
Eur. Phys. J. C (2020) 80:493
https://doi.org/10.1140/epjc/s10052-020-8060-1

Regular Article - Theoretical Physics

Spinning gyroscope in an acoustic black hole: precession effects
and observational aspects

Chandrachur Chakraborty1,a , Parthasarathi Majumdar2,b

1 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
2 Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

Received: 16 March 2020 / Accepted: 20 May 2020 / Published online: 2 June 2020
© The Author(s) 2020

Abstract The exact precession frequency of a freely-
precessing test gyroscope is derived for a 2 + 1 dimensional
rotating acoustic black hole analogue spacetime, without
making the somewhat unrealistic assumption that the gyro-
scope is static. We show that, as a consequence, the gyro-
scope crosses the acoustic ergosphere of the black hole with a
finite precession frequency, provided its angular velocity lies
within a particular range determined by the stipulation that
the Killing vector is timelike over the ergoregion. Special-
izing to the ‘Draining Sink’ acoustic black hole, the preces-
sion frequency is shown to diverge near the acoustic horizon,
instead of the vicinity of the ergosphere. In the limit of an
infinitesimally small rotation of the acoustic black hole, the
gyroscope still precesses with a finite frequency, thus con-
firming a behaviour analogous to geodetic precession in a
physical non-rotating spacetime like a Schwarzschild black
hole. Possible experimental approaches to detect acoustic
spin precession and measure the consequent precession fre-
quency, are discussed.

1 Introduction

In general relativity, spacetime curvature causes the spin of
a freely-precessing gyroscope travelling along a geodesic to
undergo a precession known as ‘geodetic precession’ or ‘de-
Sitter (dS) precession’, as was first predicted by Willem de
Sitter in 1916 [1,2]. If the spinning test object (gyroscope)
happens to move in a stationary axisymmetric spacetime like
a rotating black hole, it undergoes an additional precession
known as Lense–Thirring precession arising due to the drag-
ging of inertial frames by the rotating black hole spacetime.
This latter precession persists even if the trajectory of the
gyroscope is not geodesic [3–8]. Therefore, the complete pre-
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cession frequency of a test gyroscope ought to be computed
taking all these effects into account. In a recent paper [9],
the spin precession formulation of a test gyroscope, valid
in any general stationary and axisymmetric spacetime, has
been derived. That work was motivated by the need to distin-
guish a superspinar (also known as Kerr naked singularity)
[10,11] from a black hole using the spin precession of a test
gyroscope. The general formalism [9] stipulates that station-
ary rotating gyroscopes can avoid any divergence in their
precession frequency at the ergosphere. Such a divergence is
known to be an artifact of test gyroscopes that are assumed to
be static [10,12]. From a realistic standpoint, an ordinary test
object following a timelike trajectory outside the ergosphere,
can scarcely remain static inside the spacelike ergoregion of
a rotating black hole.

The direct observation of such precession effects is
extremely challenging technically, if not outright impossible,
in strong-gravity astrophysical phenomena. Acoustic black
hole analogues offer an alternative option to probe a gen-
eral relativistic astrophysical phenomenon [13,14] in a com-
paratively accessible laboratory setup [15–17]. An incipi-
ent exploration of the acoustic Lense–Thirring precession
has been performed recently [18] for Draining Sink (DS)
vortex flows described in terms of rotating acoustic black
hole analogues. There, it has been shown that the acous-
tic LT precession frequency increases unboundedly as one
approaches the ergosphere. This is very likely an artifact, as
mentioned, of considering test gyroscopes which are static
inside the ergoregion. The artifactual aspects of the previous
assay are discarded here by considering instead test gyro-
scopes which undergo rotation as they move in the acoustic
black hole geometry. The range of allowed angular velocities
of the rotating gyroscope is determined by requiring that the
Killing vector field K = ∂t + �∂φ now remains timelike
throughout the ergoregion. In the case of the DS acoustic
black hole, therefore, one seeks to reconsider the precession
of a test gyroscope. As we shall show, a gyroscope is seen to
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cross the ergosphere without any spectacular enhancement in
its precession frequency. This requirement restricts possible
angular velocities of the test gyroscope to lie within a certain
range. The enhancement of the precession frequency reap-
pears however, as we shall demonstrate, when the gyroscope
approaches the acoustic event horizon, corresponding to the
Killing vector field K turning null on the acoustic horizon.

A key question in acoustic analogue gravity work is of
course that of experimental or observational accessibility of
such precession effects. In normal inviscid, barotropic fluids,
the primary excitations are the phonon perturbations which
usually are assumed to have no spin polarization. Thus, how
does one conceive of a spinning test gyroscope using such
phonons ? There is apparently no easy answer to this ques-
tion. In Ref. [18], it has been suggested that if the phonons
representing acoustic perturbations inside the fluid have an
intrinsic spin, in addition to their orbital angular momen-
tum, which is free to precess around the rotation axis of the
background flow, one can study such a ‘spin precession’ as a
gyroscopic precession. The notion of an intrinsic phonon spin
has been proposed by Zhang and Niu [19] for spin relaxation
in ionic crystals exposed to uniform magnetic fields, based
on the Raman spin–phonon interaction which is linear in the
phonon momentum [20]. An elaboration of this notion of
phonon spin has also been presented by Garanin and Chud-
novsky [21]. Another possible scenario which can be useful
to observe the ‘spin precession’, involving spinor conden-
sates [22,23]. In this paper, we describe another observa-
tional scenario which involves a change of the fluid itself to a
biologically active nematic fluid : bacteria or active particles
with a rod-like structure swimming through a solvent fluid.
Recently, the first-ever analysis of hydrodynamics of such
nematic fluids, from the acoustic analogue gravity stand-
point, has just appeared as an e-print [24].

We organize the paper as follows : we derive the gen-
eral spin precession formalism in acoustic DS geometry in
Sect. 2. Section 3 is devoted to show that a spin can precess
even in the ‘non-rotating’ acoustic analogue spacetime. We
elaborate on experimental and observational scenarios for
kinematic gravitational precession effects in Sect. 4. Finally,
we conclude in Sect. 5.

2 General formalism of spin precession in (2+1)D
geometry

In a rotating spacetime, an observer can remain still without
changing its location with respect to infinity, only outside the
ergoregion. Such an observer is called as a static observer
and its four-velocity is written as: uα

static = u0
static(1, 0, 0, 0).

In contrast, an observer can hover very close the horizon
of a rotating black hole, if the observer rotates around the

black hole with respect to infinity. Such observer is called
as a stationary observer and its four-velocity is written as:
uα

stationary = u0
stationary(1, 0, 0,�) [9], where � is the angular

velocity of the observer. The general spin precession fre-
quency of a static gyro relative to a Copernican frame [3,18]
was derived for a four dimensional stationary spacetime in
[3], and it has recently been extended for a stationary gyro
in [9].

Let us now consider a test gyroscope, which moves along
a Killing trajectory in a stationary (2 + 1)D spacetime. The
spin of such a test spin undergoes Fermi–Walker transport
along the 4-velocity of the test body [3]

u = (−K 2)−
1
2 K , (1)

where K is the timelike Killing vector field appropriate to
stationarity of the spacetime. In this special situation, it is
known that the gyroscope precession frequency coincides
with the vorticity field associated with the Killing congru-
ence, i.e., the gyro rotates relative to a corotating frame with
an angular velocity. Referring to previous work [9,12,18]
for detailed derivations, the spin precession of a test spin in
(2 + 1) dimensional spacetime can be expressed as

�(2+1) = 1

2K 2 ∗ (K̃ ∧ d K̃ ) (2)

following [3], where �(2+1) is the spin precession rate of a
test spin relative to a Copernican frame of reference in coor-
dinate basis, K̃ is the dual one-form of K and ∗ represents
the Hodge star operator or Hodge dual. By spin we mean
either the polarization vector of a particle (i.e., the expecta-
tion value of the spin operator for a particle in a particular
quantum mechanical state) or the intrinsic angular momen-
tum of a rigid body, such as a gyroscope [3]. We also reca-
pitulate here that the spin precession frequency �(2+1) in
(2 + 1)D acoustic spacetime is now a spatial scalar [18]. In
any stationary spacetime, K can be expressed as K = ∂0 [3]
for which Eq. (2) reduces to [18],

�(2+1) = 1

2
√−g

εi j g00

[
g0i

g00

]
, j

. (3)

Since the focal point of this paper is to study the spin pre-
cession in the rotating acoustic DS geometry, we point out
here that it has two Killing vectors: one is the time translation
Killing vector ∂0 and another is the azimuthal Killing vector
∂φ . Now, we can construct a new Killing vector from a linear
combination, with constant coefficients, of ∂0 and ∂φ . With
this motivation, we consider here the precession of the spin of
gyroscopes attached to stationary observers, whose velocity
vectors are proportional to the Killing vectors K = ∂0 +�∂φ

[9]. These gyroscopes move along the circular orbits around
the central object with a constant angular velocity �, which
at any given distance (r ) can be chosen to be in a particular
range, so that K is timelike. However, for a general stationary
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spacetime which also possesses a spacelike Killing vector, we
can write down the general timelike Killing vector as :

K = ∂0 + �∂c, (4)

where ∂c is a spacelike Killing vector in that stationary space-
time, i.e., the spacetime is isometric vis-a-vis two coordinate
directions : x0 and xc. Therefore, the corresponding co-vector
of K can be written as

K̃ = g0νdx
ν + �gγ cdx

γ (5)

where γ, ν = 0, c, 2 in 3-dimensional spacetime. Separating
space and time components we can write

K̃ = (g00dx
0 + g0cdx

c) + �(g0cdx
0 + gccdx

c) (6)

and

d K̃ = (g00, j dx
j ∧ dx0 + g0c, j dx

j ∧ dxc)

+�(g0c, j dx
j ∧ dx0 + gcc, j dx

j ∧ dxc). (7)

Substituting the expressions of K̃ and d K̃ in Eq. (2), we
obtain the spin precession frequency in (2 + 1)D spacetime
as:

�p = εcj

2
√−g

(
g00 + 2� g0c + �2 gcc

)

·
[
g2

00

(
g0c

g00

)
, j

+ g2
00 �

(
gcc
g00

)
, j

+ g2
0c �2

(
gcc
g0c

)
, j

]
(8)

where we use ∗(dx0 ∧ dx j ∧ dxc) = η0 jc = − 1√−g
ε jc and

K 2 = g00+2�g0c+�2gcc. η0 jc represent the components of
the volume form in (2 + 1)D spacetime. We note that Eq. (8)
reduces to Eq. (3) for � = 0, which is only applicable outside
the ergoregion.

2.1 Application to the ‘Draining Sink’ acoustic black hole

The acoustic analogue of a rotating black hole spacetime is
best captured by a planar ‘Draining Sink’ flow of an incom-
pressible, barotropic, inviscid fluid with no global vortex
present. The flow is characterized by the velocity potential

vb = − A

r
r̂ + B

r
φ̂ (9)

where (r, φ) are plane polar coordinates. The two parameters,
A (for drain) and B (for circulation) are constants, and also
analogous to the mass and angular momentum of a rotating
black hole [25], respectively. Therefore, the radial component
of the fluid velocity is characterized by vr = |A|/r and the
angular velocity of the flow is described by �a = B/r2. It
was shown in Ref. [18] that �a (or B) was responsible for
the dragging of inertial frames. It can also be seen from the
explicit emerging form of the (2+1)-D acoustic black hole
metric (Eq. (2) of [18] or Eq. (6) of [14]),

ds2
DS = −

(
1 − A2 + B2

r2

)
dt2

+
(

1 − A2

r2

)−1

dr2 − 2B dφdt + r2 dφ2 (10)

that it describes a ‘non-rotating’ acoustic analogue black hole
geometry for B = 0, for which we do not see any frame-
dragging effect as expected. Another interesting thing is that
unlike Kerr black hole, the ergoregion is spherical in shape
in a (3 + 1)D acoustic analogue black hole and it does not
touch the event horizon in any direction, i.e., event horizon
and ergoregion both are circular in shape in the (2+1) dimen-
sional ‘Draining Sink’ geometry.

Now, using Eq. (8) we can obtain the spin precession fre-
quency of a ‘test spin’ in the (2+1)D ‘Draining Sink’ geom-
etry as

�p = −r2
E (B − �r2) + �r2(r2 − r2

E ) + B�2r4

r2[(r2 − r2
E ) + 2B�r2 − �2r4] . (11)

For � = 0, the above Eq. (11) reduces to Eq. (9) of Ref. [18].
In the above expression (Eq. 11), the angular velocity � of

the test spi n is constrained by the requirement that K remains
timelike outside the acoustic horizon at r = A. Therefore, it
should satisfy the following condition [9]

K 2 = gφφ�2 + 2gtφ� + gtt < 0, (12)

i.e., inside the ergoregion the angular velocity can take only
those values which are in the following range:

�− < � < �+ (13)

where,

�± =
−gtφ ±

√
g2
tφ − gφφgtt

gφφ

. (14)

For this particular metric (Eq. 10),

�± = 1

r2 (B ±
√
r2 − A2). (15)

Now, the test spin can take any value of � between �+ and
�−. Here, we introduce a new parameter q to scan the range
of allowed values of �. Therefore, we can write

� = q �+ + (1 − q) �− = 1

r2

[
(2q − 1)

√
r2 − A2 + B

]
(16)

where 0 < q < 1.
Figure 1 shows that the test spin can take any value of �

which is fallen between the dashed magenta and the solid gray
curves. One intriguing feature is that the orbital frequency �φ

(see Eq. A2 of Appendix A) becomes equal to �+ at point
‘C’ [26]. The corresponding radius of the orbit (r = rC ) is

rC = √
2rE (rE − B). (17)

Therefore, a test spin with �φ is unable to continue its motion
at r ≤ rC whereas it is possible for r > rC . As we have

123



493 Page 4 of 9 Eur. Phys. J. C (2020) 80 :493

Fig. 1 Variation of � (unit of ‘length−1’) versus r (unit of ‘length’) for
A = B = 1. � can take values only in the range: (�−, �+). �+ and �−
(unit of ‘length−1’) are in dashed magenta and solid gray respectively
and are plotted specifically inside the ergoregion, as a function of r .
It is seen that �± meet at the horizon. The dotted blue line stands
for the frequency of ZAMO (Zero Angular Momentum Observer), i.e.,
q = 0.5. The orbital frequency, i.e., �φ = rE/r2 (see Eq. A2) which
is indicated by the dot-dashed red curve, crossed over the �+ curve at
point ‘C’. It signifies that the observer moving with �φ cannot continue
its motion after reaching at the orbit r = rC which corresponds to the
particular point ‘C’

already mentioned, one can note that the test spin can easily
continue its motion with any value of � within the range :
�− < � < �+ in the region r > rH . Figure 1 also reveals
that the �± meet at the horizon with the frequency

�H = B

r2
H

. (18)

Substituting the expression of � (Eq. 16) in Eq. (11) we
obtain

�p = −2B(1 − 2q + 2q2)
√
r2 − A2 − (1 − 2q)(r2 − 2A2)

4q(1 − q)r2
√
r2 − A2

, (19)

demonstrating that the spin precession frequency (�p)
becomes arbitrarily large as it approaches to the horizon
(r → A) for all values of q except q = 0.5. One should
note that Eq. (19) is not valid on the horizon (r = rH ) as K
(Eq. 4) must turn null on it.

We can see the evolution of the spin precession frequency
(�p) of a test spin from Fig. 2 which is plotted for three
consecutive values of q : 0.1, 0.5 and 0.8. We have taken
A = B = 1 (in the unit of length) which means that the radius
of event horizon rH = A = 1 and radius of the ergoregion
rE = √

2. It can be seen from the figure that �p vanishes for
a particular value of r = r0 except for q = 0.5. The value of
r0 for these cases can be calculated using Eq. (19) and setting
�p|r=r0 = 0, which comes out as

r0|(0<q<0.5) =
√

2Y

1 − 2q

[
Y + B(1 − 2q + 2q2)

] 1
2

(20)

and

r0|(0.5<q<1) =
√

2Y

1 − 2q

[
Y − B(1 − 2q + 2q2)

] 1
2

(21)

Fig. 2 Variation of �p (unit of ‘length−1’) versus r (unit of ‘length’)
for A = B = 1. It shows that the spin precession frequency �p
becomes arbitrarily large as it approaches to the horizon for any value
of q whereas �p is finite for q = 0.5 at r → rH

where, Y = [
r2
E (1 − 2q)2 + 4q2B2 (1 − q)2

] 1
2 . Equa-

tion (20) is valid for 0 < q < 0.5 and Eq. (21) is valid
for 0.5 < q < 1. This means that even the spacetime pos-
sesses a non-zero angular velocity (�a �= 0 or B �= 0), the
test spin does not precesses at a particular orbit of radius r0.
The dashed blue curve of Fig. 2 shows that the spin preces-
sion frequency (�p) first increases with decreasing of r , then
it becomes maximum (at r = rp) and decreases to zero at
r = r0 for q = 0.1. Surprisingly, it becomes ‘negative’ in
the region rH < r < r0, which means that the spin pre-
cesses in the reverse direction after crossing the r = r0

orbit. The same feature could be seen for all values of q
within the range 0 < q < 1/2. Moreover, as q increases, r0

shifts in the outward direction and the region (rH < r < r0)
of the ‘negative precession frequency’ becomes broader and
broader. For q → 0+, r0 → √

2rE (rE + B) which is always
greater than rH = A which means that it is always possible
to get ‘negative precession frequency’ region for any value
of q : 0 < q < 1/2.

Now, if we consider the value of q as 0.8, the precession
frequency curve will show a similar feature as occurs for
the first case (i.e., 0 < q < 0.5). The only difference is
that the spin precesses in the opposite direction comparing
to the q < 0.5 cases and it is evident from the dashed black
curve of the figure. We point out that the similar trend of
the plot could be found for all values of q : 0.5 < q < 1,
i.e., the precession frequency increases with decreasing of r ,
becomes maximum and then decreases to zero at r = r0 (the
value of r0 can be calculated using Eq. (21) in this case). As
q increases, the value of r0 shifts in the outward direction but
the maximum value of r0 will be r0 → √

2rE (rE − B) for
q → 1−. In this case, the value of r0 is always greater than rH .
Therefore, we should get a ‘positive precession frequency’
region (rH < r < r0) for any value of q : 0.5 < q < 1.
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We note that q = 0.5 (see the dotted blue curve of Fig. 1)
is a very special case, as � (see Eq. 16) reduces to:

�|q=0.5 = ω = − gtφ
gφφ

= B

r2 = �a . (22)

In this special case, the above expression gives a particu-
lar angular frequency (ω) of the stationary observer com-
puted in the Copernican frame, which is, in fact, the char-
acteristic ZAMO (Zero Angular Momentum Observer) fre-
quency (see the dotted blue line in Fig. 1). In this case, test
spins attached to stationary observers regard both +φ and
−φ directions equivalently, in terms of the local geometry,
and see phonons symmetrically [27]. These gyros are non-
rotating relative to the local spacetime geometry. The angular
momentum of such a ‘locally non-rotating observer’ is zero
and is therefore called a zero angular momentum observer
(ZAMO), first introduced by Bardeen [27,28]. Bardeen et
al. [29] showed that the ZAMO frame is a powerful tool in
the analysis of physical processes near astrophysical objects.
However, Eq. (19) reduces to

�p|q=0.5 = − B

r2 (23)

for q = 0.5. It is clearly seen that Eq. (23) is independent of
A, which implies that the spin precession does not diverge at
the horizon rH = A. It is finite for all values of r : 0 < r <

∞ in principle and the spin precession rate just outside the
horizon is a constant which can be expressed as

�p|(q=0.5,r→A) = − B

r2
H

= −�H . (24)

Noticeably, it is exactly similar to the expression of �H (see
Eq. 18) but the direction is opposite. Here, we should note that
Eq. (23) diverges only at the ‘singularity’ r = 0. Therefore,
in principle, the following relation holds everywhere of r :
rH < r < ∞ in the draining bathtub spacetime for q = 0.5:

�|q=0.5 = �a = −�p = B

r2 . (25)

One can also conclude that a test spin attached to a ZAMO can
easily approach to the event horizon of a ‘Draining Bathtub’
geometry without facing any major difficulty. We also note
that the precession frequency (�p) of a test spin attached
to a ZAMO is same with the angular velocity (�a) of the
background fluid flow in the draining bathtub geometry but
Eq. (25) suggests that their directions are opposite to each
other. It is also evident from the solid orange curve of Fig. 2
that the spin precession frequency becomes completely ‘neg-
ative’ (compared to the first case) for q = 0.5. Remarkably,
r0 is absent for q = 0.5, which means that the spin preces-
sion does not vanish except r → ∞. For q �= 1/2, spin
precession frequency shows a divergence feature at rH = A,
which is similar to the Kerr case [9].

2.2 At the boundary of ergoregion

Now, it is easily seen from Eq. (19) that the divergence of spin
precession can be avoided at the boundary of the ergoregion,
contrary to the earlier work reported in Ref. [18]. To cross
the boundary of the ergoregion (r = rE ) the test spin has to
acquire the angular velocity as,

�|r=rE = 2qB

r2
E

. (26)

Now, substituting the value of � (Eq. (26)) in Eq. (11), we
obtain the spin precession rate at the boundary of the ergore-
gion

�p|r=rE = −4q2B2 + r2
E (1 − 2q)

4q(1 − q)Br2
E

. (27)

which is finite for the range 0 < q < 1 (see also Eq. 16),
contrary to our previous result (Eq. (9) of [18]). In a special
case, say, for q = 0.5, the above equation (Eq. (27)) reduces
to

�p|(r=rE ,q=0.5) = − B

r2
E

. (28)

which is same as the angular velocity (�a) of the DS flow
(Eq. (13) of [18]) at the boundary of ergoregion.

3 Geodetic precession in the ‘non-rotating’ acoustic
analogue black hole

It has been shown [4,9] that a test spin undergoes precession
even in a non-rotating spacetime, if it rotates with a non-
zero angular velocity �. Therefore, the similar incident can
happen in the non-rotating acoustic spacetime also. For B →
0, the metric (Eq. 10) reduces to

ds2
DB|B=0 = −

(
1 − A2

r2

)
dt2 +

(
1 − A2

r2

)−1

dr2 + r2 dφ2 (29)

and the flow is characterized by the radial component of the
fluid velocity potential

vb|B=0 = − A

r
r̂ . (30)

Though the fluid flow (see Eq. 29) does not exactly mimics
the Schwarzschild geometry but we are reasonably close to
it [30]. However, using Eq. (19) for B → 0, one can eas-
ily obtain the spin precession frequency in the non-rotating
acoustic analogue spacetime (Eq. 29). This turns out as:

�p|B=0 = −�
r2 − 2A2

r2 − A2 − �2r4 . (31)

where � is not necessarily to be a function of r , rather it
can take any finite value so that K remains timelike. Now,
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Fig. 3 Variation of geodetic precession �dS (unit of ‘length−1’) ver-
sus r (unit of ‘length’) for the non-rotating acoustic blacks hole with
different A values. It shows that the precession frequency �dS initially
increases, achieves a peak value and then decreases (until it reaches to
the orbit of radius r = √

2A), as the gyro approaches the horizon

if the test spin moves along the circular geodesic, � should
be the orbital frequency, i.e., �φ = A/r2 (see Eq. (A2) of
Appendix A for the derivation). For this particular angular
velocity, Eq. (31) reduces to

�p|(B=0,�=A/r2) = −� = − A

r2 . (32)

Equation (32) gives the precession frequency in the Coperni-
can frame, computed with respect to the proper time τ which

is related to the coordinate time t via dτ =
√

1 − 2A2

r2 dt .
Therefore, the precession frequency in the coordinate basis
should be written as

�′ = − A

r2

√
1 − 2A2

r2 . (33)

Now, the difference of �φ and �′ could be written as

�dS = �φ − �′ = A

r2

⎛
⎝1 +

√
1 − 2A2

r2

⎞
⎠ . (34)

which is identified as the analogous of de-Sitter/geodetic pre-
cession [1,2] in the non-rotating Schwarzschild black hole,
as mentioned in section IV C of Ref. [9] and the Introduction
of this paper.

One intriguing behaviour that emerges is, the de-Sitter
/geodetic precession frequency (�dS) of the test gyro ini-
tially increases, achieves a peak value at r = rpeak, then
decreases and discontinues for r <

√
2A, as it approaches

to the horizon (see Fig. 3). The similar feature cannot occur
for Schwarzschild black hole, as the ISCO (innermost stable
circular orbit) is located at rISCO = 6M in this case. On the
other hand, the stable circular orbits exist everywhere (i.e.,
r ≥ rH ) in the DS black hole, as is pointed out in Appendix A
and therefore gyro can approach the horizon using the stable
orbits. However, the gyro does not show geodetic precession

for r <
√

2A as Eq. (34) becomes imaginary for those val-
ues of r . Equation (17) also reveals that the orbit of radius
r = √

2A coincides with rC for B = 0, which is null. There-
fore, the test gyro could not be able to continue its stable
‘geodesic’ motion in those circular orbits which are located
at : A < r ≤ √

2A, although those orbits are mathematically
stable (see Appendix A). However, as we have mentioned
that the geodetic precession frequency becomes maximum
at r = rpeak, one can obtain rpeak = 1.5A differentiating
Eq. (34) with respect to r and setting it to zero for r = rpeak.
Thus, the maximum geodetic precession frequency achieved
by a gyro at r = 1.5A would be :

�max
dS |r=1.5A = 16

27A
≈ 0.593A−1. (35)

4 Observational prospects

The crucial requirement in the fluid with phonon excitations
is the existence of an anisotropy which embodies a precessing
gyroscope. In general, this is impossible for a phonon fluid,
since phonons do not carry any spin. However, as argued by
Garanin and Chudnovsky [21], circular shear deformations
in rotating systems like the DS induces an anisotropy at the
classical level in the background fluid. The entire system is
of course rotationally invariant, which implies that the shear
anisotropy must have a compensation. If the lattice deforma-
tion caused by the shear induces a phonon spin through a
magnetic Raman spin–phonon interaction, this provides for
a mechanism to compensate the shear anisotropy. Recently,
Zhang and Niu [19] have argued that this indeed happens
in certain paramagnetic materials, providing the possibility
of a phonon spin. The question remains as to whether this
magnetic effect can be replicated in condensate systems with
atoms in the hydrodynamic approximation.

A very different idea is the possibility of an acoustic ana-
logue black hole in an active nematic fluid with bacteria
swimming in it. One can associate with these bacteria an ori-
entation (‘polarization’) which introduces an intrinsic degree
of anisotropy. Typically, this orientation has a time depen-
dence described by [24,31]

[∂t + v · ∇]pi + ωi j p j = δTi j

[
λu jk pk + κ∇2 p j

]
(36)

with γ ′, κ, λ being constants, δTi j = δi j − pi p j being the
transverse projection operator , ui j ≡ (∂iv j + ∂ jvi )/2 , v =
vb + εv1 with ε << 1, ωi j ≡ (∂iv j − ∂ jvi )/2, and Di j

being the effective diffusion tensor governing orientation-
dependent diffusion of active nematics and is given by

Di j = D(δi j − ξpi p j ) (37)

where D is the diffusion constant and ξ is another constant
related to how much diffusion is influenced by the alignment

123
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Fig. 4 Dynamics of the orientation θ of active particles with radial
coordinate r ; with ω = 0.001, A = 1, B = 10, ε = 0.1. The initial
conditions are x = 8, y = 0, θ = 0

of active particles. The parameter |λ| measures the alignent of
the swimming bacteria to a shear flow in the background fluid.
The energy lost due to deforming the polarization field of the
particles generated by the aligning interactions between indi-
vidual particles is represented in the last term in right hand
side of Eq. (36). In the limit of low background concentration
of active particles (bacteria), the active particles may serve as
freely-precessing gyroscopes, provided one can ignore their
self-interaction. In this case, the dynamic behaviour of the
orientation can be graphically represented as in Fig. 4 (or,
Fig. 2(a) of [24]).

It is obvious that there is marked monotonic functional
dependence on the radial distance from the ergosphere. This
is precisely what may be quite useful in an accurate mea-
surement of the Lense–Thirring frequency without invoking
any weak field approximation. While we no longer claim that
the precession frequency diverges on the ergosphere, there is
still a substantial enhancement outside the ergoregion. This
is where laboratory measurements are the most practicable.

5 Conclusions and discussions

We have derived the exact spin precession frequency in the
(2 + 1)D stationary and axisymmetric spacetime. From this
general formulation, we have shown that the spin precession
frequency becomes arbitrarily large as it approaches to the
horizon. We have also shown that a test spin attached with
the ZAMO can reach close to the horizon of the draining
sink geometry without facing any major problem, i.e., its
precession frequency remains finite. Contrary to our earlier
work [18], it has been shown here that a test spin can cross
the boundary of the ergoregion of an acoustic black hole with
a finite precession frequency, if the spin possesses a non-zero
finite angular velocity � in a particular range. We note that
the results in Ref. [18] was a special case of this general
formalism and valid only for the test spin attached to a static
observer.

The notion of the test spin in the (2+1)D acoustic analogue
spacetime has been described in the Introduction but one can
question that how the ‘test spin’ acquires the various values of
� which has been specified in Eq. (16). Though the phonon-
magnon interactions with possible spin-dependent coupling
to phonons in spinor condensate are yet to be observed, one
can speculate that the coupling should be different for dif-
ferent ionic crystals, discussed in section 5.1 of [18]. This
coupling parameter of a particular ionic crystal could be
parameterized with the parameter q of this paper. Moreover,
in a very recent article [32], an effective magnetic interac-
tion due to the curvature coupling of the quasiparticles has
been obtained, which could be think as an equivalent to the
‘spin–gravity coupling’ in the strong gravity regime. One can
try to parametrize the notion of curvature coupling using the
parameter q.

Finally, the very recent assay [24] on discerning an acous-
tic black hole analogue in an active nematic fluid, raises
very interesting prospects of an accurate measurement of
the Lense–Thirring precession due to acoustic inertial frame
dragging. If issues regarding viscosity in such fluids can be
dealt with by lowering the concentration, so that bacteria may
indeed propagate with the speed of the fluid, then experimen-
tal viability of this very novel, interdisciplinary approach to
observation of the full effect of ‘acoustic spin precession’ is
perhaps the best of all methods attempted.
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Appendix A: Derivation of some important observables
in DS black hole

In Sect. 2, we have derived the general spin precession fre-
quency of a test spin in the (2 + 1) DS geometry. We already
know that a test spin does not move along the geodesic in
general [33,34]. The spin moves along an arbitrary timelike
Killing vector field K . In general relativity, the behaviour
of a spin is different in the strong gravity regime due to the
spin–gravity coupling. This coupling is negligible in the weak
gravity regime and that’s why one can assume that the test
spin moves along a geodesic [35] in the weak gravity regime.
This is indeed a fair assumption. Therefore, at a reasonably
large distance from the horizon of the draining sink, we can
consider that the test spin rotates in a circular ‘geodesic’ and
we can derive the orbital frequency (�φ) as well as the radial
epicyclic frequency (�r ) experienced by it. From the general
expression of the orbital frequency

�φ = φ̇/ṫ = dφ/dt =
[
−∂r gtφ ±

√
(∂r gtφ)2 − ∂r gtt ∂r gφφ

]
/∂r gφφ

(A1)

we obtain the orbital frequency1 in the DS geometry (see
Eq. 10) as [18]

�φ = rE
r2 . (A2)

In this spacetime, the proper angular momentum (l) is written
as :

l = L

E
= −gtφ + �φgφφ

gtt + �φgtφ
(A3)

= r2 (rE − B)

(r2 − r2
E + BrE )

. (A4)

Now, the general expression for calculating the radial (�r )
epicyclic frequency is [36,37]

�2
r = (gtt + �φgtφ)2

2 grr

[
∂2
r

(
gφφ/Y

) + 2l ∂2
r

(
gtφ/Y

) + l2 ∂2
r (gtt/Y )

]

(A5)

where

Y = gtt gφφ − g2
tφ = A2 − r2. (A6)

Using Eq. (A5) square of the radial epicyclic frequency can
be obtained as :

�2
r = 4r2

E (rE − B)2

r6 = 4

r2 �2
φ (rE − B)2. (A7)

1 It is also known as the Kepler frequency in astrophysics.

It is well-known to us that the square of the radial epicyclic
frequency is equal to zero at the innermost stable circular
orbit (ISCO) and it is negative for the smaller radius, which
shows the radial instabilities for orbits with radius smaller
than the ISCO. Interestingly, it can be seen from Eq. (A7)
that the stable circular orbits exist everywhere in this drain-
ing sink spacetime for any value of r ≥ rH . “Innermost” is
not applicable here. �2

r could not be negative for any value
of r and thus radial instability is completely absent in this
spacetime. Now, the periastron precession rate or precession
rate of the orbit can be calculated as

�per = �φ − �r = �φ

[
1 − 2

r
(rE − B)

]
. (A8)

Therefore, it may also be possible to see the non-zero pre-
cession of the phonon orbit in the DS geometry, so long as
one restricts observation to the region outside the horizon.
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