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Abstract We extend a previous numerical study of SU(3)
Yang–Mills theory in which we measured the spatial distri-
bution of all components of the color fields surrounding a
static quark–antiquark pair and provided evidence that the
simulated gauge invariant chromoelectric field can be sep-
arated into a Coulomb-like ‘perturbative’ field and a ‘non-
perturbative’ confining field. In this paper we hypothesize
that the fluctuating color fields not measured in our simu-
lations do not contribute to the string tension. Under this
assumption the string tension is determined by the color fields
we measure, which form a field strength tensor pointing in a
single direction in color space. We call this the ‘Maxwell pic-
ture of confinement’. We provide an additional procedure to
isolate the confining field. We then extract the string tension
from a stress energy-momentum tensor having the Maxwell
form, constructed from the simulated non-perturbative part
of the field strength tensor. To test our hypothesis we cal-
culate the string tension for values of the quark–antiquark
separation ranging from 0.37 fm to 1.2 fm. We also calculate
the spatial distributions of the energy-momentum tensor sur-
rounding static quarks for this range of separations, and we
compare with the distributions obtained from direct simula-
tions of the energy-momentum tensor.
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1 Introduction

Quantum chromodynamics (QCD) is universally accepted as
the theory of strong interactions. Nobody doubts that the well
established phenomenon of confinement of quarks and glu-
ons inside hadrons is encoded into the QCD Lagrangian. Yet,
our current understanding does not go beyond that provided
by a number of models of the QCD vacuum (for a review, see
Refs. [1,2]). In particular, a theoretical a priori explanation
of the so called area law in large size Wilson loops, which
is closely related to a linear confining potential between a
static quark and antiquark at large mutual distances, is still
missing.

In such a challenging situation, first-principle Monte Car-
lo simulations of QCD on a space-time lattice represent an
indispensable tool not only for checking (or ruling out) mod-
els of confinement, but also for providing new numerical
“phenomenology” and possibly stimulating original insights
into the mechanism of confinement.

Numerical simulations have established that there is a lin-
ear confining potential between a static quark and antiquark
for distances equal to or larger than about 0.5 fm. This linear
regime extends to infinite distances in SU(3) pure gauge the-
ory, and, in the presence of dynamical quarks to distances of
about 1.4 fm, where string breaking should take place [3–6].
The long-distance linear quark–antiquark potential is natu-
rally associated with a tube-like structure (“flux tube”) of the
chromoelectric field in the longitudinal direction, i.e. along
the line connecting the static quark and antiquark [7–10].

A wealth of numerical evidence of flux tubes has accumu-
lated in SU(2) and SU(3) Yang–Mills theories [11–37]. Most
of these studies concentrated on the shape of the chromoelec-
tric field in the transverse plane at the midpoint of the line
connecting the static quark and antiquark, given that the other
two components of the chromoelectric field and all the three
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components of the chromomagnetic field are suppressed in
that plane.

Recent times have witnessed an increasing numerical
effort toward a more comprehensive numerical description
of the color field around static sources, via the measurement
of all components of both chromoelectric and chromomag-
netic fields on all transverse planes passing through the line
between the quarks [38]; of the spatial distribution of the
stress energy-momentum tensor [39,40]; and the flux den-
sities for hybrid static potentials [41,42]. A more complete
numerical description of the color field around the sources
brings improved visualization, enabling us to grasp features
otherwise less visible.

In the numerical study [38] we simulated the spatial dis-
tribution in three dimensions of all components of the chro-
moelectric and chromomagnetic fields generated by a static
quark–antiquark pair in pure SU(3) lattice gauge theory. We
found that, although the components of the simulated chro-
moelectric field transverse to the line connecting the pair
are smaller than the simulated longitudinal chromoelectric
field, these transverse components are large enough to be
fit to a Coulomb-like ‘perturbative’ field produced by two
static sources parameterized by effective charges ±Q of the
sources (see Eq. (5) below).

The longitudinal component of this Coulomb-like ‘pertur-
bative’ field accounts for a fraction of the simulated longi-
tudinal chromoelectric field. We then identified the remain-
ing longitudinal chromoelectric field as the confining ‘non-
perturbative’ part of the simulated SU(3) flux tube field.

It is this non-perturbative part of the simulated field which
contributes to the coefficient of the linear term in the heavy
quark potential, the string tension.

In this paper we extend our simulations to a wider range
of quark–antiquark separations. We extract the string tension
from these simulations and compare our analysis with the
results of recent simulations [39] of the energy-momentum
tensor in SU(3) Yang–Mills theory.

We present a new procedure (the curl procedure) to extract
a perturbative Coulomb field EC from the transverse compo-
nents of the numerically simulated chromoelectric field. We
avoid the use of a fitting function, directly imposing the con-
dition that EC is irrotational (see Eq. (6) below). This pro-
vides a second method for implementing the underlying idea
of our previous paper; that is, the chromoelectric field gener-
ated by a quark–antiquark pair can be separated into pertur-
bative and non-perturbative components by a direct analysis
of lattice data on the color field distributions generated by
the pair.

As noted in [38], we can extract the value of the string ten-
sion from the non-perturbative field by utilizing the fact that
the value of the chromoelectric field at the position of a quark
is the force on the quark [43]. However, the Coulomb-like
field (Eq. (5)) does not give a good description of the trans-

verse components of the chromoelectric field at distances
closer than approximately two lattice steps from the sources
[38], so that we must use the curl procedure to isolate the
confining field in order to extract the string tension directly
as the force.

The color fields Fμν we measure, defined by the gauge
invariant correlation function ρconn

W,μν (see Eqs. (1) and (2),
below), point in a single direction in color space, parallel
to the direction of the ‘source’ Wilson loop. In this paper
we construct a stress energy-momentum tensor Tμν having
the Maxwell form from the ‘measured’ flux tube field tensor
Fμν , and extract the string tension (see Appendix A). This
leads to a picture of a confining flux tube permeated with
lines of force of a gauge invariant field tensor Fμν carrying
color charge along a single direction.

The ‘Maxwell’ energy-momentum tensor Tμν does not
account for the contribution to the quark–antiquark force
from the fluctuating color fields not measured in our simu-
lations. On the other hand, the complete Yang–Mills energy
momentum tensor TYM

μν simulated in Ref. [39] includes these
fluctuating contributions, so that comparison of TYM

μν with the
’Maxwell’ energy-momentum tensor Tμν constructed from
the chromoelectric and chromomagnetic fields measured in
our simulations provides a measure of the fluctuating contri-
butions to the stress tensor.

We noted in our previous paper that the Coulomb-like ‘per-
turbative’ field (Eq. (5)) generated a stronger long distance
Coulomb force between the heavy quarks than the Coulomb
force measured in lattice simulations of the heavy quark
potential [44–46] indicating the importance of fluctuations
for the Coulomb contribution. In this paper we reexamine
this issue.

The paper is organized as follows: in Sect. 2 we present
the theoretical background and the lattice setup. In Sect. 3
we show some results on the spatial distribution of the color
field around the two static sources and review the proce-
dure to extract its non-perturbative part by subtraction of
the Coulomb-like perturbative part identified by a fit of the
transverse components of the chromoelectric field; in Sect. 4
we describe the new curl procedure to isolate the non-per-
turbative part; in Sect. 5 we show how to determine the
string tension and other fundamental parameters describing
the (non-perturbative) flux tube; finally, in Sect. 6 we discuss
our results and give some ideas for future work and in Sect. 7
we describe the ‘Maxwell picture of confinement’ and how
it emerges from our work.

2 Theoretical background and lattice setup

The lattice operator whose vacuum expectation value gives
us access to the components of the color field generated by
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Fig. 1 a The connected correlator given in Eq. (1) between the plaque-
tteUP and the Wilson loop (subtraction in ρconn

W, μν not explicitly drawn).
b The longitudinal chromoelectric field Ex (xt ) relative to the position
of the static sources (represented by the white and black circles), for a
given value of the transverse distance xt

a static qq̄ pair is the following connected correlator [15,16,
47,48]:

ρconn
W, μν =

〈
tr

(
WLUPL†

)〉

〈tr(W )〉 − 1

N

〈tr(UP )tr(W )〉
〈tr(W )〉 . (1)

Here UP = Uμν(x) is the plaquette in the (μ, ν) plane,
connected to the Wilson loop W by a Schwinger line L , and
N is the number of colors (see Fig. 1).

The correlation function defined in Eq. (1) measures the
field strength Fμν , since in the naive continuum limit [16]

ρconn
W, μν

a→0−→ a2g
[〈
Fμν

〉
qq̄ − 〈

Fμν

〉
0

]
, (2)

where 〈 〉qq̄ denotes the average in the presence of a static
qq̄ pair, and 〈 〉0 is the vacuum average. This relation is a
necessary consequence of the gauge-invariance of the oper-
ator defined in Eq. (1) and of its linear dependence on the
color field in the continuum limit (see Ref. [33]).

The lattice definition of the quark–antiquark field-strength
tensor Fμν is then obtained by equating the two sides of
Eq. (2) for finite lattice spacing. In the particular case when
the Wilson loop W lies in the plane with μ̂ = 4̂ and ν̂ = 1̂
(see Fig. 1a) and the plaquette UP is placed in the planes
4̂1̂, 4̂2̂, 4̂3̂, 2̂3̂, 3̂1̂, 1̂2̂, we get, respectively, the color field
components Ex , Ey , Ez , Bx , By , Bz , at the spatial point
corresponding to the position of the center of the plaquette,
up to a sign depending on the orientation of the plaquette.
Because of the symmetry (Fig. 1), the color fields take on the
same values at spatial points connected by rotations around
the axis on which the sources are located (the 1̂- or x-axis in
the given example).

As far as the color structure of the field Fμν is concerned,
we note that the source of Fμν is the Wilson loop connected to
the plaquette in Fig. 1. The role of the Schwinger lines enter-
ing Eq. (1) is to realize the color parallel transport between
the source loop and the “probe” plaquette. The Wilson loop
defines a direction in color space. The color field E that we
measure in Eq. (2) points in that direction in the color space,
i.e. in the color direction of the source.

There are fluctuations of the color fields in the other color
directions. We assume that these fluctuating color fields do
not contribute to the string tension, so that the flux tube can
be described as lines of force of the simulated field E.

The simulated flux tube field E carries color electric charge
and color magnetic current along a single direction in color
space. The divergence of E is equal to the color electric charge
density ρel(x) and the curl of E is equal to the color magnetic
current density Jmag(x). Furthermore, the divergence of E
satisfies Gauss’ law [23], so that ∇ · E(x) = 0 provided that
x does not coincide with a source point. Finally, the confining
force is calculated from the divergence of a stress tensor Tμν

having the Maxwell form Eq. (A.1).
The operator in Eq. (1) undergoes a non-trivial renormal-

ization, which depends on xt , as discussed in a recent work
[49]. The procedure outlined in that paper to properly take
into account these renormalization effects is prohibitively
demanding from the computational point of view for Wilson
loops and Schwinger lines with linear dimension of the order
of 1 fm, where the interesting physics is expected to take
place. For this reason, we adopt here the traditional approach
to perform smearing on the Monte Carlo ensemble configu-
rations before taking measurements (see below for details).
As shown in the Appendix A of our previous paper [38],
smearing behaves as an effective renormalization, effectively
pushing the system towards the continuum, where renormal-
ization effects become negligible. The a posteriori validation
of the smearing procedure is provided by the observation of
continuum scaling: as carefully checked in Ref. [34], fields
obtained in the same physical setup, but at different values of
the coupling, are in perfect agreement in the range of param-
eters used in the present work.

We performed all simulations in SU(3) pure gauge theory,
with the standard Wilson action as the lattice discretization.
A summary of the runs performed is given in Table 1. The
error analysis was performed by the jackknife method over
bins at different blocking levels.

We set the physical scale for the lattice spacing according
to Ref. [44]:

a(β) = r0×exp
[
c0 + c1(β−6) + c2(β−6)2 + c3(β−6)3

]
,

r0 = 0.5 fm,
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Table 1 Summary of the runs
performed in the SU(3) pure
gauge theory (measurements are
taken every 100 upgrades of the
lattice configuration)

β Lattice a (fm) d (lattice) d (fm) Statistics Smearing steps, NAPE

6.47466 364 0.047 8 0.37 12900 100

6.333 484 0.056 8 0.45 180 80

6.240 484 0.064 8 0.51 1300 60

6.500 484 0.045 12 0.54 3900 100

6.539 484 0.043 16 0.69 6300 100

6.370 484 0.053 16 0.85 5300 100

6.299 484 0.059 16 0.94 10700 100

6.240 484 0.064 16 1.02 21000 100

6.218 484 0.066 16 1.06 32000 100

6.136 484 0.075 16 1.19 84000 120

c0 = −1.6804 , c1 = −1.7331 ,

c2 = 0.7849 , c3 = −0.4428 , (3)

for all β values in the range 5.7 ≤ β ≤ 6.92. In this
scheme the value of the square root of the string tension√

σ ≈ 0.465 GeV (see Eq. (3.5) in Ref. [44]).
The correspondence between β and the distance d shown

in Table 1 was obtained from this parameterization. Note that
the distance in lattice units between quark and antiquark,
corresponding to the spatial size of the Wilson loop in the
connected correlator of Eq. (1), was varied in the range d =
8 a to d = 16 a.

The connected correlator defined in Eq. (1) exhibits large
fluctuations at the scale of the lattice spacing, which are
responsible for a bad signal-to-noise ratio. To extract the
physical information carried by fluctuations at the physical
scale (and, therefore, at large distances in lattice units) we
smoothed out configurations by a smearing procedure. Our
setup consisted of (just) one step of HYP smearing [50] on
the temporal links, with smearing parameters (α1, α2, α3) =
(1.0, 0.5, 0.5), and NAPE steps of APE smearing [51] on the
spatial links, with smearing parameter αAPE = 0.25. The
number of smearing steps quoted in the last column of Table 1
was chosen using the same criterion as in Ref. [38], namely
that it was taken large enough that all field components, on all
transverse planes and at all values of xt (except possibly the
few largest ones) have reached their plateaux. Further details
on this criterion and on the comparison between smearing
and renormalization are given in the Appendix A of Ref.
[38].

3 Spatial distribution of the color fields

Using Monte Carlo evaluations of the expectation value of
the operator ρW, μν over smeared ensembles, we have deter-
mined the six components of the color fields on all two-
dimensional planes transverse to the line joining the color

sources allowed by the lattice discretization. These measure-
ments were carried out for several values of the distance d
between the static sources, in the range 0.37 fm to 1.19 fm,
at values of β lying inside the continuum scaling region, as
determined in Ref. [34].

We found that the chromomagnetic field is everywhere
much smaller than the longitudinal chromoelectric field and
is compatible with zero within statistical errors (see, e.g.,
Fig. 3 of Ref. [38]). As expected, the dominant component
of the chromoelectric field is longitudinal, as is seen in Fig. 2,
where we plot the components of the simulated chromoelec-
tric field E at β = 6.370 as functions of their longitudinal
displacement from one of the quarks, xl , and their transverse
distance from the axis, xt .

While the transverse components of the chromoelectric
field are also smaller than the longitudinal component, they
are larger than the statistical errors in a region wide enough
that we can match them to the transverse components of
an effective Coulomb-like field EC produced by two static
sources. For points which are not very close to the quarks,
this matching can be carried out with a single fitting param-
eter Q, the effective charge of static quark and antiquark
sources determining EC.

To the extent that we can fit the transverse components
of the simulated field E to those of EC with an appropriate
choice of Q, the non-perturbative difference ENP between the
simulated chromoelectric field E and the effective Coulomb
field EC,

ENP ≡ E − EC, (4)

will be purely longitudinal. We then identify ENP as the con-
fining field of the QCD flux tube.

To illustrate this idea, let us fix, for the sake of defi-
niteness, β = 6.240 and put the two sources at a distance
d = 16a = 1.02 fm. We then consider the plane, trans-
verse to the longitudinal x-axis connecting the two sources,
at a distance xl = 4a from one of them, and evaluate the
components Ex , Ey and Ez of the chromoelectric field in
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Fig. 2 Surface and contour plots for the three components of the chro-
moelectric field at β = 6.370 and d = 0.85 fm. All plotted quantities
are in physical units
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β = 6.240, d = 16a = 1.02 fm, for xl = 4a and the three components
of the perturbative Coulomb field, obtained from fitting the transverse
Ey field component to the form (5)

this transverse plane. The lattice determinations of Ey on
this plane can be fitted by the y-component of an effective
Coulomb field

EC(r) = Q
(

r1
max(r1,R0)3 − r2

max(r2,R0)3

)
,

r1 ≡ r − rQ, r2 ≡ r − r−Q, (5)

where rQ and r−Q are the positions of the two static color
sources and R0 is the effective radius of the color source,
introduced to explain, at least partially, the decrease of the
field close to the sources. This fit is shown in Fig. 3 – see
black dots and black solid line. Using the values of the fit
parameters Q and R0 obtained by the fit of Ey , one can
construct EC

z and EC
x and compare them to lattice data. Fur-

thermore, the Coulomb-like content of Ez fully accounts for
the z-component of the chromoelectric field (see red dots
and red solid line in Fig. 3), but EC

x accounts for only a
fraction of the longitudinal component of the chromoelec-
tric field (see blue dots and blue solid line in Fig. 3). This
strongly suggests that the non-perturbative component of the
chromoelectric field is almost completely oriented along the
longitudinal direction. It can be isolated once the parameters
of the Coulomb-like component are determined by a fit to
the y- and/or z-components of the lattice determination of
the chromoelectric field.

The procedure we have just illustrated in a specific case,
can be carried out in a systematic manner. We observe that
in making the fit we must take into account that the color
fields are probed by a plaquette, so that the measured field
value should be assigned to the center of the plaquette. This
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Table 2 Values of the fit parameters Q and R0 extracted from Coulomb
fits of the transverse components of the chromoelectric field and val-
ues of the longitudinal chromoelectric fields at (d/2, 0), the mid-
point between the sources and transverse distance zero, for several
values of distance d. Ex (d/2, 0) is the unsubtracted simulated field
and ENP

x (d/2, 0) is the non-perturbative chromoelectric field. For com-
parison, in the last column the non-perturbative chromoelectric field
ENP
x curl(d/2, 0) obtained using the irrotational property of the pertur-

bative field (see Sect. 4) is given. For the parameters of the Coulomb fit
we quote, along with the statistical error, a systematic uncertainty that
accounts for the variability in the values of the fit parameters extracted
from all acceptable fits to Ey and Ez at different xl values (for more
details, see Appendix B of Ref. [38]). As the distance between the
sources is made smaller and smaller the quality of the Coulomb fits
deteriorates and Q and R0 cannot be reliably extracted for d ≤ 0.51 fm

β d (fm) Q R0 (fm) Ex (d/2, 0) (GeV2) ENP
x (d/2, 0) (GeV2) ENP

x curl(d/2, 0) (GeV2)

6.47466 0.37 – – 1.00155(22) – 0.33581(20)

6.333 0.45 – – 0.8086(7) – 0.3388(9)

6.240 0.51 – – 0.7059(3) – 0.35353(29)

6.500 0.54 0.2736(13)(875) – 0.6550(5) 0.35762(18) 0.3584(6)

6.539 0.69 0.2729(4)(16) – 0.5204(16) 0.3378(5) 0.3683(25)

6.370 0.85 0.262(3)(131) 0.0975(6)(60) 0.446(4) 0.3331(16) 0.348(7)

6.299 0.94 0.259(5)(31) 0.1112(10)(205) 0.424(6) 0.332(3) 0.325(8)

6.240 1.02 0.2877(10)(108) 0.1183(21)(287) 0.418(8) 0.331(5) 0.343(12)

6.218 1.06 0.293(6)(169) 0.1211(22)(359) 0.398(9) 0.315(6) 0.347(13)

6.136 1.19 0.314(8)(89) 0.160(5)(28) 0.359(29) 0.29(3) 0.33(4)

also means that the z-component of the field is probed at a
distance of 1/2 lattice spacing from the x y plane, where the
z-component of the Coulomb field EC

z is non-zero and can
be matched with the measured value Ez for the same value
of Q. For further details about the fitting procedure and the
extraction of the fit parameters we refer to Appendix B of
Ref. [38].

In Table 2, we list the values of the effective charge Q
obtained from the lattice measurements of Ez and Ey at the
values of d, the quark–antiquark separation, considered in
this work.

The statistical uncertainties in the quoted Q values result
from the comparisons among Coulomb fits of Ey and Ez at
the values of xl , for which we were able to get meaningful
results for the fit. The values of R0 in physical units grow with
the lattice step a, while in lattice units they show more stabil-
ity. This suggests that the effective size of a color charge in
our case is mainly explained by lattice discretization artifacts
and the smearing procedure, and is not a physical quantity
(see Appendix B of Ref. [38]).

Evaluating the contribution of the field of the quark to EC

in Eq. (5) at the position r-Q of the antiquark and multiplying
by the charge −4πQ of the antiquark yields a Coulomb force
between the quark and antiquark with coefficient −4πQ2.
By comparison, the standard string picture of the color flux
tube gives a Coulomb correction of strength −π/12 to the
long distance linear potential (the universal Lüscher term
arising from the long wave length transverse fluctuations of
the flux tube [52]). In addition, the strength π

12 of the Luscher
term is approximately equal to the strength of the Coulomb

force determined from the analysis of lattice simulations of
the heavy quark potential at distances down to about 0.4 fm
[44,46].

By contrast, the strength −4πQ2 of the Coulomb force
generated by EC is roughly 4 times larger than π

12 for the
values of the effective charge Q listed in Table 2 and deter-
mined from our simulations of ρconn

W,μ,ν . Therefore the fluctu-
ating color fields not measured in our simulations must be
taken into account in calculating the Coulomb correction to
the long distance heavy quark potential.

In Fig. 4 we plot the longitudinal component ENP
x of the

non-perturbative field in Eq. (4) as a function of the longitu-
dinal and transverse displacements xl , xt at β = 6.370. As
expected, ENP

x is almost uniform along the flux tube at dis-
tances not too close to the static color sources. This feature
is better seen in Fig. 5, where transverse cross sections of the
field ENP

x (xl , xt ), plotted in Fig. 4, are shown for the values
of xl specified in Fig. 5. For these values of xl the shape of
the non-perturbative longitudinal field is basically constant
all along the axis. A similar scenario holds in the other lattice
setups listed in Table 1.

In Table 2 we also compare the values of the measured
longitudinal chromoelectric field Ex with those of the non-
perturbative field ENP

x on the axis at the midpoint between
the quark and antiquark, for all ten values of their separa-
tion d. Given that ENP

x is almost uniform along the axis,
ENP
x = ENP

x (xl , xt = 0) at all points xl on the axis for all
distances larger than approximately 0.1 − 0.2 fm from the
quark sources.
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Fig. 4 Surface and contour plots for the three components of the non-
perturbative chromoelectric field, ENP ≡ E − EC, at β = 6.370 and
d = 0.85 fm. All plotted quantities are in physical units

Fig. 5 Transverse cross sections of the non-perturbative field ENP
x (xt )

at β = 6.370, d = 0.85 fm, for several values of xl

4 Non-perturbative content of the flux tube: the curl
procedure

While the Coulomb field (5) gives a good description of the
transverse components of the chromoelectric field when the
distance from the sources is not too small, it does not give
a good description at smaller distances, approximately two
lattice spacings from the sources. This can be either the result
of the non-spherical form of the effective charges, or an effect
introduced by the discrete lattice.

To extract the confining part of the chromoelectric field in
the data it is then preferable to have a procedure which avoids
the use of an explicit fitting function, and which can work
close to the quark sources. With this aim in mind we use the
following two steps to separate the field into ’perturbative’
and ’non-perturbative’ components.

1. We identify the transverse component Ey of the simulated
field with the transverse component EC

y of the perturba-
tive field, EC

y ≡ Ey .
2. We impose the condition that the perturbative field is

irrotational, curl EC = 0.

Condition (1) implies that the nonperturbative field is
purely longitudinal, ENP

y = 0. Condition (2) will then fix
the longitudinal component EC

x of the perturbative field as
well as the longitudinal component ENP

x = Ex − EC
x of the

non-perturbative field.
One possible way for testing how sound the curl proce-

dure is would consist in considering the spatial distribution
of the y and z field components in a plane orthogonal to the
axis connecting the static sources. This kind of test, on the
other hand, would be automatically satisfied for a field that is
symmetric under rotations around the x axis and under reflec-
tions with respect to the xy plane. The rotational invariance
tests have already been performed [27,29] for the longitudi-
nal component of the field in the same setup as in the present
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paper. Also, the invariance of all components of the field
under reflections and 90-degree rotations was checked when
obtaining data for the current study.

To implement the irrotational condition (2), taking into
account that the fields are measured at discrete lattice points,
the sum of the measured fields along any closed lattice path
is zero. For example, on a plaquette this amounts to

EC
x (x, y) + EC

y (x + 1, y) − EC
x (x, y + 1)

−EC
y (x, y) = 0. (6)

One can easily solve this equation for EC
x obtaining

EC
x (x, y) =

ymax∑

y′=y

(
Ey(x, y

′) − Ey(x + 1, y′)
)

+EC
x (x, ymax + 1). (7)

This of course, leaves one unknown on each transverse slice
of the field – the value of EC

x (x, ymax + 1), but if the value
of ymax is large enough, the perturbative field at that dis-
tance should already be small, so in our analysis we just put
EC
x (x, ymax +1) = 0. To check that this indeed makes a little

change to our results, we have used a separate procedure in
which we fixed EC

x (x, ymax + 1) = Ex , in practice making
ENP
x = 0 at the largest transverse distance. This procedure

gave similar results.
After the estimation of the perturbative longitudinal field

EC
x one can subtract it from the total field, obtaining the non-

perturbative component (see Fig. 6). One can see that the non-
perturbative part of the flux tube exhibits very little change
along the line connecting the quark–antiquark pair; even at
the smallest distances from the sources the non-perturbative
field remains smooth (This is seen more clearly in Fig. 7).

5 The string tension and the width of the flux tube

The forces between charged particles in electrodynamics are
determined by a stress tensor Tμν constructed from fields
Fμν satisfying Maxwell’s equations (see Eq. (12.113) in Ref.
[53]). Similarly, the force between quarks and antiquarks in
Yang-Mills theory is determined by the stress tensor Tμν , Eq.
(A.1), constructed from the field tensor Fμν obtained from
our simulations.

The quark–antiquark force F is then the integral of the
longitudinal component Txx = (Ex (xl = d/2, xt ))2/2 of the
stress tensor over the median plane x = d/2 bisecting the
line connecting the quarks, Eq. (A.8). The non-perturbative
quark–antiquark force FNP = −êxσ determining the string
tension σ has the corresponding expression in terms of the
non-perturbative longitudinal component of the stress tensor
TNP
xx = (ENP

x (xl = d/2, xt )2/2 ≡ (ENP
x )2(xt )/2.

(a)

(b)

(c)

Fig. 6 Surface and contour plots for the longitudinal components of
the full, perturbative and non-perturbative chromoelectric field obtained
by using the curl procedure at β = 6.370 and d = 0.85 fm. All plotted
quantities are in physical units
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Fig. 7 Transverse cross sections of the non-perturbative field obtained
by using the curl procedure ENP

x (xt ) at β = 6.370, d = 0.85 fm, for
several values of xl

The square root of the string tension is then equal to

√
σ =

√∫
d2xt

(ENP
x )2(xt )

2
. (8)

We have evaluated the integral (Eq. (8)) in two ways:

1. by direct numerical integration, using the values of ENP
x

determined by our simulations, and
2. analytically, by fitting the numerical data for the trans-

verse distribution of ENP
x (xt ) as in [26–30] to the Clem

parameterization of the field surrounding a magnetic vor-
tex in a superconductor [54].

ENP
x (xt ) = φ

2π

μ2

α

K0[(μ2x2
t + α2)1/2]

K1[α] , (9)

where φ,μ and α are fitting parameters. In the dual super-
conducting model [55–58] λ = 1

μ
is the penetration depth

and

κ =
√

2

α

[
1 − K 2

0 (α)/K 2
1 (α)

]1/2
, (10)

is the Landau–Ginzburg parameter characterizing the
type of superconductor.

Figure 8 shows an example of the fit of the data to the
Clem functional form Eq. (9) for the transverse distribution
of ENP

x (xt ), obtained using the curl procedure.
We can obtain a second expression for the string tension by

utilizing the result [43,59] that the force on a quark is equal
to the value of the chromoelectric field at the position of the
quark. The string tension is then equal to the corresponding
value of the confining part of the chromoelectric field

σ = ENP
x (xl = 0, xt = 0). (11)

0 0.2 0.4 0.6 0.8
xt  [fm]

0

0.1

0.2

0.3

0.4

E
xN

P
   

[G
eV

2 ]

Fig. 8 The Clem fit (Eq. (9) to the non-perturbative chromoelectric
field ENP

x obtained from the curl procedure for β = 6.240, d = 0.51 fm,
xl = 3a

Equations (8) and (11) provide two independent ways to
extract the string tension from simulations. As mentioned
earlier, we must use the curl procedure to isolate the confin-
ing field to extract the string tension by Eq. (11).

To obtain additional information about the structure of the
chromoelectric flux tube we have calculated themean square
root width:

√
w2 =

√∫
d2xt x2

t Ex (xt )∫
d2xt Ex (xt )

. (12)

Just as we have evaluated the integral (8) for the string ten-
sion, we have evaluated the integral (12) for the mean square
root width both numerically, using the data for ENP

x (xt ), and
analytically, in terms of Clem parameters, fitting the longi-
tudinal component of ENP

x (xt ) in the median plane to the
Clem parametrization (9). The results of that fit are given in
Table 3. In most cases the parametrization in Eq. (9) gives
a good description of the field, shown by the values of χ2

r ,
though the parameters themselves are somewhat unstable,
which reflects the strong correlation between the parameter
estimates.

We compared two different methods for calculating the
integrals in Eqs. (8) and (12). First, we carried out the
numeric integration in Eqs. (8) and (12), respectively, postu-
lating the rotational symmetry of the field. This approach
was repeated for both the non-perturbative field obtained

using the “curl procedure” (resulting in
√

σint and
√

w2
int)

and the field obtained using Coulomb subtraction (resulting

in
√

σCoulomb and
√

w2
Coulomb). Next we calculated the values
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Table 3 The Clem parameters describing the non-perturbative field transverse section going through the midpoint between the quark and antiquark
positions. The data for the fit is obtained using the curl subtraction procedure, taking the perturbative field at ymax+1 equal to zero

β d (fm) ϕ μ (fm−1) α κ χ2
r

6.47466 0.37 3.474(4) 4.999(9) 1.192(4) 0.808(4) 318

6.333 0.45 3.83(3) 5.30(6) 1.55(3) 0.576(15) 12.0

6.240 0.51 4.028(11) 6.039(26) 2.141(20) 0.375(5) 43.5

6.500 0.54 4.370(15) 5.71(4) 2.02(3) 0.406(9) 4.46

6.539 0.69 4.50(7) 6.25(20) 2.47(16) 0.309(27) 0.03

6.370 0.85 5.40(25) 6.7(9) 4.0(1.1) 0.17(7) 0.06

6.299 0.94 5.2(4) 7.8(1.9) 5.5(2.8) 0.10(7) 0.02

6.240 1.02 8.0(7) 4.4(8) 2.4(9) 0.33(17) 0.18

6.218 1.06 6.6(7) 6.0(1.8) 4.0(2.4) 0.16(13) 0.05

6.136 1.19 5.5(1.6) 81(27) 7(5) × 102 8(9) × 10−5 0.17

Table 4 The string tension estimated using the non-perturbative field
from the curl procedure by employing different methods (from left to
right: numerical integration of the field, analytical integration of the
Clem function with parameters given in Table 3, estimation of fields

at sources). In the last column we report also the value of the string
tension obtained by numerically integrating Eq. (8) and using the non-
perturbative field from the Coulomb subtraction ECoulomb

x

β d (fm)
√

σint (GeV)
√

σClem (GeV)
√

σ0 (GeV)
√

σCoulomb (GeV)

6.47466 0.37 0.4591(3) 0.4659(3) 0.53426(22) –

6.333 0.45 0.5020(19) 0.5045(20) 0.5313(6) –

6.240 0.51 0.5409(10) 0.5430(10) 0.5340(4) –

6.500 0.54 0.5582(9) 0.5687(10) 0.5410(7) 0.491 (25)

6.539 0.69 0.583(4) 0.596(5) 0.5526(28) 0.468 (4)

6.370 0.85 0.633(16) 0.640(17) 0.528(7) 0.412 (17)

6.299 0.94 0.617(23) 0.620(24) 0.527(11) 0.598 (7)

6.240 1.02 0.75(4) 0.77(4) 0.520(17) 0.616 (7)

6.218 1.06 0.69(4) 0.62(3) 0.482(19) 0.599 (24)

6.136 1.19 0.67(11) 0.67(12) 0.56(5) 0.593 (28)

of the string tension and the mean square root width using the
Clem parameters given in Table 3 to get the values denoted

as
√

σClem and
√

w2
Clem.

(One remark should be made for the width – while we
know that the value of EC

x (x, ymax + 1) in Eq. (7) is small
(O(y−2

max)), in the numerator of Eq. 12 this small constant
will be multiplied by y2 (y3 after the integration over polar
angle), which will cause the error introduced to increase with
ymax. Indeed, the comparison with the analysis done taking
ENP
x (x, ymax) = 0 shows large discrepancies in this case.)
Finally, we evaluated Eq. (11) for the string tension, σ =

ENP
x (xl = 0, xt = 0), using the curl procedure to determine

the magnitude of the non-perturbative field at the sources.
Our results are gathered in Tables 4 and 5 , where we use

the notation σ0 ≡ EN P
x (xl = 0, xt = 0) and in Figs. 9, 10.

The data shown in Fig. 9 give a consistent value of
√

σ for
all values of the separation d, with scatter that increases with
d as the resolution diminishes. The values of

√
σ lie close to

0.465 GeV, the value used in the parameterization Ref. [44]

Let us review the basis of our calculations. Our hypothesis
is that the string tension is determined by the field E we
measured (the ‘Maxwell picture of confinement’). We have
determined σ from both the transverse structure of the flux
tube (Eq. (8)) and its longitudinal structure (Eq. (11)) as
shown in Fig. 6c, in which the non-perturbative field has
been isolated.

We emphasize that, as discussed in Sect. 3, the ‘Maxwell
picture of confinement’ cannot be used to obtain the Coulomb
correction to the string tension. This implies that the fluctu-
ating fields not measured in our simulations must contribute
to the Coulomb force.

On the other hand, the Coulomb correction has been
obtained by recent direct simulations of the stress energy-
momentum tensor in Yang-Mills theory [39]. The Yang-Mills
stress tensor accounts for the contributions of fluctuating
fields but cannot be directly related to measured fields, in
contrast to the Maxwell stress tensor Txx = (1/2)E2

x , deter-
mining the string tension (see Eq. (A.9)).
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Table 5 The flux tube width estimated using the non-perturbative field
from the curl procedure by employing different methods (from left to
right: numerical integration of the field, analytical integration of the
Clem function with parameters given in Table 3). In the last column

we report also the value of the width obtained by numerically integrat-
ing Eq. (12) and using the non-perturbative field from the Coulomb
subtraction ECoulomb

x

β d (fm)
√

w2
int (fm)

√
w2

Clem (fm)
√

w2
Coulomb (fm)

6.47466 0.37 0.31696(6) 0.4795(6) –

6.333 0.45 0.3598(7) 0.477(3) –

6.240 0.51 0.3838(3) 0.4543(9) –

6.500 0.54 0.31716(15) 0.4727(18) 0.313(11)

6.539 0.69 0.3061(5) 0.457(6) 0.3020(23)

6.370 0.85 0.3712(24) 0.497(21) 0.343(16)

6.299 0.94 0.393(5) 0.483(29) 0.384(7)

6.240 1.02 0.448(6) 0.63(5) 0.417(11)

6.218 1.06 0.444(9) 0.56(5) 0.448(21)

6.136 1.19 0.43(7) 0.46(6) 0.51(4)

0.5 1
d  [fm]

0

0.25

0.5

0.75

1

√σ
   

  [
G

eV
]

from curl procedure (num. int.)
from curl procedure (field at source)
from Coulomb subtraction (num. int.)

Fig. 9 The square root of the string tension obtained using several
different procedures: (i) by numerical integration of Eq. (8) with the non-
perturbative field obtained from the curl procedure (Sect. 4); (ii) from the
non-perturbative field obtained from the curl procedure evaluated and
evaluated at sources; (iii) by numerical integration of Eq. (8) with the
non-perturbative field obtained from the Coulomb subtraction (Eq. (4))

6 Conclusions and outlook

In this paper we have determined the spatial distribution in
three dimensions of all components of the color fields gen-
erated by a static quark–antiquark pair. We have found that
the dominant component of the color field is the chromo-
electric one in the longitudinal direction, i.e. in the direction
along the axis connecting the two quark sources. This fea-

0.5 1
d  [fm]

0

0.25

0.5

0.75

1

(w
2 )1/

2    
 [f

m
]

from curl procedure (num. int.)
from Coulomb subtraction (num. int.)

Fig. 10 The mean square width of the flux tube obtained using several
different procedures: (i) by numerical integration of Eq. (12) with the
non-perturbative field obtained from the curl procedure (Sect. 4); (ii)
by numerical integration of Eq. (12) with the non-perturbative field
obtained from the Coulomb subtraction (Eq. (4))

ture of the field distribution has been known for a long time.
However, the accuracy of our numerical results allowed us to
go far beyond this observation. First, we could confirm that,
as observed in [38], all the chromomagnetic components of
the color field are compatible with zero within the statistical
uncertainties. Second, the chromoelectric components of the
color fields in the directions transverse to the axis connect-
ing the two sources, though strongly suppressed with respect
to the longitudinal component, are sufficiently greater than
the statistical uncertainties that they can be nicely reproduced
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by a Coulomb-like field generated by two sources with oppo-
site charge (everywhere except in a small region around the
sources).

In Ref. [38] we subtracted this Coulomb-like field from the
simulated chromoelectric field to obtain a non-perturbative
field ENP according to Eq. (4) and found that the dependence
of the resulting longitudinal component of ENP on the dis-
tance xt from the axis is independent of the position xl along
the axis, except near the sources, thus suggesting that the
non-perturbative field found in this way from lattice simula-
tions can be identified as the confining field of the QCD flux
tube.

In this work we have improved the approach of Ref. [38]
by presenting a new procedure to subtract the Coulomb-like
field, which does not rely on any preconception about its
analytic form, but is based only on the requirement that its
curl is equal to zero.

Moreover, we have carefully analyzed the spatial distri-
bution of the subtracted, non-perturbative part of the longi-
tudinal chromoelectric field to extract from it some relevant
parameters of the flux tube, such as the mean width and the
string tension, both by means of a fully numerical, model-
independent procedure and by a prior interpolation with the
dual version of the Clem function for the magnetic field in a
superconductor.

We have also used our determinations of the color field
components to construct the Maxwell stress tensor. Details
about its determination and a comparison with the recent
literature about this topic [39] are presented in Appendix A.

In conclusion, we have shown that the separation of the
chromoelectric field into perturbative and non-perturbative
components can be obtained by directly analyzing lattice data
on color field distributions between static quark sources, with
no need of model assumptions. To the best of our knowl-
edge, this separation between perturbative and non-pertur-
bative components has not been carried out previously. It
provides new understanding of the chromoelectric field sur-
rounding the quarks. We have used the non-perturbative field
to calculate the string tension and the spatial distribution of
the energy-momentum tensor surrounding the static quarks,
under the assumption that the fluctuating color fields not mea-
sured in our simulations do not contribute to the string ten-
sion. The extension of our approach to the case of QCD with
dynamical fermions with physical masses and at non-zero
temperature and baryon density is straightforward [33].

7 A closing thought

As a closing thought we review the two hypotheses from
which we concluded that the string tension can be extracted
from the measured gauge invariant field tensor Fμν having the

space-time symmetry properties of the Maxwell field tensor
of electrodynamics.

1. We assume that the fluctuations of the color fields in color
directions other than the one we measure do not con-
tribute to the string tension. Then the quark–antiquark
force is determined by the Maxwell stress tensor Tμν ,
constructed from the components of the gauge invariant
field tensor Fμν measured in our simulations. The mea-
sured chromoelectric field E can be visualized by lines
of force which, in Yang-Mills theory, correspond to the
Coulomb lines of force between electrically charged par-
ticles in electrodynamics.

2. In order to determine the string tension from the stress
tensor Tμν , the Coulomb-like perturbative color field EC

of the sources must be separated from the measured chro-
moelectric field E, thereby isolating its confining part
ENP. We determine EC by assuming that the components
of the perturbative field EC transverse to the flux tube
axis are equal to those of the measured field E. We then
implement this assumption with a parameterization-free
procedure (the curl procedure) to determine the longitu-
dinal components of EC.

Under assumptions (1) and (2) the confining quark–antiquark
force is calculated from the Maxwell stress tensor Tμν con-
structed from the components of the non-perturbative field
tensor FNP

μν , obtained by subtracting the contribution of the
quark sources from the measured field tensor Fμν . We call
this the ‘Maxwell picture of confinement’.

The values of the string tension calculated in this manner
from lattice data for a range of quark–antiquark separations
(shown in Fig. 9) thus provide a test, of both our assump-
tion that the fluctuating color fields not measured in our cal-
culations do not contribute to the string tension, and of our
assumption used to isolate the confining part of the simulated
field.

To the extent that our assumptions are realized, the
‘Maxwell picture of confinement’ emerges from our sim-
ulations.
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Appendix A: The ‘Maxwell’ stress tensor

In this Appendix we consider the “Maxwell” energy-momen-
tum tensor Tμν as a function of the field tensor Fμν charac-
terizing the SU(3) flux tube, which is in turn defined in terms
of the gauge invariant correlation function ρconn

W,μν of Eqs. (1)
and (2) and points in a single color direction parallel to the
color direction of the source (which is determined dynami-
cally). Its six tensor components (the electric and magnetic
fields E and B) correspond to the six orientations of the pla-
quette UP relative to that of the Wilson loop (see Fig. 1a).

The simulated fields E and B have the space-time symme-
tries of the Maxwell fields of electrodynamics, while carrying
color charge in a single direction in color space. The energy-
momentum tensor Tμν lies in the same direction in color
space as the simulated fields E and B and has the (Euclidean)
Maxwell form:

Tμν = FμαFαν − gμνFαβFαβ/4. (A.1)

Its spatial components μ = i, ν = j , with i, j = 1, 2, 3
determine the Maxwell stress tensor:

TMaxwell
i j = −Ti j . (A.2)

Taking μ = i and ν = j 
= i in Eq. (A.1) gives

TMaxwell
i j = −Ti j = Ei E j + Bi B j − δi j (E

2 + B2)/2,(A.3)

while the diagonal time component −T44 of Tμν determines
the energy density,

− T44 = 1

2
(E2 + B2). (A.4)

We use cylindrical coordinates (x, r, θ), r ≡ √
y2 + z2,

tan θ ≡ z/y, and the corresponding unit vectors êr , êθ :

êr = êy cos θ + êz sin θ, (A.5)

êθ = −êy sin θ + êz cos θ (A.6)

(x is the longitudinal direction of the flux tube, i.e. the axis
along which the static sources are located).

The force exerted by the antiquark on the quark can be
expressed, by means of the stress tensor, as a surface force

F acting on the infinite plane x = d
2 bisecting the line con-

necting the pair:

F j =
∫ ∫

dy dz n̂i T
Maxwell
i j (x = d/2, y, z), (A.7)

where n̂ = −êx is the outward normal to the region x > d
2

containing the quark. The only non-vanishing component of
the quark–antiquark force F is longitudinal, so

F = −
∫ ∫

dy dz êx Txx (x = d/2, y, z). (A.8)

Using the components in Eq. (A.3) of TMaxwell
i j , and taking

into account that the measured magnetic field B is compatible
with zero

− Txx = 1

2
(E2

x − E2
r ), E2

r = E2
y + E2

z ,

−Txy = Ex Ey,

−Txz = Ex Ez, (A.9)

in Eq. (A.7) gives

F = −
∫ 2π

o
dθ

∫ ∞

0
r dr [êx (E2

x − E2
r )

2
+ êr Ex Er ].

(A.10)

The angular average over the radial vector êr in Eq. (A.10)
vanishes. Furthermore by symmetry the transverse field Er

on the mid-plane x = d
2 vanishes, so that the quark–antiquark

force in Eq. (A.10) becomes

F = −2π

∫ ∞

0
rdr

E2
x (r)

2
êx . (A.11)

Replacing Ex (r) by the non-perturbative field ENP
x (r) in

Eq. (A.11) gives the non-perturbative quark–antiquark force
FNP,

FNP = −σ êx , σ = 2π

∫ ∞

0
rdr

(ENP
x (r))2

2
. (A.12)

Eq. (A.12) determines the string tension σ in terms of the
longitudinal component of the non-perturbative field ENP

x (r),
the confining component of the SU(3) flux tube. We have
already presented it, in a slightly different notation, in Eq. (8).

Using Eqs. (A.5) and (A.6) in Eq. (A.3) we can obtain
the components of the Maxwell stress tensor in cylindrical
coordinates:

− Trr (x, r) = −(êr )i Ti j (êr ) j = − 1

2
(E2

x − E2
r ), (A.13)

−Tθθ (x, r) = −(êθ )i Ti j (êθ ) j = − 1

2
(E2

x + E2
r ), (A.14)

−Txx (x, r) = −(êx )i Ti j (êr ) j = 1

2
(E2

x − E2
r ), (A.15)

−Txr (x, r) = −(êx )i Ti j (êr ) j = Ex Er . (A.16)
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Table 6 The width of the diagonal component of the Maxwell stress

tensor recovered from the full field Ex (
√

w2
Full) and non-perturbative

field E (NP)
x (

√
w2

NP)

β d (fm)
√

w2
Full (fm)

√
w2

NP (fm)

6.47466 0.37 0.18751(4) 0.24438(9)

6.333 0.45 0.2148(3) 0.2637(7)

6.240 0.51 0.23014(10) 0.26925(27)

6.500 0.54 0.22597(15) 0.25572(21)

6.539 0.69 0.2360(6) 0.2511(8)

6.370 0.85 0.2833(25) 0.298(3)

6.299 0.94 0.300(3) 0.306(6)

6.240 1.02 0.326(6) 0.360(9)

6.218 1.06 0.326(7) 0.345(10)

6.136 1.19 0.320(20) 0.319(27)

The remaining non-vanishing component of Tμν is the energy
density T44,

− T44(x, r) = 1

2
(E2

x + E2
r ). (A.17)

Equations (A.13)–(A.17) express all components of the
stress tensor in terms of the simulated color fields Ex (x, r)

and Er (x, r) =
√
E2
y + E2

z . On the symmetry plane x = d
2 ,

Er = 0 and Eqs. (A.13)–(A.17) reduce to

T44(r) = Txx (r) = − E2
x (r)

2
, (A.18)

Trr (r) = Tθθ (r) = E2
x (r)

2
. (A.19)

Further, we note that the trace of the stress tensor Tμν eval-
uated from Eqs. (A.13)–(A.17) vanishes independent of the
simulated flux-tube fields Ex (x, r) and Er (x, r):

T44(x, r) + Txx (x, r) + Trr (x, r) + Tθθ (x, r) = 0. (A.20)

We have calculated the non-perturbative content of Trr on
the symmetry plane (where Trr = Tθθ = −T44 = −Txx )
versus r for three different values of the quark–antiquark
distance: d = 0.51 fm (at β = 6.240), d = 0.69 fm (at
β = 6.539) and d = 0.95 fm (at β = 6.299). Results are
presented in Fig. 11, where also the full (non-perturbative
plus Coulomb) content of Trr is shown.

The width of the energy density distribution TNP
44 can be

obtained through Eq. (12), with ENP
x replaced by TNP

44 as
given in Eq. (A.18); results are presented in Table 6. Since
TNP

44 is proportional to
(
ENP
x

)2
the width of the TNP

44 com-
ponent of the Maxwell stress tensor obtained from the non-
perturbative field given in Table 6 is systematically smaller
than the width of the nonperturbative part of the longitudinal
chromoelectric field component ENP

x given in Table 5. (The

Fig. 11 The diagonal components of the Maxwell stress tensor recov-
ered from the full field Ex (filled circles) and non-perturbative field
E (NP)
x (empty circles) for d = 0.51 fm (top), d = 0.69 fm (middle),

and d = 0.95 fm (bottom)
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square of the field decreases more rapidly with distance than
the field itself.)

We now compare the above results obtained using our
measured flux tube fields to evaluate the ’Maxwell’ energy-
momentum tensor Tμν with the corresponding results of
recent direct simulations [39] of the expectation value of the
energy momentum tensor TYM

μν in the presence of a quark–
antiquark pair. The latter simulations, which measure the
energy and stresses in all color directions directly, were car-
ried out in the plane midway between the quark and the anti-
quark, for three values of their separation.

The tensor TYM
μν has the form [60]

Tμν = Fa
μαF

a
αν − gμνF

a
αβF

a
αβ/4 , (A.21)

where Fa
μν is the Yang–Mills field tensor in the adjoint rep-

resentation of SU(3),

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + g fabc A

b
μA

c
ν , (A.22)

where fabc are the structure constants of the SU(3) algebra.
In our definition the field is squared after color projection,
whereas in Eq. (A.21) the sum over color components is
taken after squaring. Moreover, the stress tensor in Ref. [39]
is renormalized (this motivates the superscript R in the for-
mulas below).

In [39] the expectation value of the energy-momentum
tensor in the background of a quark–antiquark pair is denoted
by 〈 T R

i j (r)〉QQ̄ . We will use this notation in comparing our
results (A.18) and (A.19) with that work (Fig. 10).

In [39] the r dependence of the components of
〈
T R

μν(r)
〉
QQ̄

was plotted for the 3 values of the quark–antiquark separa-
tion for which simulations were made, and these ’noticeable’
features of the results were pointed out:

1. Approximate degeneracies between temporal and longi-
tudinal components and between radial and angular com-
ponents are found for a wide range of r ;

〈
T R

44(r)
〉
QQ̄ ≈ 〈

T R
xx (r)

〉
QQ̄ > 0 ,

〈
T R
rr (r)

〉
QQ̄ ≈ 〈

T R
θθ (r)

〉
QQ̄ > 0. (A.23)

We emphasize that the two inequalities in Eq. (A.23) are
general consequences of (A.18) and (A.19), independent
of the values of the simulated field Ex (x, r). In contrast,
a recent study [40] of the stress tensor distribution in the
Abelian Higgs model found that these relations could
only be satisfied within a very narrow range of the model
parameters.

2. The scale symmetry broken in the YM vacuum (the trace
anomaly),

〈
T R

44(r)
〉

QQ̄
+

〈
T R
xx (r)

〉

QQ̄

Fig. 12 Comparison of the diagonal components of the Maxwell stress
tensor for the different quark–antiquark separations, recovered from the
full field Ex (top) and from the non-perturbative field E (NP)

x (bottom)

+
〈
T R
rr (r)

〉

QQ̄
+

〈
T R

θθ (r)
〉

QQ̄
< 0, (A.24)

is partially restored inside the flux tube.
3. Each component of the energy-momentum tensor at

r = 0 decreases as the separation becomes larger, while
the transverse radius of the flux tube, typically about 0.2
fm, seems to increase for large separations [31,61,62],
although the statistics are not sufficient to discuss the
radius quantitatively.
We see some indication of the increase in the width of the
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distributions of the diagonal components of the Maxwell
stress tensor in Fig. 12 and Table 6 for all ten values of
the quark–antiquark separation. However, this width is
greater than 0.2 fm, the transverse radius of the flux tube
estimated by [39].

Combining Eq. (A.23) with Eq. (A.24), we obtain
〈
T R

θθ (r)
〉

QQ̄
< −

〈
T R
xx (r)

〉

QQ̄
, (A.25)

which can be clearly seen from Fig. 3 of Ref. [39], where the
components of 〈T R

i j (r)〉QQ̄ were plotted.
The ‘Maxwell’ stress tensor does not include the contribu-

tions to Eq. (A.21) of the fluctuating color fields not measured
in our simulations. Comparison of the spatial distributions
of the diagonal components of the Yang–Mills stress tensor
with the corresponding distributions of the ’Maxwell’ stress
tensor then provides a measure of the contributions of the
fluctuating color fields.
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