting point for all NkMHV cases. More
explicitly, recall that for a given k non-vanishing amplitudes
start with the anti-MHV sector n=k+4, which contains just
one top cell, then the first interesting case is the anti-NMHV
sector n = k+5. It can be rearranged in the similar form
of a triangle-shape sum as its parity conjugate, namely the
NMHV sector.

The anti-NMHV triangle-like pattern can be clearly
observed in the series of examples below:

Y 1
6 =

(
[2]

{ [6]
[4]

)
, (2.1)

Y 2
7 =

⎛
⎝ [2] (23)

{
(67)

(45)

⎧⎨
⎩

[7]
(45)(71)

[5]

⎞
⎠ , (2.2)
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Y 3
8 =

⎛
⎜⎜⎝ [2] (23)

{
(678)

(456)
(234)

⎧⎨
⎩

(78)

(456)(781)

(56)

⎧⎪⎪⎨
⎪⎪⎩

[8]
(456)(81)

(56)(812)

[6]

⎞
⎟⎟⎠ ,

(2.3)

Y 4
9 =

⎛
⎜⎜⎜⎜⎝

[2] (23)

{
(6789)

(4567)
(234)

⎧⎨
⎩

(789)

(4567)(7891)

(567)

(2345)

⎧⎪⎪⎨
⎪⎪⎩

(89)

(4567)(891)

(567)(8912)

(67)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[9]
(4567)(91)

(567)(912)

(67)(9123)

[7]

⎞
⎟⎟⎟⎟⎠

, (2.4)

and its general form can be proved by induction. Here we
remind that, for k ≥ 2, the empty slot [i] again denotes
the Grassmannian cell with column i removed, (i j) denotes
that columns i, j are proportional and (i jk), (i jkl) similarly
denote linear dependencies of various ranks (in particular,
(i1 . . . ik) denotes a k×k vanishing minor) as defined in [8].

From [8], it is already known that

Y 2
7 − Y 2

7,+1 = − ∂(23) − ∂(56) − ∂(71), (2.5)

Y 3
8 − Y 3

8,+1 = ∂(23) + ∂(67) + ∂(81) + ∂(234)(567)

+∂(567)(812) + ∂(781)(234), (2.6)

which manifest the cyclicity of Y 2
7 and Y 3

8 . As boundary gen-
erators, the (4k+1)-dimensional cells above lead to the rel-
evant identities after the formal ‘∂’ operation. These results
can be rearranged in a more suggestive form as

Y 2
7 − Y 2

7,+1 = − ∂

(
(23)

{
(71)

(56)

)
, (2.7)

Y 3
8 − Y 3

8,+1 = ∂

⎛
⎝ (23) (234)

{
(781)

(567)

⎧⎨
⎩

(81)

(567)(812)

(67)

⎞
⎠ ,

(2.8)

as well as a further k=4 extension of this pattern:

Y 4
9 − Y 4

9,+1 = − ∂

⎛
⎜⎜⎝ (23) (234)

{
(7891)

(5678)
(2345)

⎧⎨
⎩

(891)

(5678)(8912)

(678)

⎧⎪⎪⎨
⎪⎪⎩

(91)

(5678)(912)

(678)(9123)

(78)

⎞
⎟⎟⎠ , (2.9)

where the sign factor (−)k+1 for each of these relations fol-
lows the convention of [1,5]. And the types of homological
identities used in (2.7) and (2.8), as already proved in [8],
include

∂(23) = −[2] + [3] − (23)(45) + (23)(56) − (23)(67)

+(23)(71) (2.10)

for k=2 (we have shifted boundary generator (12) in [8] to
(23), and similar below), as well as

∂(23) = +[2] − [3] + (23)(456) − (23)(567)

+(23)(678) − (23)(781), (2.11)

∂(234)(567) = +(23)(567) − (34)(567) + (234)(56)

−(234)(67) + (234)(567)(781)

−(234)(567)(812) (2.12)

for k=3, while those for k=4 used in (2.9) are new, as given
by

∂(23) = −[2] + [3] − (23)(4567)

+(23)(5678) − (23)(6789)

+(23)(7891), (2.13)

∂(234)(5678) = −(23)(5678) + (34)(5678)

−(234)(567) + (234)(678)

−(234)(5678)(7891)

+(234)(5678)(8912), (2.14)

∂(2345)(678) = −(234)(678) + (345)(678)

−(2345)(67) + (2345)(78)

−(2345)(678)(8912)

+(2345)(678)(9123), (2.15)

∂(2345)(5678)(8912) = −(234)(5678)(8912)

+(345)(5678)(8912)

−(2345)(567)(8912)

+(2345)(678)(8912)

−(2345)(5678)(891)

+(2345)(5678)(912), (2.16)

123



542 Page 4 of 9 Eur. Phys. J. C (2020) 80 :542

and they can be proved by using the similar matrix approach
as done in [8]. The examples of anti-NMHV family again
show how the cyclicity of amplitudes induces similar struc-
tures for the relevant identities, and such 6-term identities
for any k can be easily guessed from the boundary genera-
tors then proved.

3 Cyclicity of N2MHV amplitudes

Now we will start with the cyclicity of N2MHV n = 7
amplitude, namely (2.5), to explore its generalization towards
n≥8. Recall the N2MHV full cells along with their growing
parameters are given by

G7,0 =
{
(45)(71)

[5] (5) (3.1)

G7,1 = (23)

{
(67)

(45)
(6, 4) (3.2)

G8,1 =
⎧⎨
⎩

(234)2(678)2 (7, 4)

(456)2(781)2 (7, 5)

(23)(456)2(81) (6, 4)

(3.3)

G9,2 =
{

(2345)2(6789)2

(23)(4567)2(891)2
(8, 6, 4) (3.4)

and for notational convenience, below we will suppress sub-
script ‘2’ for consecutive vanishing 2 ×2 minors, such as
(234)2 ≡ (234) = (23)(34), which is unambiguous as we
restrict the discussion to the N2MHV sector from now on.
To understand how the full cells capture the information of
amplitudes up to any number of external particles [8], let’s
give a brief review first.

According to the simplex-like structures of amplitudes
similar to (1.3), for the general Y k

n we have

Y k
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[234 . . . n−k−3] 1
... . .

. ...

[234] 1 · · · In−3,4

[23] 1 Ik+5,3 · · · In−2,3

[2] 1 Ik+5,2 Ik+6,2 · · · In−1,2

1 1 Ik+5,1 Ik+6,1 Ik+7,1 · · · In,1

[k+5 k+6 k+7 . . . n] [k+6 k+7 . . . n] [k+7 . . . n] [. . . n] · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.5)

and only Ii,1 in the bottom row needs to be identified, while
Ii,1+ j can be obtained by performing a partial cyclic shift
i → i + j except that label 1 is fixed, for all BCFW cells
within Ii,1.

In the case of k=2, Ii,1 can be expressed in terms of Gi,m

above as

I7,1 = G7,0 + G7,1,

I8,1 = G8,1 + (G7,0,2 + G7,1,2),

I9,1 = G9,2 + G8,1,2 + (G7,0,3 + G7,1,3),

I10,1 = G9,2,2 + G8,1,3 + (G7,0,4 + G7,1,4),

I11,1 = G9,2,3 + G8,1,4 + (G7,0,5 + G7,1,5),

(3.6)

and so on, where Gi,m is purely made of full cells with grow-
ing mode m, namely these full cells have (m+1) growing
parameters, and the additional label l in Gi,m,l represents its
level during the simplex-like growth. Explicitly, up to level
3, G7,0 →G7,0,2 →G7,0,3 of 0-mode is given by

{
(45)(71)

[5] → [5]
{
(46)(81)

[6] → [56]
{
(47)(91)

[7] (3.7)

and G7,1 →G7,1,2 →G7,1,3 of 1-mode is given by

(23)

{
(67)

(45)
→ [6](23)

{
(78)

(45)
→ [67](23)

{
(89)

(45)

→ [4](23)

{
(78)

(56)
→ [47](23)

{
(89)

(56)

→ [45](23)

{
(89)

(67)

(3.8)

and it is similar for G8,1, finally G9,2 →G9,2,2 →G9,2,3 of
2-mode is given by
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{
(2345)(6789)

(23)(4567)(891)
→ [8]

{
(2345)(679 10)

(23)(4567)(9 10 1)
→ [89]

{
(2345)(67 10 11)

(23)(4567)(10 11 1)

→ [6]
{

(2345)(789 10)

(23)(4578)(9 10 1)
→ [69]

{
(2345)(78 10 11)

(23)(4578)(10 11 1)

→ [4]
{

(2356)(789 10)

(23)(5678)(9 10 1)
→ [67]

{
(2345)(89 10 11)

(23)(4589)(10 11 1)

→ [49]
{

(2356)(78 10 11)

(23)(5678)(10 11 1)

→ [47]
{

(2356)(89 10 11)

(23)(5689)(10 11 1)

→ [45]
{

(2367)(89 10 11)

(23)(6789)(10 11 1)

(3.9)

from which we can see that, knowing all full cells with their
growing parameters at n=10 is sufficient for generating Y 2

n
up to any n. Note the full cells (or fully-spanning cells) are
named such that none of their i columns are removed when
they first show up in Ii,1, while [5] in G7,0 is an exception,
as it is a descendent of the N2MHV top cell at n=6 but put
together with (45)(71) for convenience.

Given the summary above, the N2MHV n= 8 amplitude
is

Y 2
8 = S8,2 + S8,1 + S8,0, (3.10)

where we have separated the terms containing 2, 1, 0 empty
slots respectively by defining

S8,2 =
⎛
⎝

[23]
[28] [26]

[78] [58] [56]

⎞
⎠ ,

S8,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[2](56)(81)

[2](34)

{
(78)

(56)

[8](45)(71) [5](46)(81)

[8](23)

{
(67)

(45)
[6](23)

{
(78)

(45)

[4](23)

{
(78)

(56)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S8,0 =
⎧⎨
⎩

(234)(678)

(456)(781)

(23)(456)(81)

, (3.11)

as indicated by the second subscript i of Sn,i . Now the cyclic-
ity of Y 2

8 is separated into three parts:

Y 2
8 − Y 2

8,+1 = (S8,2 − S8,2,+1) + (S8,1 − S8,1,+1)

+(S8,0 − S8,0,+1), (3.12)

where the third subscript ‘+1’ similarly denotes the cyclic
shift. Straightforwardly we find

S8,2 − S8,2,+1 =
⎧⎨
⎩

[8] (− ∂(23) − ∂(56) − ∂(71))

[6] (− ∂(23) − ∂(57) − ∂(81))

[3] (− ∂(24) − ∂(67) − ∂(81))

∣∣∣∣
1

,

(3.13)

and ‘ | 1’ denotes the truncation that only keeps terms con-
taining one empty slot. For example, (2.10) can be separated
as

∂(23) | 1 = −[2] + [3], ∂(23) | 0

= − (23)(45)+(23)(56)−(23)(67)+(23)(71). (3.14)

Knowing growing parameters (8, 6, 3) of n = 7 boundary
generators, or identities (−∂(23)−∂(56)−∂(71)), we can
denote this result as (Bn stands for boundary generators first
induced by the cyclicity of Y 2

n )

B7 = − (23) − (56) − (71) (8, 6, 3) (3.15)

so that

S8,2 − S8,2,+1 = (∂B7 | 1)1,

S8,1 − S8,1,+1 = (∂B7 | 0)1 + ∂B8 | 1,

S8,0 − S8,0,+1 = ∂B8 | 0, (3.16)

where (∂B7 | 1)1 denotes the counterpart of ∂B7 | 1 when n
increases from 7 to 8, according to its simplex-like growing
pattern. In this way, we can figure out ∂B8 | 1 (and hence B8)
via the second relation above,
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namely (in the 5th and 8th lines below we have added
+[4](56)(81) and −[4](56)(81) respectively)

∂B8 | 1 = (S8,1 − S8,1,+1) − (∂B7 | 0)1

= −[7](81)(34) + [8](71)(34) − [1](78)(34)

+ [2](34)(56) − [3](24)(56) + [4](23)(56)

+ [2](34)(78) − [3](24)(78) + [4](23)(78)

− [3](56)(81) + [4](56)(81) − [5](34)(81)

+ [6](34)(81) + [8](34)(56) − [1](34)(56)

+ [8](12)(56) − [1](82)(56) + [2](81)(56)

− [5](67)(34) + [6](57)(34) − [7](56)(34)

− [4](56)(81) + [5](46)(81) − [6](45)(81)

= ∂ (+ (781)(34) − (234)(56) − (234)(78)

+ (34)(56)(81) + (567)(34) − (812)(56)

+ (456)(81)) | 1.

(3.17)

After identifying B8 (by trial and error), we can check the
third relation above, as

∂B8 | 0 = +(781)(234) − (781)(345) + (781)(34)(56)

− (234)(567) + (234)(56)(78) − (234)(56)(81)

− (234)(56)(78) + (234)(678) − (234)(781)

− (34)(567)(81) − (34)(56)(781) + (34)(56)(812)

+ (234)(56)(81)

+ (567)(81)(34) − (567)(12)(34) + (567)(234)

− (812)(34)(56) + (812)(456) − (812)(567)

+ (456)(781) − (456)(812) + (456)(81)(23)

= S8,0 − S8,0,+1

(3.18)

nicely obeys the required consistency. The n = 8 identities
used above can be referred in appendix A and they can be
classified into five distinct types.

Next, for the cyclicity of Y 2
9 we similarly have

S9,2 − S9,2,+1 = (∂B7 | 0)2 + (∂B8 | 1)1,

S9,1 − S9,1,+1 = (∂B8 | 0)1 + ∂B9 | 1,

S9,0 − S9,0,+1 = ∂B9 | 0, (3.19)

where the simplex-like growing patterns give

S9,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[2]
⎧⎨
⎩

(345)(789)

(567)(891)

(34)(567)(91)

{[7](234)(689)

[4](235)(789)
{[7](456)(891)

[5](467)(891)

[9]
⎧⎨
⎩

(234)(678)

(456)(781)

(23)(456)(81)

{[6](23)(457)(91)

[4](23)(567)(91)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

S9,0 =
{

(2345)(6789)

(23)(4567)(891)
. (3.20)

And via the first relation above we can figure out (∂B8 | 1)1,
or the growing parameters of B8, as

B8 = 781)(34) − (234)(56) − (234)(78) + (34)(56)(81) (9, 7, 5, 3)

+(567)(34) (9, 8, 6, 3)

−(812)(56) (9, 6, 3)

+(456)(81) (9, 6, 4)

(3.21)

so that via the second relation we can similarly figure out
∂B9 | 1 (and hence B9), and the third one again serves as a
consistency check. Explicitly, we find

B9 = −(2345)(789) − (7891)(345)

+ (8912)(567) − (5678)(234)

− (5678)(91)(34) + (5678)(12)(34)

− (912)(34)(567) + (4567)(891).

(3.22)

Following exactly the same logic, for the cyclicity of Y 2
10 we

have

S10,2 − S10,2,+1 =(∂B8 | 0)2 + (∂B9 | 1)1,

S10,1 − S10,1,+1 =(∂B9 | 0)1 + ∂B10 | 1,

S10,0 − S10,0,+1 =∂B10 | 0, (3.23)

where the simplex-like growing patterns give

S10,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[2]
{

(3456)(789 10)

(34)(5678)(9 10 1)
[8]

{
(2345)(679 10)

(23)(4567)(9 10 1)

[6]
{

(2345)(789 10)

(23)(4578)(9 10 1)

[10]
{

(2345)(6789)

(23)(4567)(891)
[4]

{
(2356)(789 10)

(23)(5678)(9 10 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.24)

note that S10,0 = 0 since there is no new full cell at n ≥ 10
[8], and hence ∂B10 | 0 =0. Explicitly, we find

B9 = −(2345)(789) − (7891)(345) (10, 8, 5, 3)

+ (8912)(567) − (5678)(234) − (5678)(91)(34)

+ (5678)(12)(34) (10, 8, 6, 3)

− (912)(34)(567) (10, 7, 5, 3)

+ (4567)(891) (10, 7, 5)

(3.25)

as well as

B10 = + (789 10 1)(3456) − (23456)(789 10)

+(5678)(9 10 1 2)(34) + (45678)(9 10 1 2)

−(45678)(9 10 1)(23). (3.26)
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Finally, for the cyclicity of Y 2
11 we have

S11,2 − S11,2,+1 =(∂B9 | 0)2 + (∂B10 | 1)1,

S11,1 − S11,1,+1 =(∂B10 | 0)1 + ∂B11 | 1,

S11,0 − S11,0,+1 =∂B11 | 0, (3.27)

and explicitly we find

B10 = +(789 10 1)(3456) − (23456)(789 10) + (5678)(9 10 1 2)(34) (11, 9, 7, 5, 3)

+(45678)(9 10 1 2) − (45678)(9 10 1)(23) (11, 9, 7, 5)
(3.28)

which leads to (∂B10 | 0)1 =0, and hence ∂B11 | 1 =0. From
S11,0 = 0 we also have ∂B11 | 0 = 0, therefore it is safe to
conclude that B11 =0. We can summarize all these intriguing
results as

B7 = − (23) − (56) − (71) (8, 6, 3) (3.29)

B8 = +(781)(34) − (234)(56) − (234)(78) + (34)(56)(81) (9, 7, 5, 3)

+(567)(34) (9, 8, 6, 3)

−(812)(56) (9, 6, 3)

+(456)(81) (9, 6, 4)

(3.30)

B9 = −(2345)(789) − (7891)(345) (10, 8, 5, 3)

+(8912)(567) − (5678)(234) − (5678)(91)(34) + (5678)(12)(34) (10, 8, 6, 3)

−(912)(34)(567) (10, 7, 5, 3)

+(4567)(891) (10, 7, 5)

(3.31)

B10 = +(789 10 1)(3456) − (23456)(789 10) + (5678)(9 10 1 2)(34) (11, 9, 7, 5, 3)

+(45678)(9 10 1 2) − (45678)(9 10 1)(23) (11, 9, 7, 5)
(3.32)

which terminate at n = 10 like the full cells. With
B7, B8, B9, B10 and the growing parameters of relevant
boundary generators identified, the cyclicity of Y 2

n for any
n is proved. These identities are classified into 1, 5, 6, 4 dis-
tinct types with respect to n=7, 8, 9, 10 in Appendix 1.

A final remark is, not all N2MHV homological identi-
ties are required for this proof. Especially, those involving
the quadratic cell at n= 8, namely (12)(34)(56)(78), or the
composite-linear cell at n=9, namely (123)(456)(789), are
irrelevant. These two non-BCFW-like cells will lead to extra
non-unity factors along with the 5-brackets [8], which can-
not be generated by recursion. Therefore it is desirable to
find that they do not appear at all in the proof of cyclicity for
N2MHV amplitudes, not even appear as canceling pairs in
the intermediate steps.

Since the cyclicity of tree amplitudes can be divided into
many sub-equalities in terms of homological identities, the
latter in fact have some kind of invariant meaning if we
reshuffle an identity as “terms with plus signs = terms with
minus signs”. It is definitely an interesting and geometrically
profound direction to explore this more refined invariance in

the context of amplituhedron and sign flips [13,14]. Espe-
cially, the k ≥ 2 identities should give nontrivial insights on
the connection between positive Grassmannian and the sign-
flip triangulation. Of course, the cyclicity at higher k will
demand us to work out identities up to n=4k+2 at least, for
example n=14 for k=3, which is a straightforward but very
lengthy task, since a more transparent pattern for all k’s still
awaits to be found.
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A Relevant N2MHV homological identities

Below we list all distinct N2MHV homological identities
that are relevant in this work. Note that we have discarded
boundary cells that fail to have kinematical supports in terms
of momentum twistors, but still we abuse the term “homo-
logical” here while the actual kinematics also matters [8,9].
n=7

∂(12) = −[1] + [2] − (12)(34)

+(12)(45) − (12)(56) + (12)(67). (A.1)

n=8

∂(123)(45) = −[1](23)(45) + [2](13)(45)

−[3](12)(45) + (123)(456)

−(123)(45)(67) + (123)(45)(78). (A.2)

∂(123)(56) = −[1](23)(56) + [2](13)(56)

−[3](12)(56) + (123)(456)

−(123)(567) + (123)(56)(78). (A.3)

∂(123)(67) = −[1](23)(67) + [2](13)(67)

−[3](12)(67) + (123)(45)(67)

−(123)(567) + (123)(678). (A.4)

∂(123)(78) = −[1](23)(78) + [2](13)(78)

−[3](12)(78) + (123)(45)(78)

−(123)(56)(78) + (123)(678). (A.5)

∂(12)(34)(67) = −[1](34)(67) + [2](34)(67)

−[3](12)(67) + [4](12)(67)

+[6](12)(34) − [7](12)(34)

−(12)(345)(67) − (12)(34)(567)

+(12)(34)(678) + (812)(34)(67). (A.6)

n=9

∂(1234)(567) = −[1](234)(567) + [2](134)(567)

−[3](124)(567) + [4](123)(567)

−(1234)(5678 + (1234)(567)(89).

(A.7)

∂(1234)(678) = −[1](234)(678) + [2](134)(678)

−[3](124)(678) + [4](123)(678)

−(1234)(5678) + (1234)(6789).

(A.8)

∂(1234)(789) = −[1](234)(789) + [2](134)(789)

−[3](124)(789) + [4](123)(789)

−(1234)(56)(789)

+(1234)(6789). (A.9)

∂(1234)(56)(89) = −[1](234)(56)(89) + [2](134)(56)(89)

−[3](124)(56)(89) + [4](123)(56)(89)

−(1234)(567)(89)

+(1234)(56)(789). (A.10)

∂(1234)(67)(89) = −[1](234)(67)(89)

+[2](134)(67)(89)

−[3](124)(67)(89)

+[4](123)(67)(89)

−(1234)(567)(89)

+(1234)(6789). (A.11)

∂(123)(45)(678) = −[1](23)(45)(678)

+[2](13)(45)(678)

−[3](12)(45)(678)

+[4](123)(678)

−[5](123)(678)

+[6](123)(45)(78)

−[7](123)(45)(68)

+[8](123)(45)(67)

+(123)(45)(6789)

−(9123)(45)(678). (A.12)

n=10

∂(12345)(6789) = −[1](2345)(6789)

+[2](1345)(6789)

−[3](1245)(6789)

+[4](1235)(6789)

−[5](1234)(6789)

+(12345)(6789 10). (A.13)

∂(12345)(789 10) = −[1](2345)(789 10)

+[2](1345)(789 10)

−[3](1245)(678 10)

+[4](1235)(789 10)

−[5](1234)(789 10)

+(12345)(6789 10). (A.14)

∂(12345)(678)(9 10) = −[1](2345)(678)(9 10)

+[2](1345)(678)(9 10)

−[3](1245)(678)(9 10)

+[4](1235)(678)(9 10)

−[5](1234)(678)(9 10)

+(12345)(6789 10). (A.15)

∂(1234)(5678)(9 10) = −[1](234)(5678)(9 10)

+[2](134)(5678)(9 10)

−[3](124)(5678)(9 10)

+[4](123)(5678)(9 10)

−[5](1234)(678)(9 10)

123
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+[6](1234)(578)(9 10)

−[7](1234)(568)(9 10)

+[8](1234)(567)(9 10)

−[9](1234)(5678)

+[10](1234)(5678). (A.16)
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