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Abstract In order to classify and understand structure of
the spacetime, investigation of the geodesic motions of mas-
sive and massless particles is a key tool. So the geodesic
equation is a central equation of gravitating systems and the
subject of geodesics in the black hole dictionary attracted
much attention. In this paper, we give a full description of
geodesic motions in three-dimensional spacetime. We inves-
tigate the geodesics near charged BTZ black holes and then
generalize our prescriptions to the case of massive gravity.
We show that electric charge is a critical parameter for cate-
gorizing the geodesic motions of both lightlike and timelike
particles. In addition, we classify the type of geodesics based
on the particle properties and geometry of spacetime.

1 Introduction

Regarding the low energy limit of gravitational interactions,
general relativity (GR) is a successful theory describing var-
ious phenomena. Unlike the successes of the mentioned the-
ory, some issues such as accelerated expansion of the uni-
verse, the existence of dark matter [1], massive gravitons and
several other subjects show the necessity of modifying this
theory. There are various attempts for modifying GR, such
as F(R) gravity [2–7], Lovelock gravity [8–12], Horava-
Lifshitz gravity [13,14], brane world cosmology [15–17],
scalar-tensor theories [18–26], massive gravity [27–44], rain-
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bow gravity [45–52], and massive gravity’s rainbow [53–55].
The mentioned generalized theories lead to interesting results
in various aspects of black objects, especially their geomet-
rical and physical properties. In this regard, we are going to
study the effects of massive modification of Einstein gravity
on the geometric structure of low dimensional black holes,
especially, the geodesic motions of a test particle. The pri-
mary motivation of studying the geodesic motions of test
particles around the massive objects come from some inter-
esting astrophysical phenomena, such as the precession of
the perihelion of Mercury and gravitational lensing. Due to
the strong curvature effects, black holes have considerable
influence on the geodesic motions.

One of the predictions of GR is the existence of black
holes. These mysterious singular solutions can be described
by the first static spherically symmetric solution of Ein-
stein’s field equations found by Karl Schwarzschild in 1916.
Since the interpretation of the Schwarzschild horizon as a
one way membrane by Finkelstein in 1958 [56], consider-
able efforts have been made to study exact solutions of Ein-
stein gravity with a singularity and their interesting proper-
ties. One major achievement in the theoretical analysis of
these objects was finding the first three dimensional solution
of Einstein field equations by Banados-Teitelboim-Zanelli
(BTZ) in 1992 [57]. Later on, many people studied various
aspects of BTZ black hole as a typical laboratory of high
energy physics [27,58–76] . BTZ black holes provide good
tools for handling some conceptual questions in the con-
text of AdS/CFT correspondence, quantum gravity, string
theory models and gauge field theory [77,78]. In the con-
text of classical gravity, BTZ black holes have been stud-
ied in the presence of other gauge fields such as Maxwell
and power Maxwell fields [79–81], Born–Infeld theory [82–
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86] and other nonlinear electrodynamics [87–89], and also
massive gravity [90], gravity’s rainbow [91], massive grav-
ity’s rainbow [92] and dilaton field [81,93,94]. Also higher
dimensional black hole solutions with BTZ analogy (BTZ
like black holes) have been investigated in Refs. [95,96].

We can investigate the black hole properties in various
ways by considering the motion of a test particle in the
spacetime with a black hole, described by the geodesic equa-
tion. Exact analytical solutions to the geodesic equation
provide us with the best basic understanding of geodesic
motion, but may not always be possible. We can then
employ analytical approximation schemes or numerical solu-
tions. A first seminal paper for studying the geodesic equa-
tions and its analytical solutions was by Hagihara in 1931,
when he solved the geodesic equations of Schwarzschild
black holes in terms of Weierstrass elliptic functions [97].
Afterwards, Darwin solved the geodesic equations by using
the Jacobian elliptic functions [98,99]. Also, the analytical
solution of geodesic equations have been studied in four-
dimensional Schwarzschild–de Sitter [100], Kerr [101,102],
Kerr–Newman [103], and Kerr–de Sitter [104] spacetime.
Moreover, the higher dimensional solution of Schwarzschild,
Schwarzschild-(anti-) de Sitter, Reissner–Nordström, Reiss-
ner Nordström–(anti-) de Sitter [105] and Myers-Perry
spacetimes [106] have been investigated. Studying the
geodesic equations have been extended to F(R) gravity and
conformal gravity in BTZ and GMGHS (Gibbons-Maeda-
Garfinkle-Horowitz-Strominger) black holes [107–111], reg-
ular and modified Hayward black holes [112,113], charged
dilatonic black holes [114], the singly spinning and (charged)
doubly spinning black ring [115,116], brane-world black
hole [117], (rotating) black string [118], Schwarzschild, and
Kerr pierced by black string spacetimes [119,120]. More-
over, regarding three dimensional spacetime, the stability
and existence of circular geodesics in a family of asymptot-
ically AdS black holes in new massive gravity theory [121]
and the null geodesics in a static circularly symmetric black
hole spacetime [122] have been investigated before. Further-
more, in Ref. [123], the exact solutions of null and timelike
geodesics are found and it is shown that the rotating (static)
black hole is geodesically complete (incomplete).

In this paper, we consider (charged) BTZ black holes and
its generalization to massive gravity. We provide a complete
classification of the geodesic motion, and solve the geodesic
equation. As far as possible, we follow the method which
is introduced in Ref. [100]. For all of the previous works
on the solutions of geodesic equations, the metric function
was a polynomial function. In this paper, we investigate both
polynomial and non-polynomial metric functions. A non-
polynomial metric function appears in the charged cases and
since there is no known exact analytical solution for this type,
we resort to numerical solutions for this case.

The outline of this paper is as follow. First, we present
the geodesic equation and effective potential in BTZ and its
extension to massive gravity black holes in Sect. 2, and define
acceptable regions of motion. After that, we investigate pos-
sible regions of motion and orbits for charged and uncharged
black holes in Sect. 3. Then, we completely classify geodesic
motions and solve the geodesic equation around the (charged)
BTZ black holes in Sect. 4. The neutral black holes in massive
gravity are treated in Sect. 5 and the charged ones in Sect. 6.
Finally, we end the paper with some concluding remarks.

2 Three dimensional line element

In (2 + 1)−dimensional spacetimes, the line element takes
the following form

ds2 = −ψ(r)dt2 + dr2

ψ(r)
+ r2dϕ2, (1)

where ψ(r) is an arbitrary function of coordinate r which
should be obtained based on the field equations. In this paper,
we will consider four different cases for the metric function,
ψ(r). The first one describes static BTZ black holes [57]

ψ1(r) = −�r2 − m0, (2)

where � denotes the cosmological constant and m0 > 0 is
an integration constant proportional to the total mass of the
black hole. Note that here � < 0 is necessary to have a black
hole solution (for a discussion of the singularity at r = 0
see [58]). Geodesic motions of massive/massless particles
around the rotating uncharged BTZ black holes were inves-
tigated in Refs. [124,125]. In the mentioned papers, it was
shown that for the static case, there is no bound orbit for the
positive geometrical mass of the black holes (m0).

The line element (1) was generalized to the linearly
charged solution of BTZ black holes with the metric function
[95]

ψ2(r) = −�r2 − m0 − 2q2 ln

(
r

r0

)
. (3)

Both m0 > 0 and q are integration constants which are,
respectively, related to mass and electric charge of the black
hole solutions. In order to have an event horizon, here, �

should be negative. It is also worth mentioning that r0 is an
arbitrary constant with length dimension which is necessary
to obtain dimensionless argument for the logarithmic func-
tion. In general, r0 is different from the length scale related
to the cosmological constant (� ∝ −l−2), however, in [126],
it was shown that the equality r0 = l is necessary to avoid an
ensemble dependency.

The geodesic equation of charged BTZ black holes have
been studied in [107]. Since the charge term of the metric
function in Ref. [107] is positive, its related black hole has a
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Schwarzschild like horizon (spacelike singularity). Here, we
consider real valued charged BTZ black hole with two hori-
zon (timelike singularity). The roots of the metric function
(3) have been reported in Ref. [95]

r+ = r0 exp

⎛
⎜⎝−1

2

⎡
⎢⎣W

⎛
⎜⎝�r2

0e

(
−m0

q2

)

q2

⎞
⎟⎠ + m0

q2

⎤
⎥⎦

⎞
⎟⎠ , (4)

r− = r0 exp

⎛
⎜⎝−1

2

⎡
⎢⎣W

⎛
⎜⎝−1,

�r2
0e

(
−m0

q2

)

q2

⎞
⎟⎠ + m0

q2

⎤
⎥⎦

⎞
⎟⎠ , (5)

where W(x) denotes the principal branch of the Lambert W
function and W(−1, x) the branch with W(−1, x) ≤ −1.
The only physically acceptable solution of Eqs. (4) and ( 5)
is

r+ > 0 or r− > 0 so m0 ≥ q2

(
ln

(
−�r2

0

q2

)
+ 1

)

for � < 0. (6)

The metric function of BTZ black holes in massive gravity
is [90]

ψ3(r) = −�r2 − m0 + m2cc1r, (7)

where m0 > 0 as before and m, c and c1 are three constants
related to the massive gravity (see Ref. [90] for more details).
Here, we define a new massive parameter m′ to combine all
massive parameters, as follow

m′ = m2cc1. (8)

Note that in the massive case � < 0 is not necessary for
black hole solutions and we may as well consider � > 0.

Following Ref. [90], we find that by considering specific
values for different parameters, the metric function (7) may
have two roots or one extreme root (we are not interested in
naked singularity). In addition, since the constant c is posi-
tive, the sign of m′ depends on the positive or negative sign
of c1 (see [30] for more details). The uncharged BTZ black
holes in massive gravity have a curvature singularity at r = 0.

In the charged black holes in massive gravity, the metric
function ψ(r) is obtained as [90]

ψ4(r) = −�r2 − m0 + m′r − 2q2 ln

(
r

r0

)
. (9)

Following Refs. [79–81,90], one finds the mentioned met-
ric functions describe a three dimensional spacetime with
a singularity located at r = 0. It is also notable that the
singularity of the charged solutions is timelike, while it is
spacelike for uncharged ones (for more details regarding the
horizon and geometry of the mentioned spacetimes, we refer
the reader to [79–81,90]).

We will analyze all four cases introduced above in terms
of the motion of test particles, both for massless and massive
particles. Since we are working in static and spherical sym-
metric spacetimes, we can immediately obtain two conserved
quantities, energy and angular momentum, as

E = gtt
dt

dλ
= −ψ (r)

dt

dλ
,

L = gϕϕ

dϕ

dλ
= r2 dϕ

dλ
. (10)

The Lagrangian L of a test particle is given by

L = gμν

dxμ

dλ

dxν

dλ
= −ε = −ψ (r)

(
dt

dλ

)2

+ 1

ψ (r)

(
dr

dλ

)2

+ r2
(
dϕ

dλ

)2

, (11)

where ε takes the values 1 and 0 for massive and massless
particles, respectively, and λ is the affine parameter for mass-
less particles and the proper time for massive particles.

From this, we then find the following geodesic equations

(
dr

dλ

)2

= E2 − ψ(r)

(
L2

r2 + ε

)
, (12)

(
dr

dϕ

)2

= r4

L2

{
E2 − ψ(r)

(
L2

r2 + ε

)}
:= P(r). (13)

In addition, considering Eq. (12), an effective potential
can be introduced as

Veff = ψ (r)

(
L2

r2 + ε

)
. (14)

Before solving the equations of motion we analyze the
structure of possible types of geodesic motion for the test
particles. The major point in these analyzes is that Eq. (13)
implies P(r) ≥ 0 as a necessary condition for the existence
of a geodesic. The real roots of P(r) are related to intersection
points of E2 and Veff . Equivalently, from (14) the acceptable
region of motion is E2 ≥ Veff . The number of real roots of
P(r) characterize the shape of the orbit [100]. For a given
set of parameters, P(r) may have a certain number of roots.
By varying E and L , and fixing other parameters the number
of real roots and, therefore, the possible types of orbits, will
change [101].

3 Classification of geodesic motion

Changes in the possible orbit configurations happen if two
real zeros of P(r) merge to a double zero. The corresponding
constants of motion can be obtained by solving P(r) = 0 and
dP(r)
dr = 0 for E2 and L2 . Obtaining E2 and L2 for these

limit cases is therefore crucial for studying the motion of
particles. In all four cases introduced in Sect. 2, the function
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P(r) has a double root r = 0 for all parameters. Therefore,
we can introduce a new function P̃(r) by

P(r) = r2 P̃(r). (15)

Instead of searching for roots of P(r), we may solve

P̃(r) = 0 and d P̃(r)
dr = 0 for E2 and L2, for both massive

and massless particles.
The asymptotic behavior of P(r) is very important since

it determines whether particles have flyby or bound orbits.
A particle reaches infinity if P(r) is positive for r → ∞. In
the limit of large r we find

P(r) → sign (�)∞ for ε = 1 (16)

P(r) → sign

(
E2

L2 + �

)
∞ for ε = 0. (17)

For negative �, massive particles may therefore never
reach infinity.

3.1 Uncharged cases

In the uncharged case, the metric function is a polynomial
function. By considering P(r), we can discuss about possible
motions. In the uncharged cases that we study in this paper,
P(r) is a polynomial in r of order not more than 6. Therefore,
P̃(r) is of order not more than 4.

For all uncharged cases the following kinds of orbits can
be identified.

• Flyby orbits: r starts from ∞, then approaches a periapsis
r = rmin and goes back to ∞.

• Bound orbits: r changes between two boundary values
r1 ≤ r ≤ r2 with 0 < r1 ≤ r2 < ∞.

• Terminating bound orbits: r starts in (0, rm] for 0 < rm <

∞ and it falls into the singularity at r = 0.
• Terminating escape orbits: r comes from ∞ and falls into

the singularity at r = 0.

The polynomial P̃(r) can have up to four real zeros, which
together with the asymptotic behaviour could give rise to ten
different orbit configurations. It will however turn out that
P(r) → +∞ for r → ∞ always corresponds to an even
number of roots whereas P(r) → −∞ corresponds to an
odd number. Therefore, only the following five different orbit
configurations are possible:

• In region (0), P̃(r) has no positive real roots and P̃(r) >

0 for r ≥ 0. The possible orbit types are terminating
escape orbits.

• In region (1), P̃(r) has one positive real root r1 with
P̃(r) ≥ 0 for 0 ≤ r ≤ r1 with possible orbit types being
terminating bound orbits.

• In region (2), P̃(r) has two positive real roots r1 ≤ r2

with P̃(r) ≥ 0 for 0 ≤ r ≤ r1 and r2 ≤ r with possible
orbit types being flyby and terminating bound orbits.

• In region (3), P̃(r) has three positive real zeros r1 ≤ r2 ≤
r3 with P̃(r) ≥ 0 for 0 ≤ r ≤ r1 and r2 ≤ r ≤ r3 with
possible orbit types being bound and terminating bound
orbits.

• In region (4), P̃(r) has four positive real zeros r1 ≤ r2 ≤
r3 ≤ r4 with P̃(r) ≥ 0 for 0 ≤ r ≤ r1 and r2 ≤ r ≤
r3 and r4 ≤ r with possible orbit types being bound,
terminating bound and flyby orbits .

Note that the regions (1) and (3) only appear for � <

0, whereas the regions (0), (2), and (4) are only possible
if � > 0 in the case of massive particles (ε = 1), and if
(1/b2) + � > 0 in the case of massless particles (ε = 0).
Here b = L/E is the impact parameter.

3.2 Charged cases

For the charged case, the presence of the logarithmic function
spoils the polynomial form of P(r). Note that although P(r)
always has a double zero at r = 0, for the charged case,
the function P̃(r) approaches −∞ for r → 0. Therefore,
based on Bolzano’s theorem [127], since P̃(r) is continuous
in (0,+∞), if � > 0 there is always a real and positive root.

Since the logarithmic charge term changes the asymptotic
behaviour of P̃(r) for r → 0 from a positive finite value
to negative infinity, this suggests the presence of a small
additional root rextra as compared to the uncharged case. If
rextra < r− (where r− is inner horizon), then a flyby or bound
orbit will be reflected by the singularity and cross the horizons
multiple times and entering in a new copy of the universe.
These orbits are called two-world escape orbit and many-
world bound orbit, respectively (see [105,118,128,129] for
more detail).

Numerical calculations show that the following orbits can
be identified for the charged cases

• Flyby orbits: r starts from ∞, then approaches a periapsis
r = rmin for rmin > r+, and goes back to ∞.

• Bound orbits: r changes between two boundary values r1

≤ r ≤ r2, with r1, r2 > r+ or 0 < r1, r2 < r− where r+
is event horizon and r− the inner horizon.

• Many-world bound orbits: r changes between to bound-
ary values r1 ≤ r ≤ r2 , with 0 < r1 < r− and r2 > r+.

• Two-world escape orbits: with r > r1 and 0 < r1 < r−.

For the charged case, we can find six regions with different
number of roots which leads to following orbits:

• In region (0), P̃(r) has no real positive root with P̃(r)
< 0 and the motion is impossible .
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• In region (1), P̃(r) has one real positive root 0 < r1 < r−
with P̃(r) ≥ 0 for r1 ≤ r and possible orbit types are
two-world escape orbits.

• In region (2), P̃(r) has two real positive roots 0 < r1 <

r− < r+ < r2 with P̃(r) ≥ 0 for r1 ≤ r ≤ r2 and
possible orbit types are many-world bound orbits.

• In region (3), P̃(r) has three real positive roots 0 < r1 <

r− < r+ < r2 ≤ r3 with P̃(r) ≥ 0 for r1 ≤ r ≤ r2

and r3 ≤ r with possible orbit types being many-world
bound and flyby orbits.

• In region (4), P̃(r) has four real positive roots 0 < r1 <

r− < r+ < r2 ≤ r3 ≤ r4 with P̃(r) ≥ 0 for r1 ≤ r ≤ r2

and r3 ≤ r ≤ r4 with possible orbit types being bound
and many-world bound orbits.

• In region (5), P̃(r) has five real positive roots 0 < r1 <

r− < r+ < r2 ≤ r3 ≤ r4 ≤ r5 with P̃(r) ≥ 0 for
r1 ≤ r ≤ r2 and r3 ≤ r ≤ r4 and r3 ≤ r , with possible
orbit types being many-world bound, bound and flyby
orbits.

Note that region (2) is the only possible region for the
charged BTZ black holes. Region (4) only appears for particle
motion in the charged massive BTZ black hole with � < 0,
m′ > 0.

4 BTZ black holes

In this section, we study the test particle’s motion in charged
BTZ black holes. Although the geodesic motion of a particle
around the uncharged black hole has been studied before
[124,125], for the sake of comparison, we will first derive
the equations of motion for the uncharged BTZ black holes
before proceeding to the charged case.

4.1 Uncharged BTZ black holes

4.1.1 General classification of motion

Substituting Eq. (2) into Eq. (13), we obtain

Veff = −�εr2 − (m0ε + �L2) − m0L2

r2 , (18)

P(r) =
(

ε�

L2

)
r6 +

(
E2

L2 + � + εm0

L2

)
r4 + m0r

2. (19)

Let us first consider the case of massive test-particles with
ε = 1. Upon inspection of the effective potential (18) and
keeping in mind that � < 0, we see that it diverges to infinity
for r → ∞ and to minus infinity for r → 0. Its derivation
with respect to r is

dVeff

dr
= 2m0L2

r3 − 2�εr,

which is always positive for r > 0. Referring to (12), this
implies that all massive particle trajectories have some outer
turning point r0 > 0 and eventually have to cross the black
hole horizon at r+ = m0/

√−�.
The same result can be inferred from (19). By Descartes’

rule of signs, P(r) posses at most one positive real zero r0,
and P(r) → −∞ for r → ∞. Massive test particles are
therefore bound to the region 0 ≤ r ≤ r0.

Now let us turn to massless particles, ε = 0. Here, it is
convenient to rescale the affine parameter λ such that the
equation of motion simplifies to

(
dr

dλ

)2

= 1 − V̂eff = 1 − (−�r2 − m0)
b2

r2 ,

where b = L/E is the impact parameter. Then, the effective
potential V̂eff approaches −�b2 from below for r → ∞ and
diverges to minus infinity for r → 0. As for derivation with
respect to r of V̂eff ,

dV̂eff

dr
= 2m0b2

r3 ,

is positive for r > 0, this implies that a photon may reach
infinity if −�b2 < 1, and otherwise it is bounded by an
outer turning point r0. From this analysis, it is also clear that
circular orbits cannot exist.

4.1.2 Analytic solution of geodesic equations

We use the substitution r2 = 1
u and slightly rewrite Eq. (19)

to obtain∫ u

u0

du√
u2 + c1u + c2

= 2
√
m0(ϕ − ϕ0) , (20)

where c1 = E2

L2m0
+ �

m0
+ ε

L2 , c2 = ε�
m0L2 . This integral has

the solution

ln
(c1

2
+ u +

√
u2 + c1u + c2

)

− ln

(
c1

2
+ u0 +

√
u2

0 + c1u0 + c2

)

= 2
√
m0(ϕ − ϕ0) . (21)

Equivalently, we find u as a function of ϕ,

u(ϕ) =
(
L4�2 + 2�L2

(
E2 − εm0

) + (
E2 + εm0

)2

8L4m2
0ξ

)

×e2
√
m0(ϕ0−ϕ) + 1

2
e−2

√
m0(ϕ0−ϕ) − c1

2
, (22)

where ξ is related to u0 as

ξ = c1

2
+ u0 +

√
u2

0 + c1u0 + 4c2. (23)
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(a)Terminating bound orbit in region (1) with E2 = 4
and L−2 = 0.018

(b)Terminating escape orbit in region (0) with E2 = 6
and L−2 = 0.018

Fig. 1 Null geodesics for the uncharged BTZ black hole with � = −0.1 and m0 = 2. The dash dotted line represents the horizon

Therefore, r(ϕ) is

r(ϕ) = 1√
u(ϕ)

, (24)

which is valid for both timelike and lightlike geodesics.
All the possible types of null geodesics in BTZ black holes

are plotted in Fig. 1. Types of orbits mentioned in these plots
have been discussed in Sect. 3.

4.2 Charged BTZ black holes

For the line element (1), the linearly charged solution of BTZ
black holes has been obtained as [95]

ψ2 (r) = −�r2 − m0 − 2q2 ln

(
r

r0

)
, (25)

so from Eq. (13), P(r) and Veff are

P(r) =
(

ε�

L2

)
r6

+
(
E2

L2 + � + ε

L2

{
m0 + 2q2 ln

(
r

r0

)})
r4

+
(

2q2 ln

(
r

r0

)
+ m0

)
r2. (26)

Veff =
(

−�r2 − m0 − 2q2 ln

(
r

r0

))(
L2

r2 + ε

)
. (27)

In contrast to the uncharged case, here we can find circular
orbits, which are given by dr

dλ
= 0 and d2r

dλ2 = 0. These two

conditions are equivalent to P(r) = 0 and dP
dr = 0. We can

solve these two equations for the squared energy and angular
momentum as

E2 = −
(
�r2 + 2q2 ln

(
r
r0

)
+ m0

)2

2q2 ln
(

r
r0

)
− q2 + m0

, (28)

L2 = r2
(
�r2 + q2

)
2q2 ln

(
r
r0

)
− q2 + m0

, (29)

for massive particles (ε = 1). Let us discuss these two equa-
tions. From Eq. (28), it is evident that E2 > 0 is valid only
for a negative denominator and thus

2q2 ln

(
r

r0

)
− q2 + m0 < 0

⇔ 0 < r < 	 = r0 exp

(
1

2

[
1 − m0

q2

])
. (30)

In addition, the numerator of Eq. (29) has to be negative,
and therefore, keeping in mind that � < 0

r2
(
�r2 + q2

)
< 0 ⇔ 0 <

|q|√−�
< r. (31)

Considering the constraints (30) and (31), simultaneously,
we find that circular orbits exist if the following relation is
satisfied,

|q|√−�
< 	 so m0 < q2

(
ln

(
−�r2

0

q2

)
+ 1

)
. (32)
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(a)Many-world bound orbit in region (2) with E2 = 30
and L−2 = 0.008

Fig. 2 Timelike geodesic in the charged BTZ black hole with � =
−0.1 , m0 = 2, q = 1.5 and r0 = 1.08. The dash dotted lines represent
the horizons

It is notable that such inequality implies the absence of
horizon in the domain r > 0. This confirms that for the
charged BTZ spacetime circular orbits may only exist around
naked singularities, but not for the case of a black hole.

Therefore, similar to the previous section, P(r) has the
same number of roots in each combination of E , L and con-
stant parameters. For r 
= r0, we can adjust arbitrary combi-
nation of E , L and other constant parameters, in which we
obtain two real positive roots for P(r). However, for r = r0,
the uncharged case is recovered in which P(r) has always
one root. All the possible types of timelike orbits have been
plotted in the Fig. 2. Properties of the orbits mentioned in
these figures have been presented in Sect. 3.

Let us now turn to massless particles. In this case (ε = 0)
circular orbits exist for

b2 = − 	2

�	2 + q2 , (33)

r = 	, (34)

where b = L/E is the impact parameter. Due to the fact
that 	 is real, in order to have physically acceptable motion
for the massless particles, the denominator of Eq. (33) must
be negative. Therefore, the following constraint must hold,
keeping again in mind that � < 0,

|q|√−�
< 	. (35)

(a)Many-world bound orbit in region (2) with E2 = 10
and L−2 = 0.005

Fig. 3 Null geodesic in the charged BTZ black hole with � = −0.1,
m0 = 2, q = 1.5 and r0 = 1.08. The dash dotted lines represent the
horizons

This results in the same inequality (32) as for the case of
massive particles which indicates absence of an event hori-
zon.

The many-world bound orbit of null geodesics are shown
in Fig. 3.

5 Uncharged Massive BTZ black hole

5.1 General classification of motion

The metric function for the BTZ black holes in massive grav-
ity is presented in Eqs. (7) and (8) [90]. By substituting Eqs.
(7) and (8) into Eqs. (13) and (14), we have

Veff = (−�r2 − m0 + m′r)
(
L2

r2 + ε

)
, (36)

P(r) =
(

ε�

L2

)
r6 −

(
εm′

L2

)
r5

+
(
E2

L2 + � + εm0

L2

)
r4 − m′r3 + m0r

2. (37)

Let us first discuss massive particles (ε = 1). From the
form of P(r), according to the Descartes rule of signs, it
is clear that for � < 0, there may be one or three positive
real zeros, whereas for � > 0 there are four, two, or no
positive real zeros, depending on the values of E and L as
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well as the sign of m′. This points to the existence of circular
orbits, which are given by dr

dλ
= 0 and d2r

dλ2 = 0. These two

conditions are equivalent to P(r) = 0 and dP
dr = 0. We may

solve these two equations for E2 and L2, which gives for
massive particles (ε = 1)

E2 = −2
(
�r2 + m0 − m′r

)2

2m0 − m′r
, (38)

L2 = −
(
m′ − 2�r

)
r3

2m0 − m′r
. (39)

It is clear from the expression for E2 that circular orbits
can only exist if 2m0 − m′r < 0, which is for r > 0 only
possible if m′ > 0, which then gives us r > 2m0/m′. The
equation (39) for L then implies that m′ − 2�r > 0 has to
hold, which is automatically fulfilled for � < 0. For � > 0
we find r < m′/(2�).

The circular orbit is stable if its radius corresponds to a
maximum of P(r), i.e. if the second derivative of P(r) is neg-
ative. The second derivative of P(r) together with Eqs. (38)
and (39) reads

d2P

dr2 = 2
2[3�m′2 + (8�m0 + (m′2)r − 3m0m′]

m′ − 2�r
.

This expression can be solved for the radius of the circular
orbit,

rc = 8�m0 + (m′2 ± √[(m′2 − 16�m0][(m′2 − 4�m0]
6�m′ .

(40)

For � < 0, we find one positive zero (for the negative
sign before the root in (40)) with stable orbits for larger radii,
which implies that an innermost stable circular orbit (ISCO)
exists. The radius of this ISCO approaches 3m0/m′ for small
� and 8m0/3m′ for large negative �. We plotted the ISCO
for fixed m0 in Fig. 4.

Interestingly, for � > 0 stable orbits only exist if rc from
(40) is real, that is, if and only if (m′2 > 16�m0. Note that
(m′2 < 4�m0 can be rewritten as m′/(2�) < 2m0/m′,
which implies that no circular orbits exist according to our
discussion of (38) and (39) above. Summarized, for m′ > 0
and � > 0 circular orbits exist for r ∈ [2m0/m′,m′/(2�)],
and may be stable if m′/(2�) > 8m0/m′. Then the circular
orbits are stable in between the two radii given by (40) and
we have an innermost and an outermost stable circular orbit.
We show the important radii for the case m′ > 0, � > 0 in
Fig. 5.

Now let us turn to massless particles (ε = 0), where we
introduce b = L/E as the impact parameter. We then see
that the leading coefficient of P(r) may change its sign for
1/b2 = −�. If 1/b2 < −� the polynomial P(r) diverges to
−∞ for r → ∞ which implies that the photon may not reach

infinity. Moreover, P(r) may have at most one positive real
zero (r0), and therefore, it is bound in a region 0 ≤ r ≤ r0.
On the other hand, if 1/b2 > −�, then P(r) is positive for
r → ∞, and one finds the photon may reach infinity, and
P(r) has two or no positive real zeros. This again points to
the existence of a circular orbit for this case. If we solve
the two conditions P(r) = 0 and dP

dr = 0 for the impact
parameter b and the radius of the circular orbit rc, we find

b2 = − 4m0

4�m0 − m′2 , (41)

rc = 2m0

m′ . (42)

From Eq. (41) for b we infer that 4�m0 − m′2 < 0, or
equivalently � < m′2/(4m0) is necessary for the existence of
circular orbits. This circular orbit is stable if it corresponds to
a maximum of the polynomial P(r). For its second derivative
with respect to r , we find

d2P

dr2 = 2m0 > 0, (43)

which implies that the circular photon orbit is unstable. Inter-
estingly, the radius of the photon orbit only depends on the
ratio m0/m′, but not on � or the individual parameters m0

and m′ . For � this is to be expected, as it does not enter
as an independent parameter in the equation of motion just
as in four dimensional Schwarzschild-de Sitter spacetime,
but this seems surprising for the independent parameters m0

and m′. However, we correctly recover that the circular orbit
vanishes (its radius shifts to infinity) for m′ → 0.

The results of Eqs. (38), (39) and ( 41) for both massive
and massless particles are given in Figs. 6, 7 and 8. Additional
properties of these figures have been presented in Sect. 3.

5.2 Analytic solution of geodesic equations

Here, we discuss the analytical solution of Eq. (13). The
function P(r) in given in Eq. (37) is a polynomial of degree
6, which can be written in the following form

(
dr

dϕ

)2

=
6∑

i=2

air
i = P(r) (44)

where the coefficients ai are

a6 = ε�

L2 , a5 = −εm′

L2 , a4 = E2

L2 + � + εm0

L2 ,

a3 = −m′, a2 = m0. (45)

By substitution r = u−1 + rM into Eq. (13) , where rM is
a root of P(r), for instance rM = 0, we find

(
du

dϕ

)2

= P(u) =
3∑

j=−2

b ju
j ,
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Fig. 4 Innermost stable
circular orbit in the uncharged
BTZ black hole in massive
gravity with m0 = 1. For the left
plot we fixed m′ = 1, which
implies that circular orbits exist
for r > 2, and are stable above
the solid red line. In the right
plot � = −0.01. Circular orbits
exist above the dashed blue line
and are stable above the solid
red line. The dotted black line
indicates the horizon

Fig. 5 Regions of stable and
unstable circular orbits in the
uncharged massive BTZ black
hole with m0 = 1 and positive
�. The dashed blue lines
enclose the region of circular
orbits, and the solid red lines
indicate the innermost and
outermost stable circular orbit.
The dotted black lines indicate
the horizons. On the left m′ = 1,
on the right � = 0.04

b j = 1

(4 − j)!
d(4− j)P(r)

dr (4− j)

∣∣∣∣∣
r=rM

, (46)

and the coefficients b j can be calculated as

b3 = 6
�ε r5

M

L2 − 5
m′ ε r4

M

L2

+ 4

(
L2� + E2 + ε m0

)
r3
M

L2 − 3m′ r2
M + 2m0 rM ,

b2 = 15
�ε r4

M

L2 − 10
m′ ε r3

M

L2

+ 6

(
L2� + E2 + ε m0

)
r2
M

L2 − 3m′ rM + m0,

b1 = 20
�εr3

M

L2 − 10
m′ ε r2

M

L2

+ 4

(
L2� + E2 + ε m0

)
rM

L2 − m′,

b0 = 15
�ε r2

M

L2 − 5
m′ ε rM

L2 + L2� + E2 + ε m0

L2 ,

b−1 = 6
�ε rM
L2 − m′ ε

L2 , b−2 = �ε

L2 . (47)

Now, we are in a position to obtain analytic solutions of
Eq. (46 ) for massless and massive particles.

5.2.1 Null geodesics (ε = 0)

By substituting (ε = 0) into Eq. (46), it transforms to the
following

(
du

dϕ

)2

= P(u) =
3∑
j=0

α j u
j , (48)

where α j = b j
∣∣
ε=0.

The roots of Eq. (48) lead to an elliptic type differential
equation. Another substitution u = 1

α3
(4y − α2

3 ) transforms
P3(u) into the following form

(
dy

dϕ

)2

= 4y3 − g2y − g3, (49)

in which the coefficients g2 and g3 are

g2 = 1

16

(
4

3
α2

2 − 4α1α3

)
,
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Fig. 6 The regions of different
types of geodesic motions for
massive particles in the
uncharged massive BTZ black
hole with m0 = 2 and
m′ = 2.54 for positive �. The
numbers in parentheses indicate
the number of real positive roots
(vertical dashed line indicates
the location of divergency)

(a) (b)

Fig. 7 The regions of different
geodesic motions for massive
particles in the uncharged BTZ
black hole in massive gravity
with m0 = 2 and m′ = 2.54 for
negative �. The numbers in
parentheses indicate the number
of real positive roots

(3)
(1)

(a) (b)

Fig. 8 The regions of different geodesic motions for massless particles
in the uncharged BTZ black hole in massive gravity with m0 = 2 and
m′ = 2.54. The numbers in parentheses indicate the number of real
positive roots

g3 = 1

16

(
1

3
α1α2α3 − 2

27
α3

2 − α0α
2
3

)
. (50)

It is known that the solution of Eq. (49) is the Weierstrass
function ℘(ϕ) in the following form

y = ℘(ϕ − ϕin), (51)

where

ϕin = ϕ0 +
∫ ∞

y0

dy√
4y3 − g2y − g3

,

y0 = 1

4

(
α3

r0 − rM
− α2

3

)
, (52)

in which r0 and ϕ0 are the initial values of the differential
equation. Therefore, the general solution of Eq. (48) is

r (ϕ) = α3

4℘(ϕ − ϕin) − α2
3

+ rM , (53)

which is in agreement with the result of Ref. [107].
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Fig. 9 Timelike geodesics in
the uncharged BTZ black hole
in massive gravity with
� = 0.01, m′ = 2.54 and
m0 = 2. The dashed dot line
represents horizons

(a) Terminating escape in region (0) withE2 = 174
and L−2 = 0.023

(b) Terminating bound orbit (2) withE2 = 36 and
L−2 = 0.01

(c) Flyby orbit (2) withE2 = 36 and L−2 = 0.01 (d) Terminating bound orbit in region (4) with
E2 = 46 and L−2 = 0.015

(e) Bound orbit in region (4) withE2 = 54.95 and
L−2 = 0.015

(f) Flyby orbit in region (4) withE2 = 46 and
L−2 = 0.015
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(a)Terminating bound orbit in region (2) with
E2 = 35 and L−2 = 0.007

(b) Flyby orbit in region (2) withE2 = 35 and
L−2 = 0.007

(c) Terminating escape orbit in region (0) with
E2 = 236 and L−2 = 0.004

Fig. 10 Null geodesics in the uncharged BTZ black hole in massive gravity with � = 0.01, m′ = 2.54 and m0 = 2. The dashed dot line represents
horizon

5.2.2 Timelike geodesics (ε = 1)

By substituting (ε = 1) into Eq. (46), it can be transformed
to

(
u
du

dϕ

)2

=
5∑
j=0

β j u
j = R(u),

β j = 1

(6 − j)!
d(6− j)P(r)

dr (6− j)

∣∣∣∣∣
r=rM

, (54)

where β j = b j+2
∣∣
ε=1. Equation (54) is hyperelliptic type

and its analytical solution is given by the Kleinian sigma
function [101,106,130]

u (ϕ) = −σ1

σ2
(ϕσ ) , (55)

in which σi (z) denotes the derivative of the Kleinian sigma
function with respect to the i th component of z

σ (z) = Ce− 1
2 z

tηω−1zϑ [g, h]
(
(2ω)−1 z; τ

)
, (56)
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(a)Terminating bound orbit in region (1) with
E2 = 174 and L−2 = 0.023

(b) Bound orbit (3) with E2 = 36 and L−2 = 0.01

Fig. 11 Timelike geodesics in the uncharged BTZ black hole in massive gravity with � = −0.01, m′ = 2.54 and m0 = 2. The dashed dot line
represents horizons

Fig. 12 The regions of
different geodesic motion for
massless particle in the charged
BTZ black hole in massive
gravity with m0 = 1, m′ = 1
and r0 = 1. On the left q2 = 1,
on the right � = −0.1. The red
dashed line corresponds to
b−2 + � = 0, where the
asymptotic for r → ∞ switches
sign. The numbers in
parentheses indicate the number
of real positive roots

Fig. 13 The regions of
different geodesic motion for
massive particle in the charged
BTZ black hole in massive
gravity with m0 = 1, m′ = 1,
r0 = 1, and q2 = 1. On the left
� = −0.01 and on the right
� = 0.001. The numbers in
parentheses indicate the number
of real positive roots
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(a)Many-world bound orbit in region (3) withE2 = 73
and L−2 = 0.0015

(b) Flyby orbit (3) with E2 = 73 and L−2 = 0.0015

(c)Many-world bound orbit in region (5) with
E2 = 110 and L−2 = 0.0011

(d) Bound orbit in region (5) with E2 = 110.5 and
L−2 = 0.0011

(e) Flyby orbit in region (5) withE2 = 110 and
L−2 = 0.0011

(f)Two-world escape orbit in region (1) withE2 = 157
and L−2 = 0.0014

Fig. 14 Timelike geodesics in the charged BTZ black hole in massive gravity with � = 10−2, m0 = 2, m′ = 2.54, q = 1.5 and r0 = 0.95. The
dashed dot lines represent horizons
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(a)Many-world bound orbit in region (3) with E2 = 30
and L−2 = 0.03

(b) Flyby orbit (3) with E2 = 30 and L−2 = 0.03

(c)Two-world escape orbit in region (1) with
E2 = 34.5 and L−2 = 0.027

Fig. 15 Null geodesics in the charged BTZ black hole in massive gravity with � = 10−5, m0 = 2, m′ = 3.02, q = 0.6 and r0 = 0.93. The dashed
dot lines represent horizons

where
(

2ω, 2ω
′)

is the period matrix,
(

2η, 2η
′)

is the period

matrix of the second kind, C is a constant that can be given
explicitly but does not enter (55) and τ = ω−1ω

′
. The theta

function is defined as follow

ϑ [g, h] (z; τ) =
∑
m∈Z2

eiπ(m+g)t (τ (m+g)+2z+2h), (57)

in which g, h are two dimensional vectors related to the
vector of Riemann constants. They are defined as g =
(1/2, 1/2), h = (0, 1/2). The argument ϕσ in (55) is defined

as

ϕσ =
(

f (ϕ − ϕin)

ϕ − ϕin

)
, (58)

where f is given by the condition σ (ϕσ ) = 0. The constant
ϕin reads

ϕin = ϕ0 +
∫ ∞

u0

udu√
R(u)

, (59)
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and only depends on the initial values ϕ0 and u0. The general
solution of the radial coordinate r is given by

r (ϕ) = −σ2

σ1
(ϕσ ) + rM . (60)

Equations (53) and (60) completely describe the motion
of massive and massless particles in this spacetime. All the
possible type of orbits in BTZ black holes of massive gravity
have been plotted in Figs. 9, 10 and 11. Types of orbits men-
tioned here have been introduced in the total classification
Sect. 3.

6 Charged black holes in massive gravity

6.1 General classification of motion

In the charged black holes in massive gravity, the metric
function ψ(r) is obtained as [90]

ψ(r) = −�r2 − m0 + m′r − 2q2 ln

(
r

r0

)
. (61)

From Eq. (13), we then find P(r) as

P(r) =
(

ε�

L2

)
r6 −

(
εm′

L2

)
r5

+
(
E2

L2 + � + ε

L2

{
m0 + 2q2 ln

(
r

r0

)})
r4

−m′r3 +
{
m0 + 2q2 ln

(
r

r0

)}
r2. (62)

Again, we can look for circular orbits by solving P(r) =
0 and dP(r)

dr = 0 for the squared energy E2 and angular
momentum L2. For massive particles (ε = 1) we find

E2 =
2

(
�r2 + 2q2 ln

(
r
r0

)
+ m0 − m′r

)2

m′r − 2m0 + 2q2 − 4q2 ln
(

r
r0

) , (63)

L2 = − r2
(
2�r2 − m′r + 2q2

)
m′r − 2m0 + 2q2 − 4q2 ln

(
r
r0

) . (64)

As expected, for q = 0 Eqs. (63) and (64) reduce to
Eqs. (38) and (39), respectively, and form′ = 0 they reduce to
Eqs. (28) and (29). From equation (63) we infer the inequality

R := m′r − 2m0 + 2q2 − 4q2 ln

(
r

r0

)
> 0. (65)

For m′ > 0 the function R diverges to infinity at r = 0
and r = ∞, and has only a single extrema, a minimum at

r = 4q2/m′. It may have two zeros 	m,0 < 	m,−1 given by

	m,0 := r0 exp

(
1

2
− m0

2q2 − W

(−m′r0

4q2 e
1
2 − m0

2q2

))
,

(66)

	m,−1 := r0 exp

(
1

2
− m0

2q2 − W

(
−1,

−m′r0

4q2 e
1
2 − m0

2q2

))
.

(67)

If m′ ≤ 0 the denominator R is monotonically decreasing
on (0,∞) and introduces therefore an upper bound on r given
by r < 	m,0. We can determine the relative position of the
zeros of R and the horizons: let rH be one of the horizons,
i.e. ψ4(rH ) = 0. Then we find from this

ψ4(rH ) = 0

⇒ ln

(
rH
r0

)
= 1

2q2 (−�r2
H − m0 + m′rH )

⇒ R(rH ) = −m′rH + 2q2 + 2�r2
H = − 1

rH

dψ4

dr

∣∣∣∣
r=rH

.

(68)

Therefore, R is positive at the inner horizon and nega-
tive at the event horizon. For � > 0 a cosmological hori-
zon also exists, where R is positive again. We conclude that
rH,inner < 	m,0 < rH,event < 	m,−1 < rH,cosmo, if the
respective horizons and zeros of R exist.

We can directly infer that for � < 0 and m′ ≤ 0 circular
orbits outside of a black hole cannot exist, as for charged
BTZ black holes discussed in Sect. 4.2 and uncharged BTZ
black holes in massive gravity discussed in Sect. 5.

In addition, the nominator in (64) needs to be negative.
For � < 0 this implies a lower bound on r given by

r ≥ m′ − √
(m′2 − 16�q2

4�
. (69)

Note that this bound is the minimum of ψ4 and, therefore,
is smaller than the event horizon. For � < 0 and m′ > 0
circular orbits around a black hole exist at r > 	m,−1, as in
the case of uncharged BTZ black holes in massive gravity
discussed in Sect. 5.

From the condition that the nominator in (64) has to be
negative, in the case � > 0 circular orbits are not allowed
for m′ ≤ 0, and have only a limited range for m′ > 0 given
by

m′ − √
(m′2 − 16�q2

4�
≤ r ≤ m′ + √

(m′2 − 16�q2

4�
. (70)

Note that the two bounds correspond to the minimum and
the maximum of the metric function ψ4. Therefore, it only
remains to show that 	m,−1 is smaller than the upper bound
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in (70): as r∗ := 	m,−1 is a zero of R we find

ln

(
r∗
r0

)
= 2q2 + m′r∗ − 2m0

4q2

⇒ ψ4(r∗) = −�r2∗ − m0 + m′r∗

+ 1

2
(2m0 − 2q2 − m′r∗) (71)

= −1

2
(2�r2∗ − m′r∗ + 2q2) = 2

r∗
dψ4

dr

∣∣∣∣
r=r∗

. (72)

It is clear that ψ4 is positive at r∗ = 	m,−1 which implies
that r∗ is smaller than the upper bound in (70). We therefore
find circular orbits for � > 0 and m′ > 0 in the range

	m,−1 < r ≤ m′ + √
(m′2 − 16�q2

4�
. (73)

Let us now turn to massless particles (ε = 0). We find for
the circular orbits

b2 = r2
c

ψ4(rc)
, (74)

where rc is a solution of R = 0, see Eq. (65). Therefore,
again for m′ < 0 there is no circular photon orbit outside
of a black hole. If m′ > 0 a circular photon orbit exists at
r = 	m,−1. In the limit m′ = 0 this reduces to the results
of Sect.4.2, and for q = 0, the zero of R is r = 2m0/m′
as in Sect. 5. The circular photon orbit is always unstable: if
we insert b2 and r into the second derivative of P , we find
stability for

m′ >
4q2

r0
e

m0
2q2 − 3

2 , (75)

which is however incompatible with a real 	m,−1.
The results of Eqs. (63), (64) and (74) for both massive

and massless particles are given in Figs. 12 and 13. (For
more details we refer the reader to Sect. 3). We observe that
a variation of q as well as the value and sign of cosmological
constant have considerable effect on the geodesic motion
of massless particles. More clearly, we find that increasing
the cosmological constant or the charge leads to increasing
the possibility of two world escape obits rather than flyby
and many world bound orbits. According to these figures,
for some values of the charge or the cosmological constant,
there is no physical motion for large values of b. For massive
particles, we see that the possible types of orbits are rather
different for � < 0 and � > 0. In the case � < 0, it is
impossible to reach radial infinity and bound orbits outside
the horizons do not exist. On the other hand, for � > 0 all
parameter combinations allow orbits reaching infinity and
bound orbits outside the horizons.

6.2 Numerical solution of geodesic equations

Now, we are in a position to discuss both null and timelike
geodesics of charged BTZ solutions in massive gravity. Since
the metric function is no longer a polynomial function, to our
knowledge, there is no analytical solution for the charged
cases. Therefore, we use the Runge–Kutta–Fehlberg numer-
ical method. It is worthwhile to mention that we have checked
this method for uncharged cases which we have analytical
solutions, and the results were the same with high accuracy.

All the possible type of orbits in charged BTZ black holes
in massive gravity with a positive cosmological constant are
plotted by using the numerical analysis in Figs. 14 and 15
(see also Sect. 3 for more details). We restricted to positive
� due to the interesting possibility of bound orbital motion.

As already familiar from the case of the charged BTZ
solution, for both timelike and null geodesics, we find many-
world bound orbits as well as the two-world escape orbits,
that cross both the inner and the event horizon. For a pos-
itive cosmological constant, it is well known from four-
dimensional black holes like the Schwarzschild-de Sitter
solution, that flyby orbits can exist that are deflected from the
cosmological barrier. This can be seen in Fig. 14b, e, where a
massive test particle approaches the black hole rather straight
and is reflected back without revolving around the black hole.

7 Summary and conclusions

In this paper, we analyzed the geodesic motion in (un)charged
BTZ black hole and its generalization to massive gravity. We
provided a complete classification of the possible types of
geodesic motion for the four different spacetimes considered
here, thereby investigating the effects of the various param-
eters of the metric on the geodesics. In particular, to our
knowledge for the first time, we investigated the geodesic
motion in a spacetime whose equation of motion for test
particles has a non-polynomial structure. Moreover, we pre-
sented analytical solutions for the equations of motion for the
uncharged cases, and used a Runge–Kutta–Fehlberg method
for the spacetimes of the charged black holes, where an ana-
lytical solution could not be found.

While the uncharged BTZ black hole has rather a poor
variety of orbital motions, in particular lacking bound orbital
motion outside the horizon, the inclusion of a charge intro-
duces a potential barrier within the inner horizon. This bar-
rier reflects particles and light such that they have to cross
the inner horizon for a second time, thereby entering another
copy of the universe. This behaviour is known from some
four-dimensional spacetimes, and the corresponding orbits
are called two-world flyby or many-world bound orbits,
respectively.
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In three-dimensional massive gravity, the black hole solu-
tions show an even richer structure of geodesic motion. First,
we are no longer restricted to a negative cosmological con-
stant, which gives rise to new types of geodesics. Second,
the massive gravity parameter m′ introduced in Eq. (8) fur-
ther enriches the structure of geodesic motion. We found that
m′ > 0 is a necessary condition for the existence of circular
orbits for both uncharged and charged black holes.

For the uncharged BTZ black hole in massive gravity, in
addition to the general classification of geodesic motion, we
derived the radius of the innermost stable and (for � > 0)
the outermost stable circular orbit. The results are plotted
in Figs. 4 and 5. In particular, it was pointed out that stable
bound orbital motion outside the event horizon is possible,
and we showed an example in Fig. 9. Moreover, we calculated
the radius of the unstable photon sphere, that is an important
radius for the calculation of the shadow of the black hole.

Finally, for the most general case discussed in this paper,
the charged BTZ black hole in massive gravity, we derived the
range of radii where circular orbits may exist. Based on this,
we presented a complete classification of geodesic motion.
However, due to the complicated structure of the equations,
we did not determine the innermost stable circular orbit, and
leave this point for future research.
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