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Abstract We present a constrained analysis of the valence
transversity Parton Distribution Functions from dihadron
production in semi-inclusive DIS. While usual extractions of
the transversity distributions rely explicitly on the fulfillment
of the Soffer bound, the present analysis releases that restric-
tion to implement further constraints through the method of
Lagrange multipliers. The results are quantitatively compa-
rable to previous analyses in the kinematical range of data;
the qualitative impact translates into an increased flexibility
in the functional form.

1 Introduction

Parton Distribution Functions (PDFs) describe the structure
of hadrons in terms of their constituents. At leading twist, the
hadronic structure is defined by the distributions correspond-
ing to the vector, axial-vector and tensor Dirac bilinears.
The first two, the unpolarized and the helicity Parton Distri-
bution Functions, while under constant study and improve-
ment, are relatively well-determined. In the last decade, the
third leading-twist PDF, the one corresponding to the tensor
bilinear [1–4], has been explored in phenomenology. The
transversity PDF describes the distribution of the transverse
polarization of quarks as related to that of their parent hadron.
Transversity is a chiral-odd object that is paired, in physical
processes, to another chiral-odd object.

One such candidate object is the single-hadron Trans-
verse Momentum Dependent Fragmentation Function (TMD
FF) depending on the fraction of longitudinal momentum of
the fragmenting quark carried by the outgoing hadron, as
well as on the trace of the intrinsic transverse momentum of
that active quark. The second candidate is the dihadron FF
(DiFF), measured in a fragmentation process into a pair of
hadrons whose relative momenta tag the transverse polariza-

a e-mail: aurore@fisica.unam.mx (corresponding author)

tion of the active quark via modulations at the cross-section
level. Thanks to the data on semi-inclusive pion production
in electron–positron annihilation from the B factories, both
types of FFs have been measured and used to assess transver-
sity PDFs in either global fits and single-process fits.

Dihadron Fragmentation Functions were proposed by
Jaffe et al. [5] to access the transversity PDF and suc-
cessfully implemented in phenomenological studies [6], as
demonstrated by the recent determinations of the transversity
PDF [7–9] – that is, the collinear PDF discussed in this article,
as opposed to the Transverse Momentum Dependent (TMD)
transversity distributions that have been recently studied in
Refs. [10–12].

Yet another possible way to access the transverse polariza-
tion of quarks is found through Generalized Parton Distribu-
tions relevant for Deeply Virtual Meson Production [13,14].

The analyses for the transversity are based on reduced
experimental inputs with respect to the data sets used for
the other two leading-twist PDFs. All three are subject to
analogous first principles, e.g. positivity constraints and sup-
port requirement. In this paper, we propose to broaden the
methodology to incorporate the assessment of first princi-
ples directly in the fitting procedure. This methodology pal-
liates the low experimental accuracy of processes involving
transversity PDFs.

To leading-order, the unpolarized, f1(x), and longitudi-
nally polarized distributions, g1(x), can be interpreted as
probability densities in terms of the helicity representation
for Dirac particles – basis of the positivity bound |gq1 (x)| <

f q1 (x). The interpretation of transversity distribution, h1(x),
must be done in the transversity basis – leading to the bound
|hq1(x)| < f q1 (x). Another positivity constraint for h1(x) has
been stated by Soffer [15]

|hq1(x)| ≤ 1

2

(
f q1 (x) + gq1 (x)

)
, (1)
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for each flavor of quark and anti-quarks separately. If
the Soffer bound is realized at a low factorization scale
Q, it is preserved under QCD evolution towards higher
scales [16,17]. The bound in Eq. (1) has been treated as a
first-principle constraint in all extractions of transversities
until now. Together with the support x ∈ [0, 1] and the corre-
sponding end-point behavior, they constitute the basic prop-
erties that any parametrization of the transversity PDF must
satisfy. The implementation of positivity constraints gener-
ates a hierarchical dependence on the unpolarized PDF for
the helicity PDF and both the unpolarized and helicity PDFs
for the transversity.

As a result of the fundamental characteristic of the PDFs
to describe the internal structure of hadrons in a given spin
configuration, their first Mellin moments embody the fun-
damental charges when originated from conserved currents.
The first moment of the transversity distribution is known as
the tensor charge, in analogy to the vector and axial charge.
The tensor charge provides interesting information for pro-
cesses involving hadrons that are also relevant for searches
of New Physics [18–21].

On the one hand, recent analyses of the transversity high-
light a tension between the data and the expression of the
Soffer bound in some kinematical regions [7,9,11]. On the
other hand, the tensor charge for the valence and isovec-
tor flavor combinations as determined through phenomenol-
ogy and lattice [22–25] differ, with the largest discrepancy
coming from the u-valence contribution. In light of the phe-
nomenological conflicts with the Soffer bound and the latest
lattice QCD determinations of the tensor charge, we analyze
the level of probability of the Soffer bound given the semi-
inclusive DIS data. Subsequently the derived significance of
the bound will be reflected in the objective function. The
Soffer bound only appears in that step, hence leveraging the
choice of the parametrization in the minimization procedure.
The parametrization will be chosen, first, to fulfill the support
in Bjorken x and, second, so as to optimize the assessment
of the uncertainty that reflects as objectively as possible the
error coming from both the experimental data and the the-
ory, i.e. the implementation of the positivity bounds here. The
methodology includes a further iteration of the minimization
imposing inequality constraints to ensure a smooth behavior
for x → 1 through the method of Lagrange multipliers. We
carry out the new analysis based on the point-by-point extrac-
tion for proton and deuteron SIDIS data of Ref. [8]. There
have been no recent improvements from the theory side or
new determinations of DiFFs that would justify a complete
reanalysis of the two-hadron SIDIS asymmetry.

This paper is organized as follows. Our methodology
is described in Sect. 2. In Sect. 3 we discuss our results
–with a particular emphasis on the tensor charge, and
then conclusions and possible extensions of this work are
drawn in Sect. 4. The state-of-the-art formalism related to

dihadron production in semi-inclusive DIS is overviewed in
Appendix A.

2 Methodology

The determination of the valence transversities is obtained
in three main steps. We work within the hypothesis that
first principles constraints can be implemented through the
fitting procedure to optimize the collective information of
the Nd = 22 data points and the first principles. We first
assess the probability that the Soffer bound is valid using
a Bayesian approach. This first step allows a reweighting
of each data point, taking into account the Soffer bound
implicitly. Then the fulfillment of other theoretically justi-
fied behaviors is achieved through a constrained fit using the
method of Lagrange multipliers. Finally, the constrained fit is
repeated N times using the bootstrap technique as an integral
part of the error treatment [8].

2.1 Probability of the soffer bound

The practical implementation of the Soffer bound relies on
the other two leading-twist PDFs, to be precise on the fits of
the unpolarized and helicity PDFs. A PDF parametrization
should come with an uncertainty that combines the statistical
uncertainty obtained in the fit and an error coming from the
various choices for physical parameters and hypothesis, e.g.
the value of αs(M2

Z ) or the order in perturbation theory.
In the standard parameterizations of h1(x), the validity of

the bound is ensured by construction at the level of the func-
tional form at Q0 and is preserved under QCD evolution [17].
Hence, a theoretical error could analogously be attributed to
the Soffer bound (SB) in the first place, introducing an extra
flexibility on the parametrization.

On the other hand, the confrontation of the SB with
the combination of transversities extracted from proton and
deuteron targets, Eqs. (A.3)–(A.4),1 also depends on the
approximations used in the extraction of the DiFFs. The men-
tioned theoretical error should ideally comprise both sources
of uncertainty. Thus, we would like to estimate the goodness
of the Soffer bound – expressed in terms of PDF parameteri-
zations – given the transversity combinations extracted from
HERMES [26] and COMPASS [27,28] data and implicitly
include the bound as a source of uncertainty in the fitting
procedure.

For that purpose we evaluate the probability of the
transversity PDF lying outside the SB. We first map each
experimental point, which has a Gaussian distribution, into
an in-out case. Suppose that we know the limits of the
bound exactly, i.e., we can identified unequivocally whether

1 The formalism for DiFF is concisely described in Appendix A.

123



Eur. Phys. J. C (2020) 80 :465 Page 3 of 11 465

the data are inside or outside the bound: θ j represents that
probability,

p
(
θ j |A j

) =
{

δ
(
θ j − 1

)
for A j ∈ region

δ
(
θ j

)
for A j /∈ region

, (2)

where A j is the true value of the transversity combinations
of Eqs. (A.3–A.4) evaluated for j = 1, . . . , Nd . The region
is the area comprised by the inequality of Eq. (1) evaluated
in each corresponding kinematical bin using MSTW08LO
at LO [29] for f1(x j , Q2

j ) and JAM15 [30], at NLO, for

g1(x j , Q2
j ).

We define a hyperparameter t corresponding to the prob-
ability that the data value lies outside the bound,

p
(
θ j |t

) = (1 − t) δ
(
θ j − 1

) + tδ
(
θ j

)
, (3)

namely a prior distribution for θ j given t . The true values for
the transversity combinations can only be inferred through
the actual data, such that

p
(
θ j |data

) =
∫

p
(
θ j |A j

)
p

(
A j |data

)
d A j , (4)

where the probability of A j given the data evaluates the dis-
tance of the data point j to the bound, considering both the
uncertainty on the data and on the bound. The distributions
are assumed to be Gaussians centered on the experimental
value, for the data, or as explained after Eq. (2), for the bound,
with the corresponding standard deviation. We assume an
error from going from NLO to LO for the helicity PDF based
on the NLO-LO difference for unpolarized PDFs.

The final desired probability is expressed, using Bayes
theorem, as

p (t |data) = N π(t)
∫ Nd∏

j=1

p
(
θ j |t

)
p

(
θ j |data

)
dθ j ,

≡ F(t), (5)

N = ∫ 1
0 F(t) dt is the norm, π(t) is the prior for t that is

chosen to be flat, and the probabilities are defined above.
Evaluating F(t), we find a distribution with a mode at t = 0
and a central value for t ,

t̄ =
∫ 1

0
t F(t) dt = 0.049 ± 0.040, (6)

for the 68% confidence interval. It is illustrated in Fig. 1.
How should we interpret the result shown in Fig. 1? It is

unlikely that the bound is incorrect with a probability higher
than t = 10% as most of the contribution to the integral of
F(t) comes from the range 0 < t < 0.1. Still there exists
a window through which the agreement of the implemented
SB and the transversity combinations is poorer. Since the SB

Fig. 1 Distribution of the hyperparameter t as given by Eq. (5). The
vertical blue line corresponds to the central value t̄ , the blue shaded area
to the 68% CL evaluated from the upper/lower bound of the integral of
F(t). The orange shaded area corresponds to the 95% CL. The y-axis
has arbitrary units

is introduced here as first principle, we translate this result
into a relaxation of the expression of the bound through a
Bayesian reweighting bin-by-bin in the objective function –
i.e. here the χ2. The weight is obtained as follows,

w j =
∫ 1

1−p(A j |data)
F(t) dt . (7)

In Fig. 2, the statistical weight is represented for each bin in
the bottom plots. It can be appreciated that the proton com-
bination is almost not affected by this procedure while the
lowest and highest x-bins of the deuteron combination hap-
pen to statistically lie inside that window of poor agreement,
as expected from previous analyses [7,8].

In the bootstrap technique, the minimization of the objec-
tive function is performed N = 200 times. As explained
in, e.g., Ref. [8], N replicas of the extracted combinations(
x h p/D

1

)

j
, with j = 1, ..., Nd , of Eqs. (A.3–A.4) are gener-

ated randomly within the data 1σ error bars. As reweighting
the overall chi-square function can be understood as a scaling
of the error,

σ 2
j → σ 2

j /w j , j = 1, . . . , Nd (8)

the N replicas are generated within the corresponding
extended Gaussian error bars. The objective function can be
written, for each replica r , as

χ2
r

(
{pI }

)

=
∑

j

w j

[
x j h

p/D
1 theo

(
x j ; {pI }) −

(
xh p/D

1 (x)
)

j, r

]2

σ 2
j

, (9)
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Fig. 2 Combinations of transversities for the proton (upper) and the
deuteron (lower) as extracted in Ref. [8]. The bottom plots show the
statistical weight for each bin as evaluated through F(t)

where {pI } is the set of free parameters to be determined for
each replica r . In the next Section, the function h p/D

1 theo
will be

extensively described.
The same exercise has been repeated with CT09MC1 [31]

in both Eqs. (A.3–A.4) and the expression of the SB.
The lightest weights for the deuteron combination slightly
change, repercussions will be discussed in Sect. 3. The over-
all conclusions of this section are not affected by the choice
of LO unpolarized PDF.

2.2 Parameterization and constraints

Now that the main first principle based constraint has been
included through a statistical reweighting – which is effec-

tively implemented at the stage of bootstrapping the data –
the parameterization can take a more adaptable form: the
data alone lead the determination of the free parameters of
the chosen form. An unbiased parametrization is particu-
larly welcome in kinematical ranges with little to no data
or, a fortiori, kinematical ranges that exhibit apparent con-
flict with the positivity bounds. The latter are best accom-
modated through a flexible form that could realistically be
contrasted with future data. We wish to impose the required
support through the functional form. It is indeed possible for
the up distribution. However, the behavior of x hdv

1 is affected
by bigger errors as it is dominated by the deuteron data,
and a judicious choice of parametrization is not sufficient to
ensure the expected behavior towards the end-point x → 1.
A smooth fall-off in x is expected by the underlying QCD
evolution occurring at higher x-values – see e.g. [32]. This
observation directly relates to the power-law fall-off ruling
the two other leading-twist PDFs. We tame undesired behav-
iors in the large-x region for the down distribution through
a constrained fit using the method of Lagrange multipliers
– see e.g. [33]. The minimization itself contains two steps.
First, the objective function is minimized via a non-linear
least-square, determining the set of best fit parameters, {pI }.
The definition of the χ2({pI }), Eq. (9), requires a functional
form for h p/D

1 theo
(x). The first considerations while determining

the parameterization is to guarantee integrability and support
at x = 0,

x hqv

1 (x) = x1.25 × Pq
n (g(x)) , (10)

where the exponent has been chosen based on previous out-
puts and the expected small-x behavior [34] to be slightly
modified by the polynomial in x . The latter, Pq

n (g(x)), of
order n, can be as flexible as the data allow for. We choose
to express Pn in terms of Bernstein polynomials as has been
done in Ref. [35]. They are defined as

Bk,n(x) =
(
n
k

)
xk(1 − x)n−k, (11)

with

(
n
k

)
the binomial coefficients. Those polynomials have

the advantage of selecting particular regions in g(x) and
as such can be employed to emphasize particularly rele-
vant kinematical regions. That is, for semi-inclusive DIS, the
low-x region becomes relevant with respect to the valence
and large-x region. A rescaling of the variable will help the
parameterization adjusting the data, we choose g(x) = x0.3.
A desirable feature of the polynomials in Eq. (10) is a statisti-
cally representative error outside the data range, yet in agree-
ment with the first principle constraints at hand. In order to
span the Bjorken variable range as significantly as possible,
we use four different degrees for the polynomial Pn – thus
using four different functional forms distinguishable by their
order n – and optimize the number of Bernstein polynomi-
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Table 1 Table with free parameters for each degree of the polynomials
as described by Eq. (12)

i = 1 i = 2 i = 3 i = 4

pu1,(2,6) pu2,(4,9,12) pu3,(1,12,20) pu4,(4,16,24)

pd1,(1,3,4,5) pd2,(4,6,11) pd3,(3,5,12,20) pd4,(2,8,16,24)

als by trial and error. In Fig. 3, we show the polynomials
that we have adopted, respectively, for the up and the down
parameterization. The functional form is now expressed as

x hqv

1,i

(
x; pqi,k

)
= x1.25

∑

k={κq,i }
pqi,k Bk,ni (g(x)) , (12)

with i = 1, . . . , 4, n = {10, 20, 30, 40} and where the pqi,k
are the free parameters which number varies for each i and
are listed in Table 1. The set of values {κq,i } has length nκu,i =
{2, 3, 3, 3} and nκd,i = {4, 3, 4, 4} and their values have been
chosen to flexibly cover the relevant region consistently with
the data, as can be seen in Fig. 3. The four functional forms
are shared among the N replicas, each x hqv

1,i will be evaluated
N/4 times.

In the following step, we will clarify our choice for a
limited coverage of the functional form for values of x � 0.6
for the up and x � 0.5 for the down. As mentioned above,
we need to ensure a smooth fall-off of the transversity in the
limit x → 1 that, for the d contribution, cannot be achieved
exclusively from the choice of functional form. In most cases,
a second step will be required to constrain the functional form
in an allowed region. When the objective function is subject
to m constraints of the form Cl({p′}) = 0 with l = 1, . . .m,
the later are imposed through the Lagrangian

L({p′}, {λ}) = χ2({p′}) +
m∑

l

λlCl({p′}), (13)

to which a stationary point of L is found minimizing with
respect to the parameters {p′} and the Lagrange parameters
{λ}.

We define a new objective function that depends on the
new set of best fit parameters, {pI I }, which consists in the
set made of pq I I

i,k , and replaces the set obtained through the

first minimization, {pI }. We guide the large-x behavior of
the down parameterization only, using the following Nc = 4
constraints

Cdv

i,l

(
pd I I
i,k

)
= xl h

dv

1,i

(
xl; pd I I

i,k

)
< εl

for l = 1, . . . , Nc/2,

Cdv

i,l

(
pd I I
i,k

)
= xl h

dv

1,i

(
xl; pd I I

i,k

)
> −εl

for l = 1, . . . , Nc/2 , (14)

with xl = {0.3, 0.55} and εl = {0.2, 0.1}. In other words,
we add 4 degrees of freedom to our problem. The values for

Fig. 3 Bernstein polynomials Bk,ni (g(x)) used in the functional
form for the valence up transversity (upper) and the valence down
transversity (lower). The degree of the polynomials is, respectively,
n = {10, 20, 30, 40} in red with dot-dashed contours, purple/dashed,
yellow/full and green/dotted. See text

εl have been set considering the steepness of the functional
forms and the trend of f1(x, Q2) and g1(x, Q2) through
which is emulated the shift to small values of x induced by
DGLAP.

In previous – unpolarized and longitudinally polarized –
PDF determinations, the method of the Lagrange multipli-
ers has been made popular for error estimation [36]. In the
present approach, this method is used to impose limits on
the fit parameters. This last step completes a methodology
that focuses on the adaptability of the parametrization to con-
straints, in opposition to a parametrization that is constrained
a priori.

3 Results

3.1 Transversity PDF

Both steps of the minimization procedure are carried out in
Python. The convergence for both the main χ2 minimiza-
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Fig. 4 Valence transversities: 68% envelope for the present fit for the
four different degrees of the Bernstein polynomial of the functional
form, respectively, n = 10, 20, 30, 40 in red with dot-dashed contours,
purple/dashed, yellow/full and green/dotted, for the up (upper) and the
down (lower)

tion Eq. (9) and the optional Lagrange multipliers method
are fast. Twenty five percents of the replicas converge inside
the established bound at the first minimization. The 75% left
is hence constrained by the method of Lagrange multipliers.
For the higher-order polynomials, less than 15 additional iter-
ations are necessary while the two lower-order polynomials
require about 30–40 extra iterations. Although the constraints
are imposed for the down distribution only, their fulfillment
affects directly the parameterization of the up. The balance
between uv and dv is clearly passed on through the objective
function. Notice that not all 4 constraints are active for each
replica r .

In Fig. 4, we show the envelopes for the obtained valence
transversities at 68% CL, respectively, for the up and the
down distributions. Following the color code introduced in
Fig. 3, it can be observed that the higher order polynomi-
als, n = 30, 40 in yellow and green, allow a larger error bar
at smaller values of x . On the other hand, the lower order
polynomials, n = 10, 20 in red and purple, are confined

Fig. 5 Valence transversities for the up (upper) and the down (lower)
at 68% in blue (with full blue line contour) and 95% in orange (with
dashed contours) for the present fit. The gray bands represent the Soffer
bound at NLO, here using JAM and MSTW08 at NLO

in the mid- to large-x region. All 4 equally contribute at
valence values of the Bjorken variable. The final envelope
of xhqv

1 (x, 〈5GeV2〉) is built using the four versions of the
functional form together. It is shown at 68% and 95% CL
in Fig. 5. For consistency, we also show the Soffer bound at
NLO using the helicity PDF of JAM15 [30] and the unpo-
larized PDF of MSTW08 at NLO2 [29]. Were there central
values for the obtained transversities, they would be enclosed
inside the Soffer bound. In that sense, our result is similar to
the first Hessian approach of Ref. [7].

The small-x behavior predicted in Ref. [34] is fulfilled for
the up transversity PDF up to, at least, x = 0.1 ; no clear
conclusion can be drawn for the down above x ∼ 0.03.

In Fig. 6, the 68% and 95% CL proton and deuteron com-
binations are depicted and compared to the point-by-point
extraction of Eqs. (A.3–A.4). The final χ2/d.o.f. is evalu-
ated against those extracted data. The number of degrees of

2 We have checked that the central value of the Soffer bound does not
substantially change with more recent fits such as CT18 NLO [37].

123



Eur. Phys. J. C (2020) 80 :465 Page 7 of 11 465

Fig. 6 Combinations of transversities for the proton (upper) and the
deuteron (lower) compared to the global 68% in blue (with full blue
line contour) and 95% in orange (with dashed contours) for the present
fit compared to the extracted data [8]. The dark blue square come from
HERMES data while the dark orange dots are extracted from COM-
PASS data

freedom here is (
∑

j w j ) × Nd + Nc − (nκu + nκd ). The

average value for the total χ2/d.o.f. is 1.35. Each functional
form contributes to average values of χ2

n=10/d.o.f.= 1.32,
χ2
n=20/d.o.f.= 1.44, χ2

n=30/d.o.f.= 1.37, χ2
n=40/d.o.f.=

1.26. The four corresponding histograms are shown in Fig. 7.
The analysis has been carried out using the MSTW08 LO

parametrization. We have repeated the fitting procedure using
the CT09MC1 set for the unpolarized PDF [31], it is a LO
set fitted on real data and NLO pseudo data with αs at 1-
loop. There is no qualitative difference in the final transver-
sity PDF. We notice a slightly smaller average value for the
isovector tensor charge, quantity that will be defined here
below.

Compared to previous extractions, we might comment that
our result for the down transversity presents a smaller error
band in the data region – as our functional form was built on
that purpose. It is achieved at the expense of a slightly wider
band for the up distribution in that region. The error band

increases for small- and large-x values. In this respect, our
down distribution differs from that of Refs. [8,9] and the less
flexible versions of the parameterization of Ref. [7], all of
them being dihadron-based extractions. The same comment
is in order for comparisons with single-hadron semi-inclusive
DIS [10,11]. The combination huv

1 − hdv

1 of the two avail-
able collinear extractions is compared in Fig. 8. The small-x
behavior differs and the error band associated to the present
analysis is wider in the valence region.

We also compare, in Fig. 8, our results to the lattice QCD
evaluation of the isovector transversity PDF [38,39]. There
is an acceptable agreement in the region 0.1 < x < 0.3. The
lower-x region of our result is more structured, as dictated by
the data. Both lattice evaluations exceed the phenomenolog-
ical determinations at large-x – region in which the param-
eterization of the fits are strongly bound by the positivity
limits.

As explained in Appendix A, our analysis of the transver-
sity PDF through Eqs. (A.3, A.4) has been carried out at an
average value of Q2 = 〈5 GeV2〉. To that regard we have fur-
ther performed our analysis considering QCD evolution only
for the Fragmentation Functions. We find a 15% increase in
the χ2 when fixing the scale of the unpolarized PDFs in the
asymmetry to 5 GeV2. The comparison with the isovector
transversity from lattice QCD is not substantially improved.

Finally, we notice that the PDF+Lattice result for the
isovector combination [12] is systematically higher than the
present results for the whole support in x , except for x → 0.

3.2 Tensor charge

We next evaluate the first Mellin moment of the transversity
PDF to get the tensor charge

δqv

(
5 GeV2

)
=

∫ 1

0
dx hqv

1

(
x; 5 GeV2

)
. (15)

The distributions correspond best to skewed Gaussian distri-
butions and the obtained values are

δuv

(
5 GeV2

)
= 0.28+0.17−0.20,

δdv

(
5 GeV2

)
= −0.40+0.41−0.31, (16)

to 1σ . The corresponding 2σ uncertainties are, for the
up, (−0.42, 0.31) and, for the down, (−0.57, 0.87). In partic-
ular, we are interested in the isovector combination, gT (Q2),
as it is of particular interest for, e.g., beta decay observ-
ables [18,19]. We show the corresponding stacked histogram
in Fig. 9. The Gaussian distribution showed on the r.h.s. of
Fig. 9 is given by

gT
(

5 GeV2
)

= 0.57 ± 0.21, (17)
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Fig. 7 Histograms of chi-square per degree of freedom for each parametrization. The color code represent, as above, the four different degree of
the Bernstein polynomial of the functional form, respectively, n = 10, 20, 30, 40 in red, purple, yellow and green

Fig. 8 Upper plot: Comparison with the isovector combination of the
transversity PDF of this work, in cyan meshed crosses, with the result
at 4 GeV2 obtained through the global fit of Ref. [9], in meshed pink,
both at 90 % CL. These collinear extractions are compared to lattice
QCD evaluations from the ETM Collaboration [38], in gray, and the
LP3 Collaboration [39], in dashed blue. Lattice results correspond to
a scale of 4 GeV2. Lower plot: same as upper plot with logarithmic
x-scale

at 1σ ; the 2σ error is 0.42. The truncated tensor charge is
found to be g�

T (5 GeV2) = 0.48+0.13−0.11, corresponding to a
skewed Gaussian distribution.

The trend observed above leads to discernible conse-
quences here: the more flexible the parameterization, the
wider the distribution of the tensor charge. Our result is
compatible with lattice QCD evaluations of the isovector

Fig. 9 Stacked histogram of isovector tensor charge. The color code
represent, as above, the four different degrees of the Bernstein poly-
nomial of the functional form, respectively, n = 10, 20, 30, 40 in red,
purple, yellow and green. Notice that the various contributions are rep-
resented on a single bar, i.e. stacked. On the lower panel, we can see that
gT is gaussianly distributed, as shown in red with the corresponding 1σ

error in gray

tensor charge – the latest results are gT = 0.926(32) for
the ETM Collaboration [23], gT = 0.972(41) [24] and
gT = 0.965(38)(+13 − 41) [25]. It is at the same time
wide enough to encompass all of the other phenomenological
determinations. As for the separate up and down contribu-
tions, e.g., the ETM Collaboration reports δu = 0.716(28)

123



Eur. Phys. J. C (2020) 80 :465 Page 9 of 11 465

and δd = −0.210(11). The tensor charge for the up quark
differs from our result as well as most phenomenologi-
cally determined tensor charges. The relaxation of the Soffer
bound in the range of the data did not ease that discrepancy,
as also discussed in Ref. [40].

In a region where scarce to no data are available, the choice
of functional form generates a crucial uncertainty. The role
of the small-x region, where no strong expressions of first
principle bounds nor data are available, matters. The addition
of proton–proton collision data [41], used in the first global
fit of the transversity [9], does unfortunately not increase the
coverage at lower x values – but it certainly does in Q2.
In that sense, data from an Electron Ion Collider would be
extremely helpful, be it for a qualitative improvement over
a quantitative reduction of the uncertainty. Would the tensor
charge become relevant in view of search for New Physics,
the appropriate observables would not necessarily linearly
depend on the uncertainty of the tensor charge, as shown in
the case of beta decay in Ref. [19].

4 Conclusions

The transversity Parton Distribution Function is the least
known of the three leading-twist PDFs. Its phenomenologi-
cal determination has been made possible thanks to indepen-
dent data for its partners in semi-inclusive DIS, the chiral-
odd fragmentation functions. In particular, the formalism
developed around dihadron Semi-Inclusive DIS allows for a
collinear extraction of combinations of valence transversity
PDFs [6]. It requires the knowledge on the Dihadron Frag-
mentation Functions that have been studied in Ref. [8,42].
Since its first point-by-point extraction from dihadron semi-
inclusive DIS [43], enormous efforts towards the extraction
of the transversity PDF, accessible in processes involving
fragmentation to a pion-pair [9], have been made.

In this paper we have presented a constrained fit of the
valence transversity PDFs from dihadron semi-inclusive DIS
data. The adopted methodology is characterized by the flexi-
bility to accommodate constraints from the fitting procedure.
It consists in three steps. First we have examined the positiv-
ity constraints on the transversity distribution: a priori from
the expression of the bound combined with the data is intro-
duced as a theoretical uncertainty on the PDF that is then
implemented through a reweighting of the data. Second we
have chosen flexible functional forms – free from ad hoc
expressions of the Soffer bound – to enhance the informa-
tion obtained from the data and first principles. It results in
an improved treatment of the PDF uncertainties. Finally, we
have guided the valence down transversity PDF to follow a
fall-off behavior at x → 1 through the method of Lagrange
multipliers, forcing the set of parameters to observe the the-
oretical constraints.

The obtained 68% and 95% CL envelopes for the valence
transversity distribution functions fulfill the expected small-x
behavior, the up distribution fully realizes the Soffer bound
and the edges of the down envelope reflect the relaxation
of the bound combined with the lack of data in the large-x
region. Our results globally show wider error bands outside
the data range with respect to the error band inside that range
than found in previous extractions. That trend, allowed by
the – absence of – data, translates into a wide distribution of
the tensor charge yet with a more comfortable extrapolation
in the whole support. The resulting isovector tensor charge
is in agreement with the determinations of lattice QCD. We
believe that this exercise supports the idea that the choice
of functional form contributes to the global error of the PDF
determination, especially in kinematical regions with limited
data coverage.

At SIDIS scale the relative effect of DGLAP is small com-
pared to the accurracy of the obtained PDFs. The effect of
QCD evolution will become important when including data
from proton-proton collision from RHIC for which the role
of NLO corrections might become important, as discussed
in Ref. [9]. Our methodology could be applied, as a natural
extension of this work, to the extended set of data including
the aforementioned proton-proton data and the inclusion of
the corresponding DGLAP routine. More semi-inclusive DIS
data in the valence region are expected from CLAS12 and
SoLID at JLab; data from the future Electron Ion Collider
would improve the uncertainty in the low-x region.
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Appendix A: Transverse spin asymmetries in semi-
inclsuive deeply inelastic scattering

We focus on assessing the transversity PDF through the mea-
surement of the single-spin asymmetry in dihadron semi-
inclusive production off a proton/deuteron target process,

l(k) + N (P) → l(k′) + (H1(P1) + H2(P2)) + X. (A.1)

The initial-state (unpolarized) lepton l with 4-momentum k
and the outgoing lepton k′ is scattered on the transversely
polarized target N , which can be a proton or deuteron inside
a nuclear target, e.g. hydrogen at HERMES [26] or 6LiD
(deuteron) and NH3 (proton) at COMPASS [44]. In total,
there are Nd = 22 data points. The produced hadrons are
labelled H1 and H2, their invariant mass squared is P2

h = M2
h ,

with Ph , total momentum of the pair. Their relative momen-
tum is defined as R = (P1 − P2)/2. The momentum trans-
ferred to the nucleon target is q = k − k′. The usual DIS
invariants are defined, x = Q2/(2P · q), y = P · q/P · k,
and z = z1 + z2 = P · Ph/(P · q). We refer to Ref. [8] and
references therein for further details.

In this process, the chiral-odd PDF couples to a similarly
chiral-odd DiFF – understood as the distribution of a hadron
pair whose orbital angular motion through its relative trans-
verse momentum,RT , originates from the transversely polar-
ized fragmenting quark [6]. The transverse momentum RT

can be expressed in terms of the invariant mass of the pair
and the polar angle θ of the one pion relative to Ph in their
center-of-mass.

The state-of-the-art formalism for the transversity in
a collinear framework has been set, to leading-order, in
Ref. [45]. In the limit M2

h << Q2 and after having selected
the dominant contribution through Partial Wave Expansion
in the polar angle θ , the relevant single-spin asymmetry reads

ASSA(x, z, Mh; Q)

= − B(y)

A(y)

|R|
Mh

∑
q e2

q h
q
1(x; Q2) H� q

1 (z, Mh; Q2)
∑

q e2
q f q1 (x; Q2) Dq

1 (z, Mh; Q2)
,

(A.2)

where eq is the fractional charge of a parton with flavor q,
A(y) = 1 − y + y2/2, B(y) = 1 − y. The Dq

1 is the
DiFF describing the hadronization of an unpolarized parton
with flavor q into an unpolarized hadron pair. The H� q

1 ≡
H� q

1,sp is a chiral-odd DiFF describing the correlation between
the transverse polarization of the fragmenting parton with
flavor q and the azimuthal orientation of the plane containing
the momenta of the detected hadron pair. Both have been
determined from Belle’s data and corresponding PYTHIA-
generated multiplicities [8,42].

As the PDFs only depend on x , we will only use the x-
projected part of ASSA(x, z, Mh; Q), obtained by integrating
out z and Mh over the corresponding kinematics of the exper-
iment. The relevant combinations for the proton target are [7]

x h p
1

(
x; 〈Q2〉

)
≡ x huv

1

(
x; 〈Q2〉

)
− 1

4
xhdv

1

(
x; 〈Q2〉

)

= − Ap
SSA(x; Q2)

n↑
u (Q2)

A(y)

B(y)

9

4

×
∑

q=u,d,s

e2
q nq(Q

2) x f q+q̄
1 (x; Q2) ,

(A.3)

and for the deuteron target are

x hD
1

(
x; 〈Q2〉

)
≡ x huv

1

(
x; 〈Q2〉

)
+ xhdv

1

(
x; 〈Q2〉

)

= − AD
SSA(x; Q2)

n↑
u (Q2)

3

×
∑

q=u,d,s

[
e2
q nq(Q

2) + e2
q̃ nq̃(Q

2)
]

×x f q+q̄
1 (x; Q2) , (A.4)

where hqv

1 is the valence combination, i.e. hq1 − hq̄1 , and

f q+q̄
1 ≡ f q1 + f q̄1 and q̃ = d, u, s if q = u, d, s, respec-

tively. Unless explicitly stated, we use the MSTW08LO
parametrization [29] to evaluate the unpolarized PDFs. The
quantities nq(Q2) and n↑

u (Q2) are, respectively, the unpolar-
ized DiFF for a flavor q and the chiral-odd DiFF for u that
are integrated over z and Mh in the given experiment.

We have not taken into account the Q2 dependence of the
transversity PDF – on the l.h.s. of Eqs. (A.3–A.4) – but rather
considered its parametrization as given at the average scale
〈Q2〉 = 5 GeV2 of the data – justified by the relatively nar-
row span of values of Q. The dependence on the hard scale
is kept in all the quantities on the r.h.s of Eqs. (A.3–A.4)
for the purpose of assessing properly the statistical weight
of the Soffer bound on the point-by-point extraction. On the
other hand, we do not expect exact cancellations between
numerator and denominator [43], in that sense our approx-
imation is slightly different from that adopted in Ref. [12].
Consequences of this approximation are discussed in Sect. 3.

In this paper, we use the relevant single-spin asymmetry
measured at HERMES [26] and COMPASS for identified
hadron pairs [27,28]. These data sets coincide with those used
in Ref. [8]. The kinematical ranges are 1.2 < Q2 < 31.5
GeV2, 0.0064 < x < 0.2871 – with increasing values of
Q2 for increasing values of x – and the DiFF variables are
2mπ < Mh � 1.3GeV and 0.2 � z < 0.9. A point-by-point
analysis of dihadron and single-hadron SIDIS COMPASS
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data has been proposed in Ref. [46] to confirm their overall
compatibility.
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