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Abstract We consider a D-dimensional Einstein-Gauss-
Bonnet model with a cosmological term � and two non-zero
constants: α1 and α2. We restrict the metrics to be diag-
onal ones and study a class of solutions with exponential
time dependence of three scale factors, governed by three
non-coinciding Hubble-like parameters: H �= 0, h1 and h2,
obeying mH +k1h1 +k2h2 �= 0 and corresponding to factor
spaces of dimensions m > 1, k1 > 1 and k2 > 1, respec-
tively (D = 1 + m + k1 + k2). We analyse two cases: i)
m < k1 < k2 and ii) 1 < k1 = k2 = k, k �= m. We show
that in both cases the solutions exist if α = α2/α1 > 0 and
α� > 0 satisfies certain restrictions, e.g. upper and lower
bounds. In case ii) explicit relations for exact solutions are
found. In both cases the subclasses of stable and non-stable
solutions are singled out. For m > 3 the case i) contains a
subclass of solutions describing an exponential expansion of
3-dimensional subspace with Hubble parameter H > 0 and
zero variation of the effective gravitational constant G. The
case H = 0 is also considered.

1 Introduction

In this paper we consider D-dimensional Einstein-Gauss-
Bonnet (EGB) model with a �-term. To some extent this
model is unique among the other higher-dimensional exten-
sions of General Relativity (GR) with second order in curva-
ture terms. The reason is the following one: the equations of
motion for this model are of the second order (in derivatives)
like it takes place in the Einstein gravity. It is well known that
the so-called Gauss-Bonnet term appeared in (super)string
theory as a first order correction (in α′) to the (super)string
effective action (e.g. heterotic one) [1–4].
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Currently, EGB gravitational model in diverse dimensions
and its modifications, see [5–30] and Refs. therein, are rather
popular objects for studying in cosmology. They are used for
possible explanation of accelerating expansion of the Uni-
verse (i.e. solving the dark energy problem), which follow
from supernova (type Ia) observational data [31–33]. One
may expect that the second order form of the equations of
motion for these models will lead us to solutions which are
in some sense close to those coming from GR and its higher
dimensional extensions (e.g. avoiding the ghosts branches at
least).

The D-dimensional EGB model is a particular case of
the Lovelock model [34]. The equations of motion for the
Lovelock model have also at most second order derivatives
of the metric (as it takes place in GR). We note that at present
there exist several modifications of Einstein and EGB actions
which correspond to F(R), R+ f (G), f (R,G) theories (e.g.
for D = 4), where R is scalar curvature and G is Gauss-
Bonnet term. These modifications are under intensive study-
ing devoted to cosmological, astrophysical and other appli-
cations, see [28–30] and references therein.

In this paper we restrict ourselves to diagonal metrics and
study (mainly) a class of cosmological solutions with expo-
nential time dependence of three scale factors, governed by
three non-coinciding Hubble-like parameters: H �= 0, h1

and h2, corresponding to factor spaces of dimensions m > 1,
k1 > 1 and k2 > 1, respectively, with a restriction imposed:
S1 = mH + k1h1 + k2h2 �= 0, and D = 1 + m + k1 + k2.
This restriction forbids the solutions with constant volume
factor. We note that in generic anisotropic case with Hubble-
like parameters h1, . . . , hn obeying S1 = ∑n

i=1 hi �= 0
(n = D − 1) the number of different real numbers among
h1, . . . , hn should not exceed 3 [25].

Here we study two cases: i) m < k1 < k2 and ii)
1 < k1 = k2 = k, k �= m. We show that in both cases
the solutions exist only if α = α2/α1 > 0, � > 0 and
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� obeys certain restrictions, e.g. inequalities of the form:
0 < λ∗(m, k1, k2) < �α < λ∗∗(m, k1, k2). We note that in
superstring inspired models α is positive and corresponds to
Regge slope parameter α′ which is inverse proportional to
the tension of the (super)string; non-zero �-terms appear for
non-critical superstrings.

The solutions under consideration are reduced to solu-
tions of polynomial master equation of fourth order or less,
which may be solved in radicals for all m > 1, k1 > 1 and
k2 > 1. In the case ii) 1 < k1 = k2 = k, k �= m we present
explicit exact solutions for Hubble-like parameters. Here we
use our previous results from refs. [23,25] in studying the
stability of the solutions under consideration. In Sect. 5 we
single out (for both cases i) and ii)) the subclasses of stable
and non-stable solutions. In Sect. 6 we present as an example
a subclass of solutions (for the case i)) describing an expo-
nential expansion of 3-dimensional subspace with Hubble
parameter H > 0 and zero variation of the effective gravi-
tational constant G (in Jordan frame) which was obtained in
Ref. [26] for fixed value of � (depending upon m, k1, k2 and
α > 0).

We note that earlier Ref. [27] was dealing with exponential
cosmological solutions in the EGB model (with a �-term)
with two non-coinciding Hubble-like parameters H > 0 and
h obeying S1 = mH + lh1 �= 0 and corresponding to m-
and l-dimensional factor spaces (m > 2, l > 2). In this
case there were two sets of solutions obeying: a) α > 0,
� < α−1λ+(m, l) and b) α < 0, � > |α|−1λ−(m, l),
with λ±(m, l) > 0. Thus, the case of two (non-coinciding)
Hubble-like parameters from Ref. [27] drastically differs
from the case of three (non-coinciding) Hubble-like param-
eters which is studied in this paper.

2 The cosmological model

The action of the model reads

S =
∫

M
dDz

√|g|{α1(R[g] − 2�) + α2L2[g]}, (2.1)

where g = gMNdzM ⊗ dzN is the metric defined on the
manifold M , dim M = D, |g| = | det(gMN )|, � is the cos-
mological term, R[g] is scalar curvature,

L2[g] = RMN PQ RMN PQ − 4RMN RMN + R2

is the standard Gauss-Bonnet term and α1, α2 are nonzero
constants.

We consider the manifold

M = R × M1 × . . . × Mn (2.2)

with the metric

g = −dt ⊗ dt +
n∑

i=1

Bie
2vi t dyi ⊗ dyi , (2.3)

where Bi > 0 are arbitrary constants, i = 1, . . . , n, and
M1, . . . , Mn are one-dimensional manifolds (either R or S1)
and n > 3.

The equations of motion for the action (2.1) give us the
set of polynomial equations [23]

E = Gi jv
iv j + 2� − αGi jklv

iv jvkvl = 0, (2.4)

Yi=
[

2Gi jv
j − 4

3
αGi jklv

jvkvl
] n∑

i=1

vi − 2

3
Gi jv

iv j + 8

3
� = 0,

(2.5)

i = 1, . . . , n, where α = α2/α1. Here

Gi j = δi j − 1, Gi jkl = Gi jGikGilG jkG jlGkl (2.6)

are, respectively, the components of two metrics on R
n

[16,17]. The first one is a 2-metric and the second one is
a Finslerian 4-metric. For n > 3 we get a set of forth-order
polynomial equations.

We note that for � = 0 and n > 3 the set of equations
(2.4) and (2.5) has an isotropic solution v1 = · · · = vn = H
only if α < 0 [16,17]. This solution was generalized in [19]
to the case � �= 0.

It was shown in [16,17] that there are no more than three
different numbers among v1, . . . , vn when � = 0. This is
valid also for � �= 0 if

∑n
i=1 vi �= 0 [25].

Here we consider a class of solutions to the set of equations
(2.4), (2.5) of the following form:

v = (

m
︷ ︸︸ ︷
H, . . . , H ,

k1
︷ ︸︸ ︷
h1, . . . , h1,

k2
︷ ︸︸ ︷
h2, . . . , h2), (2.7)

where H is the Hubble-like parameter corresponding to anm-
dimensional factor space with m > 1, h1 is the Hubble-like
parameter corresponding to an k1-dimensional factor space
with k1 > 1 and h2 is the Hubble-like parameter correspond-
ing to an k2-dimensional factor space with k2 > 1. In Sect. 6
we split the m-dimensional factor space for m > 3 into the
product of two subspaces of dimensions 3 and m−3, respec-
tively. The first one is identified with “our” 3d space while the
second one is considered as a subspace of (m−3+ k1 + k2)-
dimensional internal space.

Remark For H > 0 “our” 3d space expands (isotropically)
with Hubble parameter H and the (m − 3)-dimensional
part of internal space (m > 3) expands (isotropically) with
the same Hubble parameter H too. Moreover, we may deal
with Hubble-like parameters decribing the internal subspaces
which obey h1 > H or h2 > H (see Sect. 6). To avoid possi-
ble questions with the separation of subspaces, we consider
for physical applications (in our epoch) the internal space
to be compact, i.e. we put in (2.2) M4 = · · · = Mn = S1
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and we set the internal scale factors corresponding to the
present time t0: a j (t0) = (Bk)

1/2exp(v j t0), k = 4, . . . , n,

(see (2.3)) to be small enough in comparison with the scale
factor of “our” space for t = t0: a(t0) = B1/2exp(Ht0),
where B1 = B2 = B3 = B > 0.

We consider the ansatz (2.7) with three Hubble-like
parameters H , h1 and h2 which obey the following restric-
tions:

H �= h1, H �= h2, h1 �= h2,

S1 = mH + k1h1 + k2h2 �= 0. (2.8)

In Ref. [26] the set of (n+ 1) polynomial equations (2.4),
(2.5) under ansatz (2.7) and restrictions (2.8) imposed was
reduced to a set of three polynomial equations (of fourth,
second and first orders, respectively)

E = 0, (2.9)

Q = − 1

2α
, (2.10)

L = H + h1 + h2 − S1 = 0. (2.11)

where E is defined in (2.4) and

Q = Qh1h2 = S2
1 − S2 − 2S1(h1 + h2)

+2
(
h2

1 + h1h2 + h2
2

)
, (2.12)

where here and in what follows

Sk =
n∑

i=1

(vi )k . (2.13)

This reduction is a special case of a more general prescription
(Chirkov-Pavluchenko-Toporensky trick) from Ref. [20].

Moreover, it was shown in Ref. [26] that the following
relations take place

Qhi h j = S2
1 − S2 − 2S1(hi + h j )

+2
(
h2
i + hi h j + h2

j

) = − 1

2α
, (2.14)

where i �= j ; i, j = 0, 1, 2 and h0 = H .
Due to (2.8) the case H = h1 = h2 = 0 is excluded. First,

we put

H �= 0. (2.15)

Let us denote

x1 = h1/H, x2 = h2/H. (2.16)

Then restrictions (2.8) read

x1 �= 1, x2 �= 1, x1 �= x2, m + k1x1 + k2x2 �= 0.

(2.17)

Equation (2.11) in x-variables reads

m − 1 + (k1 − 1)x1 + (k2 − 1)x2 = 0. (2.18)

Here we should exclude from our consideration the case

m = k1 = k2. (2.19)

Indeed, for m = k1 = k2 > 1 we get from restriction (2.17):
1+x1+x2 �= 0, while (2.18) gives us the relation 1+x1+x2 =
0, which is incompatible with the previous one.

We get from (2.10) and (2.12) that

2αPH2 = −1, (2.20)

where

P = P(x1, x2) = P(x1, x2,m, k1, k2)

= (m + k1x1 + k2x2)
2 − (

m + k1x
2
1 + k2x

2
2

)

− 2(m + k1x1 + k2x2)(x1 + x2) + 2
(
x2

1 + x1x2 + x2
2

)
.

(2.21)

We note that relation (2.20) is obeyed for αP < 0. Let us
prove that

P < 0. (2.22)

Indeed, using relation (2.18), orm+k1x1+k2x2 = 1+x1+x2,
we get

P = (1 + x1 + x2)
2 − (m + k1x

2
1 + k2x

2
2 )

−2(1 + x1 + x2)(x1 + x2) + 2(x2
1 + x1x2 + x2

2 )

= 1 − m + (1 − k1)x
2
1 + (1 − k2)x

2
2 < 0, (2.23)

for m > 1, k1 > 1, k2 > 1.
Hence, the solutions under consideration take place only

if

α > 0. (2.24)

The calculations gives us the following relation for the
vector v from (2.7)

Gi jv
iv j = mH2 + k1h

2
1 + k2h

2
2 − (mH + k1h1 + k2h2)

2

(2.25)

and
Gi jklv

iv jvkvl = m(m − 1)(m − 2)(m − 3)H4

+4m(m − 1)(m − 2)H3(k1h1 + k2h2)

+6m(m − 1)H2[k1(k1 − 1)h2
1

+2k1k2h1h2 + k2(k2 − 1)h2
2]

+4mH [k1(k1 − 1)(k1 − 2)h3
1 + 3k1(k1 − 1)k2h

2
1h2

+3k1k2(k2 − 1)h1h
2
2 + k2(k2 − 1)(k2 − 2)h3

2]
+k1(k1 − 1)(k1 − 2)(k1 − 3)h4

1

+4k1(k1 − 1)(k1 − 2)k2h
3
1h2

+6k1(k1 − 1)k2(k2 − 1)h2
1h

2
2

+4k1k2(k2 − 1)(k2 − 2)h1h
3
2

+k2(k2 − 1)(k2 − 2)(k2 − 3)h4
2. (2.26)
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This may be obtained by using the relation from Ref. [17]

Gi jklv
iv jvkvl = S4

1 − 6S2
1 S2 + 3S2

2 + 8S1S3 − 6S4. (2.27)

Due to (2.4), (2.25) and (2.26), the Eq. (2.9) reads

2� = −Gi jv
iv j + αGi jklv

iv jvkvl

= H2V1 + αH4V2, (2.28)

where

V1 = V1(x1, x2) = V1(x1, x2,m, k1, k2)

= −m − k1x
2
1 − k2x

2
2 + (m + k1x1 + k2x2)

2 (2.29)

and

V2 = V2(x1, x2) = V2(x1, x2,m, k1, k2)

= [m]4 + 4[m]3(k1x1 + k2x2)

+6[m]2

(
[k1]2x

2
1 + 2k1k2x1x2 + [k2]2x

2
2

)

+4m
(
[k1]3x

3
1 + 3[k1]2k2x

2
1 x2

+3k1[k2]2x1x
2
2 + [k2]3x

3
2

)

+[k1]4x
4
1 + 4[k1]3k2x

3
1 x2 + 6[k1]2[k2]2x

2
1 x

2
2

+4k1[k2]3x1x
3
2 + [k2]4x

4
2 . (2.30)

Here we use the notation [N ]k = N (N − 1)...(N − k + 1).
Using (2.20) we get

λ = α� = − V1

4P + V2

8P2 , (2.31)

or, equivalently,

V2(x1, x2) − 2P(x1, x2)V1(x1, x2) − 8(P(x1, x2))
2λ = 0.

(2.32)

Thus, we are led to polynomial equation in variables x1, x2

of fourth order or less (depending upon λ).
We call relations (2.18), (2.32), as a master equations. The

set of these equations may solved in radicals. Indeed, solving
eq. (2.18)

x2 = x2(x1) = −m − 1

k2 − 1
− k1 − 1

k2 − 1
x1 (2.33)

and substituting into eq. (2.32) we obtain another (master)
equation in x1

V2(x1, x2(x1)) − 2P(x1, x2(x1))V1(x1, x2(x1))

−8(P(x1, x2(x1)))
2λ = 0, (2.34)

which is of fourth order or less depending upon the value
of λ. It may solved in radicals for all m > 1, k1 > 1 and
k2 > 1. Here we do not try to write the explicit solution for
general setup. It seems more effective for any given dimen-
sions m, k1 and k2 to find the solutions just by using Maple
or Mathematica. An example of solution with k1 = k2 will
be considered below.

In what follows we use the identity

−(k2 − 1)P(x1, x2(x1))

= (k1 − 1)(k1 + k2 − 2)x2
1

+2(m − 1)(k1 − 1)x1 + (m − 1)(m + k2 − 2), (2.35)

following from (2.23) and (2.33).

3 The case k1 �= k2

Here we put the following restriction k1 �= k2. We write
relation (2.31) as

λ = f (x1) ≡ − V1(x1, x2(x1))

4P(x1, x2(x1))
+ V2(x1, x2(x1))

8(P(x1, x2(x1)))2 . (3.1)

Using relation (2.33) we rewrite the restrictions (2.17)
(respectively) as follows

x1 �= X1, x1 �= X2, x1 �= X3, x1 �= X4, (3.2)

where

X1 = 1, (3.3)

X2 = −m + k2 − 2

k1 − 1
, (3.4)

X3 = − m − 1

k1 + k2 − 2
, (3.5)

X4 = m − k2

k2 − k1
. (3.6)

3.1 Extremum points

The calculations give us
d f

dx1
=C(m, k1, k2)(x1−X1)(x1 − X2)(x1−X3)(x1−X4)

(

− (k2 − 1)P(x1, x2(x1))

)3 , (3.7)

where

C(m, k1, k2) = (m − 1)(k1 − 1)2(k2 − k1)(k1 + k2 − 2)

(3.8)

and X1, X2, X3, X4 are defined in (3.3)–(3.6). Thus, the
points of extremum of the function f (x1) are excluded from
our consideration due to restrictions (2.8).

For the values λi = f (Xi ), i = 1, 2, 3, 4, we get

λ1 = λ1(m, k1, k2) = u(k2,m + k1)

8(m + k1 + k2 − 3)(m + k1 − 2)(k2 − 1)
, (3.9)

λ2 = λ2(m, k1, k2) = u(k1,m + k2)

8(m + k1 + k2 − 3)(m + k2 − 2)(k1 − 1)
,

(3.10)

λ3 = λ3(m, k1, k2) = u(m, k1 + k2)

8(m − 1)(k1 + k2 − 2)(m + k1 + k2 − 3)
,

(3.11)

λ4 = λ4(m, k1, k2) = v(m, k1, k2)

8w(m, k1, k2)
, (3.12)

123
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where

u(m, l) = lm2 + (l2 − 8l + 8)m + l(l − 1), (3.13)

v(m, l, k) = (k + l)m2 + (m + l)k2 + (m + k)l2 − 6mlk,

(3.14)

w(m, l, k) = (k + l − 2)m2 + (m + l − 2)k2 + (m + k − 2)l2

+2ml + 2mk + 2lk − 6mlk. (3.15)

We note that

λi = λi (m, k1, k2) > 0 (3.16)

for all m > 1, k1 > 1, k2 > 1, i = 1, 2, 3, 4.
For i = 1, 2, 3 this relation follows from the

u(m, l) > 0 (3.17)

for m > 1 and l > 1. Indeed, for m ≥ 4, l ≥ 4 we get
u(m, l) = ml(m+l−8)+8m+l2 −l > 0 and u(4, 3) = 26,
u(3, 4) = 24, u(3, 3) = 12, u(3, 2) = 8, u(2, 3) = 4,
u(2, 2) = 2. For i = 4 the relation (3.16) follows from the
inequalities

v(m, l, k) > 0, (3.18)

w(m, l, k) > 0, (3.19)

which are valid for natural numbers m, l, k obeying: m > 1,
l > 1, k > 1 and either m �= l, or m �= k, or l �= k. This is
proved in “Appendix”.

We also note that the following symmetry identities take
place for the functions λi (m, k1, k2), i = 1, 2, 3,

λ1(m, k1, k2) = λ2(m, k2, k1) = λ3(k2,m, k1), (3.20)

λ3(m, k1, k2) = λ3(m, k2, k1). (3.21)

The function λ4(m, k1, k2) is symmetric with respect to
variables since the functions v(m, k1, k2) and w(m, k1, k2)

are symmetric.
For x1 → ±∞ we get

λ∞ = lim
x1→∞ f (x1)

= (k1 + k2 − 6)k1k2 + k2
1 + k2

2 + k1 + k2

8(k1 − 1)(k2 − 1)(k1 + k2 − 2)
. (3.22)

It may be readily verified that

λ∞ = λ∞(k1, k2) = λ∞(k2, k1) > 0, (3.23)

for all k1 > 1 and k2 > 1. Indeed, (k1 + k2 − 6)k1k2 + k2
1 +

k2
2 + k1 + k2 = (k1 + k2 −4)k1k2 + (k1 − k2)

2 + k1 + k2 > 0
for k1 ≥ 2 and k2 ≥ 2.

The points of extremum obey the following relations

X2 − X1 = −m + k1 + k2 − 3

k1 − 1
, (3.24)

X3 − X1 = −m + k1 + k2 − 3

k1 + k2 − 2
, (3.25)

X3 − X2 = (m + k1 + k2 − 3)(k2 − 1)

(k1 + k2 − 2)(k1 − 1)
, (3.26)

X4 − X1 = −m + k1 − 2k2

k1 − k2
, (3.27)

X4 − X2 = (m − 2k1 + k2)(k2 − 1)

(k1 − 1)(k2 − k1)
, (3.28)

X4 − X3 = (2m − k1 − k2)(k2 − 1)

(k1 + k2 − 2)(k2 − k1)
. (3.29)

It follows from definitions of Xi and (3.24), (3.25), (3.26)
that

X2 < X3 < 0 < X1 = 1 (3.30)

for all m > 1, k1 > 1 and k2 > 1.
The corresponding relations for λi −λ j have the following

form
λ2 − λ1 = (m − 1)(k2 − k1)(m + k1 + k2 − 3)

4(k1 − 1)(k2 − 1)(m + k1 − 2)(m + k2 − 2)
, (3.31)

λ3 − λ1 = (k1 − 1)(k2 − m)(m + k1 + k2 − 3)

4(m − 1)(k2 − 1)(m + k1 − 2)(k1 + k2 − 2)
, (3.32)

λ3 − λ2 = (k2 − 1)(k1 − m)(m + k1 + k2 − 3)

4(m − 1)(k1 − 1)(m + k2 − 2)(k1 + k2 − 2)
, (3.33)

λ4 − λ1 = (m − 1)(k1 − 1)(2k2 − k1 − m)3

4(m + k1 − 2)(k2 − 1)(m + k1 + k2 − 3)w
, (3.34)

λ4 − λ2 = (m − 1)(k2 − 1)(2k1 − m − k2)
3

4(m + k2 − 2)(k1 − 1)(m + k1 + k2 − 3)w
, (3.35)

λ4 − λ3 = (k1 − 1)(k2 − 1)(2m − k1 − k2)
3

4(k1 + k2 − 2)(m − 1)(m + k1 + k2 − 3)w
, (3.36)

where w = w(m, k1, k2) is defined in (3.15).
Here and in what follows up to the Sect. 4 we put that

1 < m < k1 < k2. (3.37)

Using (3.31), (3.33) and (3.37) we get

0 < λ1 < λ2 < λ3. (3.38)

Analogously, using (3.34), (3.36) and (3.37) we get

0 < λ1 < λ4 < λ3. (3.39)

It follows from (3.28), (3.35) and (3.37) that

(A+) X4 < X2, λ4 > λ2, for 2k1 − m − k2 > 0,

(3.40)

(A−) X4 > X2, λ4 < λ2, for 2k1 − m − k2 < 0,

(3.41)

and

(A0) X4 = X2, λ4 = λ2, for 2k1 − m − k2 = 0.

(3.42)

The graphical representations of the function λ = f (x1)

for (m, k1, k2) = (4, 6, 7), (4, 5, 7), (4, 5, 6) are given at
Figs. 1, 2 and 3, respectively. These three sets obey the
inequalities (3.40), (3.41) and (3.42), respectively.
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For λi − λ∞ we obtain

λ1 − λ∞ = (m − 1)z1
4(k1 − 1)(k1 + k2 − 2)(m + k1 − 2)(m + k1 + k2 − 3)

, (3.43)

λ2 − λ∞ = (m − 1)z2
4(k2 − 1)(k1 + k2 − 2)(m + k2 − 2)(m + k1 + k2 − 3)

, (3.44)

λ3 − λ∞ = z3
4(m − 1)(k1 − 1)(k2 − 1)(k1 + k2 − 2)(m + k1 + k2 − 3)

, (3.45)

λ4 − λ∞ = (m − 1)z4
4(k1 − 1)(k2 − 1)(k1 + k2 − 2)w

, (3.46)

where
z1 = (2k1 − k2 − 1)m − 2k1k2 − 4k1 + 5k2 − k2

2 + 2k2
1 , (3.47)

z2 = (2k2 − k1 − 1)m − 2k1k2 − 4k2 + 5k1 − k2
1 + 2k2

2 , (3.48)

z3 = −(k1 − k2)2m2 − ((
k2

1 − 6k1 + 6
)
k1 + (

k2
2 − 6k2 + 6

)
k2

+(k1 + k2)k1k2 − 4
)
m − 2(k1 + k2)

+(12 − 6k1 − 6k2 + (k1 + k2)2)k1k2, (3.49)
z4 = −(k2−k1)2((k1+k2 − 2)m+(k1−k2)2+k1−2k1k2+k2). (3.50)

It follows from (3.43), (3.45) and inequalities z1 < 0,
z3 > 0, proved in Appendix, that

λ1 < λ∞ < λ3. (3.51)

For our restriction (3.37) we obtain from (3.8)

C(m, k1, k2) > 0. (3.52)

In what follows we use the relation (3.7) and inequalities
(2.22) and (3.52).

We find that (in all cases) the function λ = f (x1) is
monotonically increasing in the interval (X1 = 1,+∞) from
λ1 to λ∞ and it is monotonically decreasing in the interval
(X3, X1) from λ3 to λ1.

In the case (A+) the function λ = f (x1) is monotonically
increasing in the intervals (−∞, X4) and (X2, X3) from λ∞
toλ4 and fromλ2 toλ3, respectively, while it is monotonically
decreasing in the interval (X4, X2) from λ4 to λ2 (see Fig. 1).
In this case the points X1 and X2 are points of local minimum
and points X3 and X4 are points of local maximum.

For the case (A−) the function λ = f (x1) is monotoni-
cally increasing in the intervals (−∞, X2) and (X4, X3) from
λ∞ to λ2 and from λ4 to λ3, respectively, while it is monoton-
ically decreasing in the interval (X2, X4) from λ2 to λ4 (see
Fig. 2). The points X1 and X4 are points of local minimum
and points X2 and X3 are points of local maximum. In this
case λ2 > λ∞.

In the case (A0) the function λ = f (x1) is monotonically
increasing in the intervals (−∞, X3) from λ∞ to λ3, respec-
tively (see Fig. 3). For this case the point X1 is the point of
local minimum, the point X3 is a point of local maximum
and the point X2 = X4 is a point of inflection.

Using the inequalities (3.38), (3.39) and (3.51) we get
from the behaviour of the function f (x1) mentioned above
that X3 is the point of absolute maximum and X1 is the point
of absolute minimum, i.e.

λ1 ≤ λ = f (x1) ≤ λ3 (3.53)

Fig. 1 The function λ = f (x1) for m = 4, k1 = 6, k2 = 7

Fig. 2 The function λ = f (x1) for m = 4, k1 = 5, k2 = 7

for all x1 ∈ R. Due to (3.2) the points X1, X2, X3, X4 are
forbidden for our consideration. We get

λ1 < λ = f (x1) < λ3 (3.54)

for all x1 �= X1, X2, X3, X4. Let us denote the set of defi-
nition of the fuction f for our consideration (−∞,∞)∗ ≡
{x |x ∈ R, x �= X1, X2, X3, X4}. Since the function f (x1) is
continuous one the image of the function f (due to interme-
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Fig. 3 The function λ = f (x1) for m = 4, k1 = 5, k2 = 6

diate value theorem) is

f ((−∞,∞)∗) = (λ1, λ3). (3.55)

Thus, we a led the following proposition.

Proposition 1 The solutions to equations (2.4), (2.5) for
ansatz (2.7) with 1 < m < k1 < k2 obeying the inequal-
ities H �= 0, H �= h1, H �= h2, h1 �= h2 and S1 =
mH + k1h1 + k2h2 �= 0 do exist if and only if α > 0 and

0 < λ1 < α� < λ3, (3.56)

where λ1 and λ3 are defined in (3.9) and (3.11), respectively.
In this case x1 = h1/H �= X1, X2, X3, X4 (see (3.3), (3.4),
(3.5), (3.6)), x2 = h2/H = x2(x1) is given by (2.33), x1

obeys the polynomial master equation (2.34) (of fourth order
or less) and H2 is given by (2.20) and (2.21).

The case H = 0. It may verified that in the case H = 0
the solutions under consideration take place only if α > 0,
and

α�=λ∞(k1, k2)= (k1+k2 − 6)k1k2+k2
1+k2

2+k1+k2

8(k1 − 1)(k2 − 1)(k1 + k2 − 2)
> 0, (3.57)

where k1 �= k2. Indeed (2.11) is equivalent to (k1 − 1)h1 +
(k2 − 1)h2 = 0, while (2.10) reads as (k1 − 1)(h1)

2 + (k2 −
1)(h2)

2 = 1/(2α). These relations imply α > 0 and

h1 = ±
(

k2 − 1

2α(k1 − 1)(k1 + k2 − 2)

)1/2

, (3.58)

h2 = ∓
(

k1 − 1

2α(k2 − 1)(k1 + k2 − 2)

)1/2

. (3.59)

The substitution of these values of h1 and h2, and H = 0
into equation (2.9) gives us (due to (2.25) and (2.26)) relation
(3.57).

4 The case k1 = k2

Here we consider the case m > 1, k1 = k2 = k > 1 and
H �= 0. We get from (2.18)

m − 1 + (k − 1)(x1 + x2) = 0. (4.1)

In this case relation (2.23) implies

P = 1 − m + (1 − k)
(
x2

1 + x2
2

)
. (4.2)

The solutions under consideration take place for

m �= k (4.3)

and α > 0 (see Sect. 2).
Let us denote

X ≡ αH2, (4.4)

α > 0. It follows from (2.20)

XP = −1

2
. (4.5)

Due to (4.4) we have

H = ε0
√
X/α, ε0 = ±1. (4.6)

The substitution of relations (4.1), (4.2) into formulae
(2.29), (2.30) gives us

V1 = [(m − 1)(m − k) + Pk(k − 1)]/(k − 1)2, (4.7)

V2 = [−(m − 1)(m − k)(m + k − 2)(m + 2k − 3)

+3P2(k − 1)2k]/(k − 1)3. (4.8)

Using (4.5) we rewrite relation (2.31) as

2λ = 2α� = XV1 + X2V2. (4.9)

This relation may be written as quadratic relation

AX2 + BX + C = 0, (4.10)

where

A = (m − 1)(m − k)(m + k − 2)(m + 2k − 3), (4.11)

B = −(m − 1)(m − k)(k − 1), (4.12)

C = −1

4
k(k − 1)2 + 2λ(k − 1)3. (4.13)

Due to (4.3) A �= 0. The discriminant D = B2 − 4AC has
the folowing form

D = (m − 1)(m − k)(k − 1)2(F − 8λ f ), (4.14)

where

F = F(m, k) = (m − 1)(m − k)

+(m + k − 2)(m + 2k − 3)k, (4.15)

f = f (m, k) = (m + k − 2)(m + 2k − 3)(k − 1) > 0

. (4.16)
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Lemma F = F(m, k) > 0 for all m > 1, k > 1 and k �= m.

Proof For m > k we have a sum of two positive terms in
(4.15) and hence F > 0 in this case. For k > m, we denote
k = m + p, p > 0. We obtain

F = (m − 1)(−p) + (2m + p − 2)

(3m + 2p − 3)(m + p) =
= (m − 1)(−p) + (2(m − 1) + p)

(3(m − 1) + 2p)(m + p) =
= 2p3 + (9m − 7)p2 + (m − 1)(13m − 7)p

+6m(m − 1)2. (4.17)

Due to m > 1 and p > 0 we have a sum of three positive
terms in (4.17) and hence F > 0 for k > m. 
�

The solution to eq. (4.10) reads

X = (−B + ε̄1
√
D)/(2A), ε̄1 = ±1. (4.18)

We are seeking real soutions which obey two restrictions

D > 0, (4.19)

X > 0. (4.20)

Here the case D = 0 is excluded from the consideration since
as it will be shown later it implies either x1 = 1 or x2 = 1,
which contradict restrictions (2.17).

The inequality (4.19) may be rewritten as

λ < λ1 for m > k, (4.21)

λ > λ1 for m < k, (4.22)

where

λ1 = λ1(m, k, k) = F(m, k)/(8 f (m, k)). (4.23)

For definition of λ1(m, k, l) see (3.9).
The set of two equations (4.1) and (4.2) have the following

solutions

x1 = −(ε2
√
E + m − 1)/(2k − 2), (4.24)

x2 = −(−ε2
√
E + m − 1)/(2k − 2), (4.25)

where ε2 = ±1 and

E = −(m − 1)(m + 2k − 3) − 2P(k − 1)

= (k − 1)X−1 − (m − 1)(m + 2k − 3). (4.26)

Here we put

E > 0 (4.27)

since E = 0 implies the identity x1 = x2 which is excluded
by restrictions (2.17). The relations (4.20) and (4.27) may be
written as

0 < X <
k − 1

(m − 1)(m + 2k − 3)
. (4.28)

Now we explain why the case D = 0 was excluded from
our consideration. Let us put D = 0. Then we get from (4.18)

X = (−B)/(2A) = (k − 1)/(2(m + k − 2)

×(m + 2k − 3)) (4.29)

and hence

E = (m + 2k − 3)2, (4.30)

which implies either x2 = 1 for ε2 = 1 or x1 = 1 for
ε2 = −1. But this is forbiden by first two inequalities in
(2.17).

Moreover, it is not difficult to verify that relations (4.24),
(4.25) and (4.28) imply all four inequalities in (2.17). Indeed,
the violation of first two inequalities in (2.17) lead us either to
x1 = 1 or x2 = 1 which may be valid only for E from (4.30)
and ε2 = −1 or ε2 = 1, respectively. But due to definition
(4.26), relation (4.30) implies (4.29) and hence D = 0, which
contradict to relations (4.24), (4.25). The violation of the third
inequality gives us x1 = x2 which imply E = 0, but this is
forbidden by (4.28). Now, let us verify the last inequality in
(2.17). In our case it reads

x1 + x2 �= −m

k
. (4.31)

From (4.24), (4.25) we obtain

x1 + x2 = −m − 1

k − 1
. (4.32)

The relation is (4.31) is satisfied due to (4.32) and m �= k.
Now we analyse the inequalities in (4.28). We introduce

new parameter

ε1 = ε̄1sign(m − k). (4.33)

Then relation (4.18) reads as follows

X = k − 1

2(m + k − 2)(m + 2k − 3)
+ ε1

√
D

2|A| , (4.34)

ε1 = ±1.
Let us consider the case ε1 = −1. The second inequality

in (4.28) X < k−1
(m−1)(m+2k−3)

is obeyed since 2(m+k−2) >

m − 1. Now we consider the first inequality X > 0. We get

0 <
√
D < (m − 1)|m − k|(k − 1). (4.35)

Using the definition of D in (4.14) we obtain

0 < (m − 1)(m − k)(k − 1)2(F − 8λ f )

< (m − 1)2|m − k|2(k − 1)2. (4.36)

Relations (4.36) read as follows

F− < 8λ f < F, for m > k, (4.37)

F < 8λ f < F−, for m < k, (4.38)

where

F− ≡ F − (m − 1)(m − k). (4.39)
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It may be verified that

F−
8 f

= k

8(k − 1)
= λ∞ = λ∞(k, k), (4.40)

where λ∞(k, l) is defined in (3.22). Using (4.23) and (4.40)
we rewrite relations (4.37), (4.38) as follows

λ∞ < λ < λ1, for m > k, (4.41)

λ1 < λ < λ∞, for m < k. (4.42)

Now, we put ε1 = 1. The inequality X > 0 is satisfied in
this case. We should treat the inequality X < k−1

(m−1)(m+2k−3)
.

We obtain

0 <
√
D < |m − k|(m + 2k − 3)(k − 1), (4.43)

or

0 < (m − 1)(m − k)(F − 8λ f ) < |m − k|2(m + 2k − 3)2.

(4.44)

Relations (4.44) read as follows

F+ < 8λ f < F, for m > k, (4.45)

F < 8λ f < F+, for m < k, (4.46)

where

F+ ≡ F − (m − 1)−1(m − k)(m + 2k − 3)2. (4.47)

It may be verified that

F+
8 f

= λ3 = λ3(m, k, k), (4.48)

where λ3(m, k, l) is defined in (3.11). Using (4.23) and (4.48)
we rewrite relations (4.45), (4.46) as follows

λ3 < λ < λ1, for m > k, (4.49)

λ1 < λ < λ3, for m < k. (4.50)

We note that that

λ1 < λ∞ < λ3 (4.51)

for m < k (it proved in the previous section), while

λ3 < λ∞ < λ1 (4.52)

for k < m. The inequalities in (4.52) follow from F+ <

F− < F for k < m.

Proposition 2 The solutions to equations (2.4), (2.5) for
ansatz (2.7) with 1 < m, 1 < k1 = k2 = k, m �= k, obey-
ing the inequalities H �= 0, H �= h1, H �= h2, h1 �= h2,
S1 = mH + kh1 + kh2 �= 0 do exist if and only if α > 0,

λ1 < λ = α� < λ3 (4.53)

for m < k and

λ3 < λ = α� < λ1, (4.54)

where λ1 = λ1(k, k), λ3 = λ3(k, k) are defined in (3.9) and
(3.11). In this case H obeys the relation (4.6) with X from
(4.34), x1 = h1/H and x2 = h2/H are given by relations
(4.24) and (4.25), λ obeys (4.41), (4.42) for ε1 = −1 and
(4.49), (4.50) for ε1 = 1 with λ∞ = k

8(k−1)
.

The restrictions on λ for our solution may be explained
just graphically as it was done in the previous section for
k1 �= k2. Indeed, for k1 = k2 = k �= m, H �= 0 we have the
same relation (3.1) λ = f (x1), where now

d f

dx1
= C̄(m, k)(x1 − X1)(x1 − X2)(x1 − X3)

(

− (k − 1)P(x1, x2(x1))

)3 (4.55)

with

C̄(m, k) = 2(m − 1)(k − 1)3(k − m). (4.56)

Here x2(x1) = −m−1
k−1 − x1 and restrictions (2.17) reads as

follows

x1 �= X1 = 1, x1 �= X2 = −m + k − 2

k − 1
,

x1 �= X3 = − m − 1

2k − 2
, (4.57)

see (3.3)-(3.5). The fourth inequality in (2.17) is obeyed iden-
tically (it was checked above).

The points X1, X2, X3 are points of extremum of the func-
tion f (x1). They are excluded from our consideration due to
restrictions (4.57). The function f (x1) tends to λ∞ as x1

tends to ±∞.
Using relations (4.55), (4.56) and P(x1, x2(x1)) < 0 we

get two cases.
For 1 < m < k the function has two points of minimum

at X1 and X2 with λ1 = f (X1) = f (X2) = λ2 < λ∞, and
the point of maximum at X3 with λ3 = f (X3) > λ∞. See
graphical representation of f (x1) for m = 4 and k = 5 at
Fig. 4.

For 1 < k < m the function has two points of maximum
at X1 and X2 with λ1 = f (X1) = f (X2) = λ2 > λ∞, and
one point of minimum at X3 with λ3 = f (X3) < λ∞. The
graphical representation of f (x1) for m = 5 and k = 4 is
depicted at Fig. 5.

We note that special solutions (e.g. stable ones) with
(m, k1, k2) = (3, 4, 4), (2, 3, 3), (4, 3, 3) were considered
earlier in [35].

The case H = 0. For k1 = k2 = k > 1 and H = 0 the
solutions under consideration obeying restrictions (2.8) are
absent. Indeed, using relations (2.9), (2.10) and (2.11), we
get (see (3.57), (3.58) and (3.59)) α > 0,

α� = k

8(k − 1)
= λ∞, (4.58)
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Fig. 4 The function λ = f (x1) for m = 4, k1 = k2 = 5

Fig. 5 The function λ = f (x1) for m = 5, k1 = k2 = 4

and

h1 = −h2 = ± 1√
4α(k − 1)

. (4.59)

We obtain S1 = k1h1 + k2h2 = 0, which is in contradiction
with our restriction S1 �= 0. Nevertheless, it may be verified
that the Hubble-like parameters H = 0 and h1, h2 from
(4.59) obey the equations of motion (2.4), (2.5) for α > 0
and � from (4.58). This means that we are led to a special
solution, belonging to a subclass of solutions obeying S1 = 0,
which is out consideration in this paper.

5 The analysis of stability

Here we study the stability of the solutions under considera-
tion by using the results of refs. [23,25,26].

We put the restriction

det(Li j (v)) �= 0 (5.1)

on the matrix

L = (Li j (v)) = (2Gi j − 4αGi jksv
kvs). (5.2)

We remind that for general cosmological setup with the
metric

g = −dt ⊗ dt +
n∑

i=1

e2βi (t)dyi ⊗ dyi , (5.3)

we have the set of equations [23]

E = Gi j h
i h j + 2� − αGi jklh

i h j hkhl = 0, (5.4)

Yi = dLi

dt
+

⎛

⎝
n∑

j=1

h j

⎞

⎠ Li − 2

3

(
Gsj h

sh j − 4�
)

= 0,

(5.5)

where hi = β̇ i ,

Li = Li (h) = 2Gi j h
j − 4

3
αGi jklh

j hkhl , (5.6)

i = 1, . . . , n.
Due to results of Ref. [25] a fixed point solution (hi (t)) =

(vi ) (i = 1, . . . , n; n > 3) to eqs. (5.4), (5.5) obeying restric-
tions (5.1) is stable under perturbations

hi (t) = vi + δhi (t), (5.7)

i = 1, . . . , n, as t → +∞, if (and only if)

S1(v) =
n∑

i=1

vi > 0 (5.8)

and it is unstable if (and only if)

S1(v) =
n∑

i=1

vi < 0. (5.9)

In order to study the stability of solutions we should verify
the relation (5.1) for the solutions under consideration. This
verification was done (in fact) in Ref. [26]. The proof of Ref.
[26] is based on first three relations in (2.8) and inequalities
k1 > 1, k2 > 1 and m > 1. We note the relation (2.14) was
also used in this proof.

Thus, the any solution under consideration is stable when
relation (5.8) is obeyed while it is unstable when relation
(5.9) is satified.
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Let us consider the case 1 < m < k1 < k2. For H > 0
the relation (5.8) reads as

m + k1x1 + k2x2 = 1 + x1 + x2 > 0 (5.10)

or, equivalently,

x1 > X4 = m − k2

k2 − k1
. (5.11)

Here the equation (2.18) was used. For H < 0 the stability
condition (5.8) reads as

m + k1x1 + k2x2 = 1 + x1 + x2 < 0, (5.12)

or, equivalently, as

x1 < X4. (5.13)

The non-stability condition (5.9) reads as (5.13) for H > 0
and as (5.11) for H < 0.

Proposition 3 The solution to equations (2.4), (2.5) for
ansatz (2.7) with 1 < k1 < k2, obeying the inequalities H �=
0, H �= h1, H �= h2, h1 �= h2, S1 = mH +k1h1 +k2h2 �= 0
is stable if and only if H(x1 − X4) > 0 (X4 = m−k2

k2−k1
) and it

is unstable if and only if H(x1 − X4) < 0.

Now we consider the case H �= 0, 1 < m, 1 < k1 =
k2 = k, m �= k. The exact solutions obtained in this section
obey first three relations in (2.8) (since x1 �= 1, x2 �= 1 and
x1 �= x2) and hence the key restriction (5.1) is satisfied.

The stability condition (5.8) in this case reads as,

H(m + k1x1 + k2x2) = H(1 + x1 + x2)

= H

(

1 − m − 1

k − 1

)

> 0, (5.14)

see (4.32), or, equivalently,

H(k − m) > 0. (5.15)

The non-stability condition (5.9) reads as

H(k − m) < 0. (5.16)

Thus, we are led to the proposition.

Proposition 4 The solution to equations (2.4), (2.5) for
ansatz (2.7) with 1 < m, 1 < k1 = k2 = k, m �= k,
obeying the inequalities H �= 0, H �= h1, H �= h2,
h1 �= h2, S1 = mH + kh1 + kh2 �= 0 is stable if and only if
H(k−m) > 0 and it is unstable if and only if H(k−m) < 0.

For H > 0 (or ε0 = 1, see (4.6)) our special solutions are
stable for k > m and they are unstable for k < m. For H < 0
(or ε0 = −1) the solutions are stable for k < m and they are
unstable for k > m.

The case H = 0. Let us consider the solutions with H = 0
and h1, h2 from (3.58), (3.59), which are valid for k1 �= k2,

α > 0 and � from (3.57). Here k1 > 1 and k2 > 1. We
obtain

S1 = k1h1 + k2h2 = ±(k2 − k1)

× (2α(k1 − 1)(k2 − 1)(k1 + k2 − 2))−1/2 , (5.17)

where ± is sign parameter in (3.58), (3.59). It follows from
our analysis above that the solution with ±(k2 − k1) > 0
is stable. This takes place when either k2 > k1 and the sign
“+′′ is chosen in (3.58) and (3.59), or if k2 < k1 and the sign
“−′′ is selected. For ±(k2 − k1) < 0 the solution is unstable.
Here the restriction m > 1 (which is used for the proof of
(5.1)) is also assumed.

6 Solutions corresponding to zero variation of G

Here we consider the special solutions to equations (2.9),
(2.10), (2.11) with H > 0, 3 < m < k1 < k2 [26] (for
m = 3 see [36])

h1 = m + 2k2 − 3

k2 − k1
H, h2 = m + 2k1 − 3

k1 − k2
H. (6.1)

Here

H = |k1 − k2|(−2αP)−1/2, (6.2)

α > 0,

P = P(m, k1, k2) = −(m + k1 + k2 − 3)(m(k1 + k2 − 2)

+k1(2k2 − 5) + k2(2k1 − 5) + 6) < 0, (6.3)

6 and

� = �(m, k1, k2), (6.4)

where

�(m, k1, k2) = 1

8αP2 (m + k1 + k2 − 3)

×[
(k1 + k2)(k1 + k2 − 2)m3

+(
k3

1 + k3
2 + 11

(
k2

1k2 + k1k
2
2

) − 19
(
k2

1 + k2
2

)

−22k1k2 + 18(k1 + k2)
)
m2

−(
8
((
k3

1 + k3
2

) − 63(k1 + k2)
2 − 8k2

1(k1 − 11)k2

−8k2
2(k2 − 11)k1

) − 32k2
1k

2
2 + 54(k1 + k2)

)
m

−(
9
(
k3

1 + k3
2

) + 45(k2
1 + k2

2) − 54(k1 + k2)

+8(k2
1 + k2

2)k1k2

−16(k1+k2−10)k2
1k

2
2−9(21k1+21k2−26)k1k2

)]
.

(6.5)

These solutions describe accelerated exponential expan-
sion of “our” 3d subspace and constant internal space volume
factor, or zero variation of the effective gravitational constant
(in Jordan frame) obeying the most stringent limitation on
G-dot obtained by the set of ephemerides [37], when the fol-
lowing splitting of the Hubble-like parameters is keeping in
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mind:

v = ( H, H, H
︸ ︷︷ ︸

“our ′′ space

,

m−3
︷ ︸︸ ︷
H, . . . , H ,

k1
︷ ︸︸ ︷
h1, . . . , h1,

k2
︷ ︸︸ ︷
h2, . . . , h2︸ ︷︷ ︸

internal space

). (6.6)

It follows from Proposition 1 that �(m, k1, k2) > 0.
Moreover, in this case we have

x1 = m + 2k2 − 3

k2 − k1
> 1. (6.7)

Due to graphical analysis from Sect. 3 we get from (6.7) the
following bounds

0 < λ1(m, k1, k2) < �(m, k1, k2)α < λ∞(m, k1, k2) (6.8)

for all 3 < m < k1 < k2.

Remark It may be also shown that the effective gravitational
constant G (in Jordan frame), calculated for our solutions,
obeys the limitation onG-dot from Ref. [37], when�belongs
to some vicinity of �(m, k1, k2), i.e. |�−�(m, k1, k2)| < δ

for some (small enough) δ > 0.

7 Hubble-like parameters vs. constants of the model

The initial contants of the model are α1 �= 0, α2 �= 0 and �.
The solutions for Hubble-like parameters H �= 0, h1 and h2,
which were analyzed above, depend upon α = α2/α1 > 0
and λ = �α. In this section we consider for simplicity the
generic case H �= 0. The parameter α has the dimension of
L2 (L is a length), while λ is dimensionless one.

Here we discuss the existence of certain combinations of
Hubble-like parameters, which either do not depend upon
the parameters (or constants) of the model, i.e. α and λ, or
depend only upon one of these constants. Such combinations
(or functions) of H �= 0, h1 and h2 do exist.

Indeed, it follows from (2.11) that the Hubble-like param-
eters for the solutions under consideration obey the following
identity

ϕ1(H, h1, h2) ≡ (m − 1)H + (k1 − 1)h1 + (k2 − 1)h2

= 0, (7.1)

m > 1, k1 > 1 and k2 > 1. This is the first basic relation (of
this section). By using (2.20) and (2.23) we get the second
basic relation

ϕ2(H, h1, h2) ≡ (m − 1)H2 + (k1 − 1)h2
1 + (k2 − 1)h2

2

= 1

2α
. (7.2)

The third basic relation is just (3.1) which we rewrite here as

ϕ3(H, h1, h2) ≡ f (h1/H) = λ, (7.3)

where f (x1) is the rational function defined in (3.1).

Fig. 6 The graphical representation (in Hubble-like variables
H, h1, h2) of intersection of plane (see (7.1)) and ellipsoid (see (7.2))
for m = 3, k1 = 4, k2 = 5 and α = 1

In the 3d space of Hubble-like parameters H, h1, h2,
relation (7.1) describes a plane while (7.2) corresponds
to an ellipsoid. The intersection of this plane and ellip-
soid gives us an ellipse E . For m = 3, k1 = 4,
k2 = 5 and α = 1 this intersection is depicted at
Fig. 6. For H �= 0 and m < k1 < k2 the solu-
tions for (H, h1, h2) are described by 1-dimensional mani-
fold Esol = E\{N , S,Y1,Y2,Y3,Y4,−Y1,−Y2,−Y3,−Y4},
where points N , S correspond to H = 0, pointsY1,Y2, Y3, Y4

correspond to H > 0 and relations h1/H = X1, h2/H =
X2, h3/H3 = X3, h4/H4 = X4, respectively (see
(3.3), (3.4), (3.5), (3.6)). Thus, the manifold Esol is an 1-
dimensional manifold, which is obtained from the ellipse E
by deleting 10 points. It is a disjoint union of ten arcs. Any
of these arcs is parametrized by the pair (λ, s), where s is the
number of the arc and λ is local coordinate given by (7.3).

Analogous consideration may be done for the case m �=
k1 = k2: in this case one should delete 8 points from E to
obtain Esol .

It should be noted that (7.1) implies the following identity
for scale factors ai (t) = exp(hi t+βi ), i = 0, 1, 2, (h0 = H )

(a0(t))
m−1(a1(t))

k1−1(a2(t))
k2−1 = const, (7.4)

or

v(t) = (a0(t))
m(a1(t))

k1(a2(t))
k2

= const × a0(t)a1(t)a2(t). (7.5)

Here v(t) = exp(
∑2

i=0(hi t + βi )) is volume scale factor
which is (exponentiallly) increasing in time for stable solu-
tions (with H + h1 + h2 > 0) and decreasing in time for
unstable ones (with H + h1 + h2 < 0).
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8 Conclusions

We have considered the D-dimensional Einstein-Gauss-
Bonnet (EGB) model with a �-term (or EGB� model) and
two (non-zero) constants α1 and α2. The metric was cho-
sen to be diagonal “cosmological” one. Here we were deal-
ing (mainly) with a class of solutions with exponential time
dependence of three scale factors, governed by three non-
coinciding Hubble-like parameters H �= 0, h1 and h2, corre-
sponding to factor spaces of dimensions m > 1, k1 > 1
and k2 > 1, respectively, with the restriction imposed:
S1 = mH + k1h1 + k2h2 �= 0, and D = 1 + m + k1 + k2.

We have studied the solutions in two cases: i)m < k1 < k2

and ii) 1 < k1 = k2 = k �= m. (The solutions under consid-
eration with k1 = k2 = m are absent.) We have shown that
in both cases the solutions exist only if: α = α2/α1 > 0,
λ = α� > 0 and the dimensionless parameter of the model
λ obeys certain restrictions, e.g. upper and lower bounds
depending upon m, k1 and k2 (see Proposition 1). In the case
ii) we have found explicit exact solutions (see Proposition
2).

Our consideration used the so-called Chirkov-Pavluchenko-
Toporensky splitting trick from Ref. [20] (see also [26])
which allowed us to reduce the problem under consideration
to master equation λ = f (x1) (2.31), where x1 = h1/H .
This master equation is equivalent to polynomial equation
(2.34) for x1 which is of fourth order (in generic case) or
less depending upon λ. Thus, the master equation may be
solved in radicals for all m > 1, k1 > 1 and k2 > 1. Our
restrictions on λ were obtained by analysing the equation
λ = f (x1) with the use of the formulas for the derivative
d f/dx1, i.e. (3.7) and (4.55) in cases i) and ii), respectively. In
the case i) m < k1 < k2 the extremum points of the function
f (x1) are just four non-coinciding points: X1, X2, X3, X4

(see (3.3), (3.4), (3.5), (3.6)) which are exactly four values
of x1 forbidden by restrictions H �= h1, H �= h2, h1 �= h2,
S1 = mH + k1h1 + k2h2 �= 0, respectively. In the case
ii) 1 < k1 = k2 �= m we have three forbidden points:
X1, X2, X3.

The stability of the solutions (as t → +∞) in a class
of cosmological solutions with diagonal metrics was ana-
lyzed for both cases ((i) and (ii)) and subclasses of stable
and non-stable solutions were singled out. We have proved
that in the case i) the solutions with H > 0 are stable for
x1 = h1/H > X4 = m−k2

k2−k1
and unstable for x1 < X4 (see

Proposition 3). It was proved that in the case ii) the solutions
with H > 0 are stable for k > m and unstable for k < m (see
Proposition 4). The stability conditions for H < 0 are equiv-
alent to instability conditions for H > 0 and vice versa. The
solutions of first class i) contains a subclass of stable solu-
tions describing an exponential expansion of 3-dimensional
subspace with Hubble-like parameter H > 0 and zero vari-

ation of the effective gravitational constant G (in the Jordan
frame) [26] (see Sect. 6).

Some of the results obtained in this paper may be con-
sidered as non-trivial and unexpected ones. Indeed, let us
compare the solutions governed by three different Hubble-
like parameters H > 0, h1, h2 with the solutions from Ref.
[27] obtained for two non-coinciding Hubble-like parameters
H > 0 and h corresponding to factor spaces of dimensions
m > 2 and l > 2 with mH + lh �= 0. Here we have found
that our solutions take place only for α > 0 and � > 0, while
in the case of Ref. [27] we have two branches with (a) α > 0,
−∞ < �α < λ+(m, l) and (b) α < 0, �|α| > λ−(m, l),
whereλ±(m, l) > 0. The solutions from Ref. [27] withα > 0
exist for any � ∈ (−∞, 0], while in our case such solutions
are absent. We note that the absence of solutions for � = 0
may be considered as a special non-trivial result. For two
different Hubble parameters such solutions (with � = 0 and
α > 0) were described in Ref. [38]. As it is proved here, in
the case of three Hubble-like parameters (with the restric-
tions imposed above) the allowed gap for � is bounded (at
the top and the bottom).

Here we have also considered (for a completeness) the
case H = 0 and have found that the solutions exist only for
k1 �= k2, α > 0 and fixed value of � > 0 from (3.57). In this
case we have two opposite in sign solutions for (h1, h2) with
one solution being stable and the second one - unstable.

For possible physical (e.g. cosmological) applications one
may keep in mind a dimensional reduction of the model
under consideration to d = 4 which lead us to 4d Horn-
deski type model with a set of scalar fields. In this case one
will obtain (1 + 3)-dimensional inflationary (cosmological)
solution with Hubble parameter H > 0 and several scalar
fields (coming from scale factors) with linear dependence
upon the time variable (governed by h1 and h2). The effec-
tive cosmological term �0 = 3H2 will have a nontrivial
dependence upon the “bare” multidimensional cosmological
constant �, the dimensions of factor spaces m, k1 and k2 and
the parameter α (for any root of polynomial equation for x1).
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A Appendix

Here we prove several technical lemmas.

Lemma 1 Let

v(m, l, k) = (k + l)m2 + (m + l)k2 + (m + k)l2 − 6mlk,
(A.1)

where m, l, k are natural numbers. Then v(m, l, k) = 0 only
if m = l = k; in other cases v(m, l, k) > 0.

Proof Since the v(m, l, k) is symmetric in variables we put
without loss of generalitym ≥ l ≥ k. We havem = k+p+q,
l = k + p, where p ≥ 0 and q ≥ 0. We get

v = v(m, l, k) = (2p2 + 2qp + 2q2)k + 2p3 + 3qp2 + pq2.

(A.2)

For p = q = 0 (m = k = l) we have v = 0. For p > 0,
q > 0 we have v > 0. If p = 0 (k = l) and q > 0 (m > l)
we get v = 2q2k > 0 for k > 1. For q = 0 (m = l) and
p > 0 (l > k) we find v = 2p2k + 2p3 > 0. The lemma is
proved. 
�
Lemma 2 Let

w(m, l, k) = (k + l − 2)m2 + (m + l − 2)k2 + (m + k − 2)l2

+2km + 2km + 2lk − 6mlk, (A.3)

where m, l, k are natural numbers non equal to 1. Then
w(m, l, k) = 0 only if m = l = k. In other cases
w(m, l, k) > 0.

Proof Since the w(m, l, k) is symmetric in variables we put
without loss of generalitym ≥ l ≥ k. We havem = k+p+q,
l = k + p, where p ≥ 0 and q ≥ 0. We get

w = w(m, l, k) = (2p2 + 2qp + 2q2)(k − 1)

+2p3 + 3qp2 + q2 p. (A.4)

For p = q = 0 (m = k = l) we have w = 0. For p > 0,
q > 0 we have w > 0 (for all k). If p = 0 (k = l) and q > 0
(m > l) we get w = 2q2(k − 1) > 0 for k > 1. For q = 0
(m = l) and p > 0 (l > k) we find w = 2p2(k−1)+2p3 >

0. The lemma is proved. 
�

Lemma 3 For all 1 < m < k1 < k2

z1 = (2k1 − k2 − 1)m − 2k1k2 − 4k1

+5k2 − k2
2 + 2k2

1 < 0. (A.5)

Proof Let us denote

k1 = m + 1 + y1, k2 = k1 + 1 + y2. (A.6)

Due to m < k1 < k2 we get y1 ≥ 0 and y2 ≥ 0. The
substitution of (A.5) into z1 gives us

z1 = −y2
2 + (−4y1 − 5m − 1)y2 − y2

1 + (−m − 5)y1

−6m ≤ −6m < 0. (A.7)

The lemma is proved.

Lemma 4 For all 1 < m < k1 < k2

z3 = −(k1 − k2)2m2 − ((k2
1 − 6k1 + 6)k1 + (

k2
2 − 6k2 + 6

)
k2

+(k1 + k2)k1k2 − 4)m − 2(k1 + k2)

+(12 − 6k1 − 6k2 + (k1 + k2)2)k1k2 > 0. (A.8)

Proof Substituting (A.6) into z3 we obtain

z3 = (y1 + 1)y3
2 + (5y2

1 + (6m + 7)y1 + 6m + 2)y2
2 +

×(
8y3

1 + (18m + 16)y2
1 + (12m2 + 24m + 11)y1

+2m3 + 6m2 + 12m + 1
)
y2

+4y4
1 + (12m + 12)y3

1 + (12m2 + 30m + 11)y2
1 +

×(4m3 + 24m2 + 18m + 5)y1 + 6m3 + 6m2 + 6m ≥
×6m3 + 6m2 + 6m > 0, (A.9)

since y1 ≥ 0 and y2 ≥ 0. The lemma is proved. 
�
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