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Abstract All real and virtual infrared singularities in the
standard analysis of the perturbative Quantum Electrody-
namics (like that of Yennie–Frautschi–Suura) are associated
with photon emissions from the external legs in the scatter-
ing process. External particles are stable, with the zero decay
width. Such singularities are well understood at any pertur-
bative order and are resummed. The case of production and
decay of the semi-stable neutral particles, like the Z -boson or
the τ -lepton, with the narrow decay width, �/M � 1, is also
well understood at any perturbative order and soft-photon
resummation can be done. For an absent or loose upper cut-
off on the total photon energy ω, production and decay pro-
cesses of the semi-stable (neutral) particles decouple approx-
imately and can be considered quasi-independently. In partic-
ular, the soft-photon resummation can be done separately for
the production and the decay, treating a semi-stable (neutral)
particle as stable. QED interference contributions between
the production and decay stages are suppressed by the �/M
factor. If experimental precision ω is comparable with or bet-
ter than �/M , these interferences have to be included. In the
case of ω � � decoupling of production and decay does not
work any more and the role of semi-stable particles is reduced
to the same role as that of other internal off-shell particles. So
far, consistent treatment of the soft photon resummation for
semi-stable charged particles like theW± bosons is not avail-
able in the literature, and the aim of this work is to present
a solution to this problem. Generally, this should be feasible
because the underlying physics is the same as in the case
of neutral semi-stable resonances—in the limit of �/M � 1
the production and decay processes for charged particles also
necessarily decouple due to long lifetime of intermediate par-
ticles. Technical problems to be solved in this work are related
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to the fact that semi-stable charged particle are able to emit
photons. Practical importance of the presented technique to
the e+e− → W+W− process at the Future electron–positron
Circular Collider (FCC-ee) is underlined.
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1 Introduction

The Standard Model Electroweak (EW) Field Theory was
confirmed as the correct physics theory of electromagnetic
and weak interactions between elementary particles by pre-
cision measurements of the LEP experiments [1,2]. The LEP
data were precise enough to test all important dynamical
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properties of the EW theory, such as quantum loop effects,
consequences of the renormalisation, multiple photon emis-
sion, etc. In particular, EW gauge cancellations and quan-
tum loop effects were verified experimentally at LEP in
the e+e− → W+W− process at the precision tag for the
total cross section at the level of 0.3–05%. The mass of the
W -boson was also measured directly with the precision of
33 MeV.

The electron–positron Future Circular Collider (FCC-ee)
[3,4], considered as the future project at CERN, will be able
to produce the number of W -boson pairs by a factor of 103

higher than at LEP. This will serve to determine total WW
cross section, the mass and width of W with the unprece-
dented precision and search for any anomalous phenomena
beyond the Standard Model (SM) of the EW and strong inter-
actions. Obviously, analysing FCC-ee data will also require
new SM perturbative calculations for the e+e− → W+W−
process, much more precise than these available at the LEP
era [5,6]. The precision tag expected in FCC-ee experiments
is at the level of about 0.01%, a factor of 10 better than at
LEP. This will require to go beyond the state of the art of
the LEP era in the calculations of the SM predictions for the
e+e− → W+W− or e+e− → 4 f processes.

For general discussion of the theoretical issues in the W -
pair production process the reader should consult the reviews
of Refs. [7,8]. In particular, the delicate question of the EW
gauge invariance for the Dyson summation leading to imag-
inary part of the W and Z propagators is covered there.

Here we shall focus on the important QED part of the
EW/SM perturbative corrections to the W -pair production
process. More precisely, on this part of the QED corrections
which is related to soft and collinear (SC) singularities for real
and virtual photon emissions on the external legs.1 According
to the accumulated knowledge on the SC photonic contribu-
tion, it is quite clear that they factorise either at the amplitude
level, or for the differential distributions and can be calcu-
lated separately to a much higher order than the remaining
genuine EW corrections.2 This is very convenient, because
SC contributions are much bigger numerically than genuine
EW corrections, simpler to calculate, and can be resummed to
the infinite order. Once separation of the QED and EW parts
is established, resummation of some higher-order contribu-
tions in each of these two classes can be done independently.
The important nontrivial final step is then merging/matching
them in the final results.

There is little doubt that the factorisation and resummation
of the QED soft/collinear corrections is the key to the success

1 It is tempting to call them “universal” but, in fact, non-soft subleading
collinear perturbative corrections are process-dependent, hence non-
universal, while all soft corrections are universal.
2 The genuine EW part of the SM perturbative corrections include non-
soft, non-collinear remnants of the QED origin.

in the high-precision calculations of the SM predictions for
the W -pair production process at FCC-ee.

There are four classes of QED corrections to the W -
pair production and decay process: initial-state corrections
(ISR), final-state corrections (FSR) in the decays of two W±,
final-state Coulomb corrections (FSC) and the so-called non-
factorisable interferences (NFI) between the production and
the decays (IFI) and between two W± decays (FFI). The IFI
corrections are suppressed due to relatively long lifetime of
W ’s and FFI due to large space separation. The effects due
to ISR are numerically the biggest but also easier to control,
while the FSR effects can be also quite sizeable for typical
experimental cut-offs.

The IFI and FFI interferences are small, suppressed by the
factor �W /MW away from the WW -production threshold,
strongly cut-off dependent and algebraically most compli-
cated. At LEP they could be neglected but for the FCC-ee
precision they have to be handled with great care!

The relative narrowness of the W boson resonance not
only causes suppression of the QED interferences, but also
provides for the expansion in terms of �W /MW ∼ O(α)

of the matrix element of the e+e− → 4 f process into the
numerically biggest and physically most interesting double-
resonant e+e− → W+W− part, and less important single-
resonant and non-resonant background parts. In the following
we shall refer to them as the double-pole (DP), single-pole
(SP) and non-pole (NP) contributions, as it was common in
the LEP-era literature.

The above pole expansion (POE) in the powers of
�W /MW , disentangling the DP, SP and NP components at
the scattering amplitude-level is very useful because it allows
for each of these three components to calculate the genuine
EW corrections at a different perturbative order and to per-
form resummation of the QED soft/collinear contributions at
a different sophistication level. In the final stage of the calcu-
lation, the best way is to sum POE contributions coherently
at the amplitudes level, before summing over spin and taking
modulus squared, rather than for differential cross sections,
thus avoiding proliferation of many interference terms.

At the time of LEP experiments, two solutions based
on the pole expansion were worked out, in which the
O(α1) EW corrections were complete only for the DP
component e+e− → W+W− of the e+e− → 4 f pro-
cess. One of them, nicknamed KandY [9,10], was based on
the combination of YFSWW3 [11,12] Monte Carlo (MC)3

for the e+e− → W+W− and W±-decay processes with
another MC program KORALW [17] for the remaining back-
ground. The multiphoton emission for ISR, including higher
orders, was implemented using the soft-photon resummation
inspired by the Yennie–Frautschi–Suura (YFS) work [18].
The QED FSR was added in W decays using the PHOTOS

3 Including EW O(α1) corrections of Refs. [13–16].
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program [19,20]. Another POE-based solution was that of
RACOONWW [21,22], also with the complete EW O(α1) cor-
rections implemented only for the signal e+e− → W+W−
process and not for the background part.

Implementation of QED corrections in RACOONWW was
very different from that in KandY. On the one hand,
RACOONWW was using exact matrix element for the entire
e+e− → 4 f γ process but it was lacking sophisticated soft
photon resummation of the KandY. For more detailed com-
parison of the two approaches see the review of Ref. [8] or
more recent of Ref. [23]. Both approaches were instrumental
in the analysis of the LEP data for the e+e− → W+W−
process [2], where the gauge cancellations and the quantum
effects of the EW theory were tested experimentally for the
first time.

Both approaches, KandY and RACOONWW, neglect terms
of O(α�W /MW ). The QED NFI interferences between W
production and decays were either neglected completely
(KandY) or included in the soft-photon approximation
(RACOONWW) without resummation. The overall precision of
these calculations was about 0.3–0.5%. The FCC-ee experi-
ments will require new calculations with the precision tag
below 0.1%, thus adding missing α�W /MW corrections,
O(α2) electroweak corrections to the DP component, a more
advanced QED factorisation/resummation scheme, sublead-
ing QED O(α2) corrections and more will be needed [5,6].
In particular, inclusion the QED NFI corrections in the fully
exclusive way,4 taking into account the �W /MW suppres-
sion, will be necessary.

The aim of the present work is to work out a new method-
ology of the soft photon resummation including NFI correc-
tions for charged unstable particles, similarly as it was done
for the production and decay of the narrow neutral Z -boson
in the process e+e− → f f̄ +nγ with a built-in �Z/MZ sup-
pression for the QED initial-final interferences (IFI) at any
perturbative order [24,25]. This method was already tested
for the Z resonance in the Monte Carlo event generatorKKMC
[24]. Its matrix element is built according to the so-called
coherent exclusive exponentiation (CEEX) scheme, in which
factorisation of the infrared (IR) divergences is done entirely
at the amplitude level (before squaring and spin-summing).
The older version of the exclusive exponentiation (EEX) of
Refs. [26,27] was done at the level of differential distribu-
tions for the same e+e− → f f̄ + nγ process and features
multiphoton resummation of ISR and FSR. Both approaches,
CEEX and EEX, are inspired by the pioneering work of
Yennie–Frautschi–Suura [18].

In the present work we shall generalise the CEEX scheme
to the case of any number of narrow charged intermedi-
ate resonances, like the W -boson—the scheme is however
quite general and applies to any charged resonance of any

4 They depend strongly on experimental cut-offs.

spin. The new CEEX scheme provides exclusive (uninte-
grated) description for multiple real photons of any energy,
for Eγ ∼ �W , Eγ � �W and Eγ ∼ √

s, with all QED inter-
ferences between production and decays properly accounted
for. Multiple real and virtual photon emission from all exter-
nal stable particles and the intermediate semi-stable charged
resonance will be described correctly in the soft photon limit
and summed up to the infinite order. As in the case of CEEX
of Refs. [24,25], its present extension will provide for a
well-defined methodology of incorporating non-soft contri-
butions5 (including the genuine EW corrections) calculated
up to a finite perturbative order into multiphoton amplitudes
of the soft-photon resummation scheme. In particular, size-
able but easier to calculate QED non-soft collinear contri-
butions can also be included easily up to an arbitrarily high
order.

The consistent resummation of the apparently IR-divergent
contribution due to photon emissions from the semi-stable
intermediate charged particle (narrow resonances) in the per-
turbative expansion is a non-trivial issue. Let us first con-
sider � → 0 limit. The best illustrative example is that of
the τ±-pair production and decay in the e+e− annihilation
where a time scale of the τ -pair formation (production pro-
cess) is shorter than the τ lifetime by at least a factor of
�τ/mτ � 3 · 10−12, hence photons emitted in these two
stages get completely decoupled and the QED effects in the
production and the decay can be implemented separately
[24,28,29].

The situation in the W -pair production is similar but the
suppression factor �W /MW � 0.026 is not that small. The
QED interferences are therefore expected to be of the order
of α�W /MW � 2 · 10−4. In LEP experiment this size could
be neglected, but for the FCC-ee precision, effects of this
size have to be calculated and taken into account. Moreover,
such interferences depend on kinematical cut-offs—from the
experience with the Z -boson case we know that they may
grow by a factor of 2–5 even for relatively mild cut-offs
on photon energies. Also, in the case when photon energy
resolution ω of the detector approaches 2 GeV, which is the
case for FCC-ee detectors, photon emission from FSR in the
production process and from W decays cannot be separated
and treated in the soft photon approximation, consequently
the off-shell W ’s have to be treated the same way as other
internal exchanges in the e+e− → 4 f process.

Our aim is to construct a variant of CEEX spin amplitudes
in which we profit as much as possible from the smallness of
�W /MW and the classic YFS soft-photon limit for the entire
e+e− → 4 f process is correctly reproduced for ω � �W .

5 This will be done without introducing any parameter in the photon
energy distinguishing between soft and hard photons. Minimum photon
energy in the Monte Carlo implementation can be set to an arbitrarily
low value without any effect on the physical results.
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The basic technical problem will be that if we want to treat
W ’s as stable particles in the W -pair production process with
the zero width, then amplitudes of photon emission from
W must be IR-singular, while for the semi-stable W ’s they
are not (the W width acts as a IR regulator). Our aim is
to reconcile these two contradictory situations in a single
algebraic framework.

In the YFSWW3 program, photon emission in the e+e− →
W+W− → 4 f process was treated in a similar way as in the
above τ -pair production and decay, except that W invari-
ant masses were not fixed but modelled according to the
Breit–Wigner shape. The QED matrix element in YFSWW3
for e+e− → W+W− with the soft photon resummation is of
the EEX type, including ISR, FSR and IFI. Decays of W±s
are supplemented with additional photons using PHOTOS.
However, it could be easily replaced with the multiphoton
MC implementation of the EEX of the WINHAC program
[30]. Once EEX implementation is available in the W -pair
process for the production and decays, the new CEEX matrix
element developed in the present work can be introduced
using an additional multiplicative MC weight,6 without any
change in the underlying MC program. The above would
be the solution for the resummed QED corrections of the
DP part of the e+e− → 4 f process. The O(α1) and O(α2)

genuine EW corrections can be added in the on-shell approx-
imation within the CEEX matrix element in the similar way
as it was done for the e+e− → 2 f process in Refs. [24,25].
So far only O(α1) EW corrections are available. In order to
exploit fully FCC-ee data, the O(α2) EW corrections will
be needed. As pointed out in Ref. [5], the clear and clean
separation of the QED and the genuine EW correction at any
perturbative order is a useful built-in feature of the CEEX
factorisation/resummation scheme.

The single-pole group of diagrams of the e+e− → 4 f
process process is separated at the amplitude level in the
CEEX scheme. It would be enough to include the genuine
EW corrections to the SP part at O(α1). They are in princi-
ple known, because they are part of the O(α1) corrections
to e+e− → 4 f process in Refs. [31,32], although it may be
not simple to disentangle them from the rest of the existing
calculations. For the non-pole part of the e+e− → 4 f pro-
cess it would probably be enough to take it at the tree-level
as far as the genuine EW corrections are concerned and take
care of the QED corrections only, either in the CEEX or EEX
scheme.

In this work, the CEEX scheme will be defined only for
the DP part leaving the easier SP and NP variants for the
future development. On the other hand, we shall also discuss
in a more detail the explicit algebraic relation between the
CEEX scheme and the EEX scheme of theYFSWW3. This will
provide better understanding of the theoretical foundation of

6 The same way as in KKMC.

the existing EEX scheme of the YFSWW3. The main result of
this work is, however, that it provides an important building
block for the future high-precision calculations for the W
pair production process, and also for any other process with
narrow charged resonances.

Close to the WW threshold, where the W mass is planned
to be measured in the FCC-ee experiments with the ≤
0.5 MeV precision (using the total cross section [3,4]), the
important problem is that the pole expansion for the non-
QED part of the scattering matrix element is not efficient
any more, see Refs. [31,32]. The partial suppression of the
QED IFI and FFI corrections will still work close to the
threshold as long as resonant curves of W ’s are not fully
“distroyed” by the threshold cut-off. However, as shown in
works based on the effective field theory (EFT) [33,34],
near the threshold one may exploit expansion in the Lorentz

velocity β =
√
s − 4M2

W /2MW � 1 of the W ’s in order
to reduce substantially a number of diagrams, such that the
higher-order EW and QED corrections are again within the
reach of practical evaluations. This kind of expansion should
be exploited in the standard diagrammatic approach, to be
included in the matrix element in a Monte Carlo event gen-
erator [35]. However, for the time being the available EFT
calculations are inclusive and this limits their applicability
for the high-precision control of the realistic experimental
acceptances needed at FCC-ee.

Summarising, a combination of the pole expansion and
of the QED exclusive exponentiation has already proven to
be an economical solution for precision calculations of the
SM prediction for the W -pair production process at LEP and
is the best candidate for the further development in future
electron-positron collider projects, especially for FCC-ee.
The inclusion of the QED interferences between the W pro-
duction and decays, and of other missing corrections of the
order ofα�W /MW will require applying a more sophisticated
soft/collinear photon factorisation and resummation scheme,
combined with POE. We propose here a new solution based
on the coherent exclusive exponentiation, CEEX, in which
resummation of the infrared (IR) divergences is done entirely
at the amplitude level. The interesting feature of this new
scheme is that the �W /MW suppression of the QED inter-
ferences between production and decay is a built in feature
valid in any order and at any photon energy scale/resolution,
all over the entire multiphoton phase space. The new scheme
is similar to the CEEX scheme previously formulated and
successfully applied to the case of the neutral intermediate
resonances (the Z -boson).

One should not give up on the more traditional EEX
schemes, however. We shall discuss briefly alternative solu-
tions within the traditional EEX schemes (extensions of EEX
of YFSWW3). We shall also examine approximations or sim-
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plification done in the transition from the CEEX to EEX
schemes, and between various variants of them.

Concluding, this work provides an important building
block for the future high-precision Standard Model calcu-
lations for the W -pair production process at the future e+e−
colliders.

The paper is organised as follows. In Sect. 2 we describe
the pole expansion for the W -pair production process. Sec-
tion 3 is devoted to a general discussion of various kinds of
the exclusive QED exponentiation and a problem of photon
emission from an intermediate semi-stable charged particle.
In Sect. 4 we present details on the CEEX scheme for the
process e+e− → 4 f involving intermediate resonant W -
bosons. Relations between the CEEX and EEX schemes are
discussed in Sect. 5. Section 6 contains summary and outlook
of our work. Finally, detailed derivations of factoring mul-
tiphoton radiation from an intermediate semi-stable charged
particle, resummation of real-photon emissions and the vir-
tual YFS form-factor for the pertinent process are given in
Appendices A, B and C, respectively.

Shorter version of this work was reported in the conference
materials of Ref. [36].

2 Pole expansion for W -pair production

As pointed out by Stuart [37], it is always possible to decom-
pose the matrix element into a combination of Lorentz covari-
ant tensors and Lorentz invariant functions. If unstable par-
ticles are involved in a process, one can then perform a
Laurent expansion about complex poles corresponding to
those unstable particles. However, only the Lorentz invari-
ant functions (mathematically, analytic functions of complex
variables) are subject to this expansion, while the Lorentz
covariant and spinor structure of the matrix element should
remain untouched. In the so-called leading-pole approxima-
tion (LPA) one retains only the leading terms in the above
expansion, neglecting the rest of the Laurent series. As dis-
cussed in Ref. [37], the whole procedure does not violate
gauge invariance of the matrix element. This is guaranteed
by the fact that all terms in the pole expansion are indepen-
dent of each other, e.g. in the case of two unstable particles,
the doubly-resonant terms are independent of the singly-
resonant and non-resonant ones, therefore there cannot be
gauge cancellations between those terms. In Ref. [37], the
process of Z -pair production and decay was presented as an
example.

Here, we discuss the process of W -pair production and
decay:

e−(p1) + e+(p2) −→ W−(Q1) + W+(Q2) −→ f1(q1)

+ f̄2(q2) + f3(q3) + f̄4(q4), (2.1)

whereW− decays into f1, f̄2 andW+ into f3, f̄4. At the low-
est order, the minimum gauge invariant subset of Feynman
diagrams needed for this process is the so-called CC11-class
of graphs. It includes apart from doubly-resonantWW graphs
(the so-called CC03) also singly-resonant W graphs. Below
we discuss how to apply the pole expansion this process.

Since we are interested only in LPA (a double-pole
approximation in this case) we start from extracting a part of
the full matrix element that can give rise to doubly-resonant
contributions (the rest will drop in LPA anyway). It can be
written as follows:

M =
∑
i

[
v̄e(p2)T

i
μνue(p1)

]
Mi (s, t, s1, s2)

×D−1
W (s2)

[
ū f3(q3)γ

μVW f (s2)ω−v f4(q4)
]

×D−1
W (s1)

[
ū f1(q1)γ

νVW f (s1)ω−v f1(q1)
]

, (2.2)

where

DW (s) = s − M2
W + 	W (s) (2.3)

is a Dyson-resumed W propagator with 	W (s) being the
W self-energy correction. In the above we have used the
following notation:

ω− = 1

2
(1 − γ5),

s1 = Q2
1, s2 = Q2

2,

Q1 = q1 + q2, Q2 = q3 + q4. (2.4)

T i
μν are the Lorentz covariant tensors spanning the ten-

sor structure of the matrix element, while Mi , 	W , VW f

are Lorentz scalars that are analytic functions of indepen-
dent Lorentz invariants of the process. These functions then
undergo the Laurent expansion about the complex poles cor-
responding to a finite-range propagation of twoW ’s. Keeping
only the leading terms in the above expansion, we end up with
the LPA matrix element [10,38]

MLPA =
∑
i

[
v̄e(p2)T

i
μνue(p1)

]
Mi (s, t, sp, sp)

× FW (sp)

s2 − sp

[
ū f3(q3)γ

μVW f (sp)ω−v f4(q4)
]

× FW (sp)

s1 − sp

[
ū f1(q1)γ

νVW f (sp)ω−v f1(q1)
]

,

(2.5)

where the pole position sp is a solution to the equation

s − M2
W + 	W (s) = 0, FW (sp) = [1 + 	

′
W (sp)]−1.

(2.6)

At the lowest order the Lorentz tensors read

T 1,2
μν = γ λ�λμν(Q, Q1, Q2), (2.7)
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T 3
μν = γμ( 	 p2− 	 Q2)γν, (2.8)

and the Lorentz scalars are

M1 = e2 1

s
, (2.9)

M2 = −e2 sW
cW

[ve − aeγ5] 1

s − M2
Z + iMZ�Z

, (2.10)

M3 = e2

s2
W

1

t
, (2.11)

VW f = eUi j
√
Nc

2s2
W

, (2.12)

where Q = p1 + p2, s = Q2, t = (p2 − Q2)
2, Ui j

is the CKM matrix element, Nc is the QCD colour factor,
sW = sin θW , cW = cos θW , ve and ae are the vector and
axial couplings of a Z boson to electrons, �λμν is the VWW
coupling (V = γ, Z ):

�λμν(Q, Q1, Q2) = (Q + Q1)νgλμ

+(Q2 − Q1)λgμν − (Q + Q2)μgνλ. (2.13)

In the scalar function M2 we have also applied LPA to the
intermediate Z -boson. It is done in a similar way as for W ’s.
The W -pole position, up to O(α2), is given by

sp = M2
W − iMW�W + O(α2), (2.14)

where MW , �W are the usual on-shell scheme W mass and
width, and FW = 1. One can easily check that at the low-
est order this LPA matrix element has the same form as
the CC03 matrix element calculated in ’t Hooft–Feynman
gauge and in the constant W -width scheme. It was noticed
in Ref. [39] that when the CC03 matrix element is calcu-
lated in the axial gauge also singly-resonant terms appear.
This indicates that the singly-resonant graphs are needed to
guarantee gauge invariance of the matrix element, i.e. that
CC03 itself is not gauge-invariant, but one has to take at
least CC11 for hadronic, CC10 for semi-leptonic and CC09
for leptonic final states. In the LPA approach described above
it does not matter what gauge is used in the calculations. We
start from the gauge-invariant matrix element and then apply
the pole expansion. In the resulting LPA matrix element all
non-double-pole terms drop out.

One of the complications that arises when going to higher
orders is the fact that W ’s are electrically charged and there-
fore radiate photons. When a real or virtual photon is emitted
from the W one has more than just two W propagators in the
matrix element and the question is how to apply the pole
expansion in such a case. Here, however, one can exploit a
partial-fraction decomposition of a product of two propaga-
tors, namely:

1

Q2 − M2

1

Q′2 − M2
≡ 1

2kQ′ + k2

1

Q′2 − M2

− 1

Q2 − M2

1

2kQ − k2 , (2.15)

where M2 = M2
W + i�WMW , Q, Q′ = Q − k are the

W four-momenta before and after radiation of a photon of
the four-momentum k, respectively.7 So, a product of two
propagators can be replaced by a sum of single propagators
multiplied by eikonal factors. This corresponds to splitting
the photon radiation into the radiation in the W -production
stage and the radiation in the W -decay stage. These two
stages are separated by the finite-range W propagation. The
above decomposition can be applied both to the real and vir-
tual photon emissions. In the case of the real photons the
radiation amplitude splits into the sum of the amplitudes
corresponding to photon emission in the WW -production
and two W -decays. At the level of the cross section this
results in the sum of contributions corresponding to the pho-
ton radiation at each stage of the process – the factorisable
corrections, and the contributions corresponding to interfer-
ences between various stages—the non-factorisable correc-
tions. Similarly, for the virtual corrections, the contributions
with photons attached to the same stage give rise to the fac-
torisable corrections, while the ones where photons inter-
connect different stages of the process contribute to the non-
factorisable corrections. In this way all radiative corrections
can be split in a gauge-invariant way into the factorisable and
non-factorisable ones.

Since the non-factorisable corrections were negligible for
the main LEP2 observables one could drop them8 and con-
centrate only on the factorisable ones. For factorisable cor-
rections one can employ the existing calculation for the on-
shell WW -production and the on-shell W -decay. Our aim is
to treat the QED corrections according to the YFS exclusive
exponentiation procedure and also apply the LPA, described
above, in order to obtain the gauge-invariant formulation.
How to do this? Extraction of infra-red (IR) contributions
for both real and virtual photons can be done in a gauge-
invariant way according to the YFS theory for each of the
stages separately. These contributions are then sum up to infi-
nite order and result in the so-called YFS form-factor. This
means that the YFS form-factors and the IR real-photon S̃-
factors involving W ’s do not have to be taken on-pole but
can be calculated like for stable particles. After having done
this we can apply the pole expansion to the IR-residuals—
the YFS β̄-functions. We proceed in the way described at
the beginning of this section and retain only the leading-
pole (double-pole) terms. The O(α) LPA matrix element for
the real photon contribution reduces, similarly to the lowest
order, to the form that can be obtained from the doubly-
resonant Feynman graphs with single-photon emission in

7 See also Appandix A.
8 In fact, we use an approximation for the non-factorisable corrections
in terms of the so-called screened Coulomb ansatz of Ref. [40].
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the ’t Hooft–Feynman gauge. The O(α) virtual correction
form-factors should, in principle, be evaluated on the com-
plex pole. This would require an analytic continuation of the
usual one-loop results to the second Riemann sheet (this may
be a technical problem). However, for the aimed LPA accu-
racy, it is sufficient to use the approximation sp � M2

W . This
would correspond to neglecting terms of O( α

π
�W
MW

). More
details about implementation of the O(α) corrections in the
WW -production process in the MC event generator YFSWW3
can be found in Ref. [11].

3 General discussion

In this section we collect discussion on various aspects of the
photon radiation in the W pair production process, in partic-
ular we discuss various exponentiation schemes preparing
grounds for defining them explicitly in the following sec-
tions. We define more precisely our aims, discuss various
constraints, introduce notation and terminology.

The fact that W ’s are narrow resonances and behave like
almost stable particles is of great practical importance for the
evaluation of the radiative corrections, because it provides
an additional small parameter �W /MW which can be used
as an expansion parameter, leading to reduction of the com-
plexity of calculations of radiative corrections. As a result,
the dominant double-resonant part of the process (3.3) can
be well approximated as three independent processes: one
production process and two decay processes. For the dou-
ble resonant part it is possible to use simpler on-shell radia-
tive corrections, while for the single-resonant part we may
stay at the Born-level or use some crude leading-order (LO)
approximations for the radiative corrections. Of course, we
have to have at our disposal a method of splitting the Born
amplitude and the amplitude with the radiative corrections
into the double- and single-resonant parts, without break-
ing gauge invariance and other elementary principles. The
pole expansion (POE) seems to be the best method available.
Once POE is used for W -pair production process to isolate
the double-pole (DP), single-pole (SP) and non-pole (NP)
parts, photon emission from the intermediate unstable W ’s
has to be reorganised in a consistent way. In addition, it would
be desirable to sum up photon emission from W ’s to infinite
order (exponentiate), for instance using one of EEX or CEEX
schemes.

In the following we shall characterise various methods
of the known soft photon resummation and then charac-
terise problems related to soft-photon emission from charged
semi-stable intermediate particles (resonances), like the W -
bosons.

3.1 Various kinds of exclusive exponentiation

Generally, there are two kinds of exclusive exponentiation
schemes: (1) the older one, which we call EEX, in which
isolation of IR singularities due to real photons is done for
differential distributions (probabilities), as in the classic work
of Yennie–Frautschi–Suura (YFS) [18], and (2) the newer
one of Refs. [24,25,42], referred to as CEEX, in which the
same isolation of the real photon IR singularities is done
for the amplitudes themselves, that is before squaring and
spin-summing them. CEEX has a number of advantages over
EEX. The price to pay is that it can be more complicated in
the implementation and slower in the numerical evaluation.

Since we are interested mainly in the exclusive exponen-
tiation for the processes with the narrow resonances, it is
worth to note that, within EEX and CEEX families, there
are two distinct subgroups of implementations which differ
rather strongly in the treatment of the narrow resonances (or
of sharp t-channel peaks). The key difference is in the treat-
ment of the shift of the energy-momentum in the propagator
of the resonance due to emission of the real or virtual pho-
tons. Let us, for the purpose of this work, call this effect a
“recoil effect” or shortly a “recoil”.

Within the EEX family there is a baseline variant based
on the original YFS work [18], in which the recoil is realised
in an order-by-order way. Let us denote them with EEXB .
Examples of the EEXB variants are: the unpublished MC
code YFS1 described in Ref. [41] and BHLUMI 1.x of Ref.
[43].9 In EEXB the recoil is absent completely at the level of
O(α0)EEX. Then, it is gradually introduced in an order-by-
order manner, through the so-called IR-finite β̄-functions.
For instance, in O(α2)EEX the exact recoil in the differen-
tial distribution is realised due to two hard real photons—if
there is a third “spectator” hard photon, then its contribution
to resonance propagator is simply ignored. The problem is
that, from the point of view of the strong variation of the
resonance propagator, a photon with the energy of the order
of the resonance width � is already hard! This is why EEXB

can be disastrous for narrow resonances, where in order to
realise the recoil, it would be mandatory to jump immediately
to very high perturbative orders, otherwise the perturbative
convergence for the QED corrections would be miserable.
EEXB can be a convenient and natural choice if there are no
resonances at all.

In the second class of the EEX scenarios, the recoil in
the resonance propagator (or sharp t-channel exchange) is
a built-in feature of the scheme, which is present already in
O(α0)CEEX. Let us call such a scheme EEXR . It is realised

9 In the case of the sharp t-channel exchange singularity in the low-
angle Bhabha scattering, the analog of the recoil effect between the
electron and positron lines is also worth to take into account in a better
way than in EEXB .
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Table 1 The list of the exclusive soft photon resummation schemes
and their implementations. The 2nd column indicates the primary ref-
erence for the formalism. Inclusion of the non-factorisable interference

is marked in the 3rd column. Practical implementations in the MC codes
are listed in the 4th column. The maximum (LO) order of the complete
non-soft QED corrections is indicated in the last column

Resummation Formalism NFI interf. Implementations Order

No resonances

EEXB [18,41] – YFS1 O(α1)

CEEXB None – None –

Neutral semi-stable intermediate particles

EEXR [27] No YFS3, KORALZ O(α3)

CEEXR [24,25] Yes KKMC O(α2)

Charged semi-stable intermediate particles

EEXR [11,12] No YFSWW3 O(α3)

CEEXR This work Yes None –

for the first time in theYFS3 event generator [27] and later on
included in theKORALZ[44],KKMC[24] programs and finally
in the YFSWW3 program [11,12]. The analogous scheme
for a process dominated by the t-channel was implemented
in the BHLUMI MC program [45,46]. In EEXR , the total
energy-momentum in the resonance propagator (or t-channel
exchange) includes the contribution from all real photons
emitted prior to resonance formation (t-channel exchange).
This means that for each photon we have to know whether
it belongs to resonance production or decay process (ISR or
FSR). This is possible because in this scenario one always
neglects completely and irreversibly the QED interferences
between the ISR and FSR.10 Neglecting these interferences
may be not so harmful as compared to experimental preci-
sion, because they are suppressed by the �/M factor. The
EEXR is obviously very well suited for narrow resonances,
as long as we can afford neglecting O(α�/M) interference
corrections, and we do not attempt to examine experimentally
spectra of photons with energies Eγ � �.

In the CEEX family of exponentiations there are anal-
ogous two sub-classes: either the recoil is implemented in
the infinite order (CEEXR) or in the order-by-order man-
ner (CEEXB). One great advantage of CEEX is that, in the
process with the resonant component and the non-resonant
background, one may apply CEEXR to the resonant part of
the amplitude and CEEXB to the background and add the
two coherently afterwards.

Let us comment on the relation of the above schemes to the
classic YFS work and the relation of EEXR to other ones. All
the above exponentiation schemes are inspired by the clas-
sic YFS work [18] in one way or another. However, it is in
fact only the EEXB scheme which was formulated explic-
itly in the original YFS work. CEEX is a non-trivial exten-
sion of the YFS exponentiation scheme, see Ref. [25] for

10 In the case of the low angle Bhabha process neglected are interfer-
ences between the electron and positron lines in the Feynman diagram.

more discussion. So far, there is no implementation of the
CEEXB scheme, while more sophisticated CEEXR is suc-
cessfully implemented in KKMC[24] program for the neutral
semi-stable Z boson production and decay in the electron–
positron annihilation and recently in the proton–proton col-
lision [47].

The above inventory of all schemes of the exclusive QED
exponentiations and their implementations are summarised
in Table 1.

Finally, let us note that there is another variant of the EEXR

scheme implemented in the BHWIDE program of Ref. [48],
featuring partial implementation of the QED NFI interfer-
ences for semi-stable neutral boson exchanges. It will be dis-
cussed in the following whether this kind of scheme could
be extended to include the QED NFI interferences for the
charged semi-stable W -boson.

3.2 Photons from intermediate semi-stable charged particle

Let us present an introductory discussion on the photon emis-
sion from the intermediate charged unstable W ’s.

In order to better grasp physics of the photon emission
from unstable charged particles, let us consider one more
time the case of e+e− → τ+τ− + nγ, τ± → X± pro-
cess. In this case, with �τ/mτ = 2.27 · 10−12, the produc-
tion and decay processes are well separated in time due to
this factor. For instance, the formation time of the τ -pair
at

√
s = 100 GeV is ∼ 10−24 s while the τ lifetime is

much longer, 2.9 · 10−13 s. This is why the ISR photons
emitted from initial beams have no chance to interfere with
these of the τ decays. The FSR photons emitted from the
outgoing ultrarelativistic τ ’s are quite copiously, because
ln(s/m2

τ ) = 8.06, but still, the emissions of the FSR photons
and photons in the decays are time-separated by the factor

123



Eur. Phys. J. C (2020) 80 :499 Page 9 of 29 499

Fig. 1 Kinematics of the
four-fermion production process
with multiple photons

of �τ/mτ = 2.27 · 10−12.11 The suppression of the inter-
ferences between photon emission from two decays is even
stronger, by the factor �τ/

√
s ∼ 10−14. Consequently, all

practical calculation for QED effects in the τ -pair production
and decay process from the production threshold onwards
were implemented in the Monte Carlo programs indepen-
dently for the production and decay parts [24,28,29]. The
τ -leptons in the production process are treated in the per-
turbative/diagrammatic QED calculations and in the phase-
space integration as stable particles with the fixed mass and
the zero decay width. Photon emission from the unstable
intermediate τ ’s is of course exponentiated—the same way
in the decay parts. Can the above production-decay separa-
tion break down? Yes, if the energy resolution in the photon
energy (a cut on photon energies) is smaller than the τ width,
that is below 0.003 eV, which is experimentally unfeasible.

In order to see that the problem of the photon emission
from the unstable intermediate W ’s is not a completely triv-
ial, let us recall a well-known elementary fact [18]: the emis-
sion of photons from the stable initial beams and four final
fermions can be factorised into a product of the soft factors∏

i J
μi
6 f (ki ) with the total electric current for all six external

particles:

Jμ
6 f (k) = Ĵμ

a (k)+ Ĵμ
b (k)+ Ĵμ

c (k)+ Ĵμ
d (k)+ Ĵμ

e (k)+ Ĵμ
f (k),

(3.1)

where

Ĵμ
x (k) = θx Qx

2pμ
x θx + k

k2 + 2k · pxθx + iε
, (3.2)

11 At LEP energies τ decays are separated from the production by the
giant 2 mmdistance.

px and Qx are the momentum and charge (in the units of
positron charge) of the emitter particle x , and θx = +1,−1
for the initial- and final-state particle, respectively. For the
virtual photons there might be contractions among the pairs
of the currents Jμi

6 f (ki ) and J
μ j
6 f (k j ), see next sections for the

explicit formulation. Figure 1 provides a visual representa-
tion of the process of four-fermion production in electron–
positron collisions. All possible contractions (loops) for the
virtual photons are not explicitly marked there.

Strictly speaking, in the orthodox YFS scheme [18], the
emissions from the intermediate W ’s should not be included
in the IR soft factors, because W ’s are internal exchanges
and the corresponding emission does not contribute any IR
singularity. This is true, not only because eachW resonance is
off-shell (p2

W 	= M2
W ), but also because photons with energy

below W width, Eγ � �W , emitted according to the above
Jμ

6 f , “know nothing” about W ’s.12 The reason is that, W ’s
live too shortly to affect the distributions of such very soft
(long-wavelength) photons.

On the other hand, looking into the example of the τ -pair
production and decay, the emission of soft and hard photons
out of W ’s definitely makes a lot of sense. However, in the
case of the W -pair, the time separation of the production and
decay stages is not that extremely long—this is why it is
desirable to implement smooth analytical transition from the
situation in which emission of photons with Eγ < �W is
governed solely by the Jμ

6 f currents to a situation in which
the emission of photons with Eγ > �W gets a well-defined
contribution from the intermediate W ’s. The above situation
is visualised in Fig. 2 which describes a double-resonant pro-
cess

12 Finite W width acts as IR regulator.
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Fig. 2 Kinematics of the
double-resonant process

e−(pa) + e+(pb) → W−(pg) + W+(ph) + nγ,

W−(pg) → fc(pc) + f̄d(pd) + nγ, W+(ph) → fe(pe)

+ f̄ f (p f ) + nγ,

(3.3)

where we understand again that we may also contract any
pair of the photon lines into a virtual photon exchange (loop).
Here and in the following we use the following short-hand
notation:

pab = pa + pb, pcd = pc + pd , pef = pe + p f . (3.4)

The key point is a very special way in which the recoil
is implemented in the resonance propagators. To understand
this problem better, let us consider first the case with one
real photon n = 1 in the two soft limit regimes: (i) semi-soft,
k0 ∼ � � √

s and (ii) true-soft, k0 � �W � √
s. The

true-soft case (ii) is the case of the standard YFS, in which
we have

M(0)μ1
(k1)

� Const
1

p2
cd − M2

1

p2
e f − M2

×
{
Qa

2pμ
a

2pak1
+ Qb

2pμ
b

2pbk1
− Qc

2pμ
c

2pck1
− Qd

2pμ
d

2pdk1

− Qe
2pμ

e

2pek1
− Q f

2pμ
d

2p f k1

}
.

(3.5)

In Eq. (3.5) there is no emission from any internal W
line and no dependence in the resonance propagators due
to photon emission. In the semi-soft regime (i) we have to
restore such a dependence in the resonance propagators, that
is take into account the recoil. This cannot be done without

introducing photon emission from the intermediate charged
resonance into the total electromagnetic current (unless we
drop the NFI corrections altogether, as we already discussed).
In order to see this point more clearly, let us write down a
naive extension of the formula of Eq. (3.5) in the complete
analogy with the CEEX for the neutral resonances, like the
Z -boson:

M
(0)
1

μ
(k1)

� 1

p2
cd − M2

1

p2
e f − M2

{
Qa

2pμ
a

2pak1
+ Qb

2pμ
b

2pbk1

}

+ 1

(pcd + k1)2 − M2

1

p2
e f − M2

{
− Qc

2pμ
c

2pck1

− Qd
2pμ

d

2pdk1

}

+ 1

p2
cd − M2

1

(pef + k1)2 − M2

{
− Qe

2pμ
e

2pek1

− Q f
2pμ

d

2p f k1

}
.

(3.6)

The above extension is, however, useless, because it is not
gauge invariant. We have to restore emission from the internal
W in order to cure the gauge invariance, while maintaining
recoil in the resonance propagator!

We therefore restore photon emission from the internal W
in the soft photon approximation (starting from Feynman dia-
grams) and next, factorise it into the product of the emission
factors using the identity (A.2) given in Appendix A. This
identity also shows why it is necessary to sum up coherently
over two photon assignments, either to W in the production
or to W in the decay.
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For the single real semi-soft photon under consideration,
we obtain immediately the following gauge-invariant ampli-
tude being the sum of three parts, each of them gauge invari-
ant by itself13:

M
(0)
1

μ
(k1)

� 1

p2
cd − M2

1

p2
e f − M2

{
Qa

2pμ
a

2pak1
+ Qb

2pμ
b

2pbk1

− Qg
2pμ

g

2pgk1
− Qh

2pμ
h

2phk1

}

+ 1

(pcd + k1)2 − M2

1

p2
e f − M2

{
Qg

2pμ
g

2pgk1

− Qc
2pμ

c

2pck1
− Qd

2pμ
d

2pdk1

}

+ 1

p2
cd − M2

1

(pef + k1)2 − M2

{
Qh

2pμ
h

2phk1

− Qe
2pμ

e

2pek1
− Q f

2pμ
f

2p f k1

}

= 1

p2
cd − M2

1

p2
e f − M2

{
jμP + p2

cd − M2

(pcd + k1)2 − M2 jμD1

+ p2
e f − M2

(pef + k1)2 − M2 jμD2

}

=
3∑

℘=(P,D1,D2)

1

p2
G − M2

W

1

p2
H − M2

W

jμ℘ , (3.7)

where pg = pc + pd + k1 and ph = pe + p f + k1. In the
last line we have used

pG = pc + pd + KD1 , pH

= pe + p f + KD2 , KX =
∑
i∈X

ki

jμi
P = 2pμi

a

2paki
+ 2pμi

b

2pbki
− 2pμi

G

2pGki
− 2pμi

H

2pHki
,

jμi
D1

= 2pμi
G

2pGki
− 2pμi

c

2pcki
− 2pμi

d

2pdki
, jμi

D2

= 2pμi
H

2pHki
− 2pμi

e

2peki
− 2pμi

f

2p f ki
.

(3.8)

We keep in mind that in general p2
g,h 	= M2. The strange

looking notation in the last line with the sum over partitions
assigning photon to production or decays is done for the
purpose of easy generalisation to the n-emissions case. It
should be pointed out that the result (3.7) for the one-photon

13 The gauge invariance is manifest: jμP k1μ = jμD1
k1μ = jμD2

k1μ = 0.

emission is well known and was derived for instance in Refs.
[49,50], and is reviewed in [7].

The single-photon amplitude of Eq. (3.7) coincides pre-
cisely (up to fermion spinors) with the n = 1 case of the
multiphoton O(α0)exp amplitude of Eq. (4.10) in the next
section. It features a proper dependence of the resonance
propagators on the photon momentum in the entire photon
energy region k0 � √

s, including k0 ∼ �W , and interpo-
lates smoothly with the classic YFS formula of Eq. (3.5), in
the limit k0 � �W . The same will be true for the amplitude
of Eq. (4.10) in a more general case of n > 1.

Let us close this section with the multiple-photon exten-
sion of the formula (3.7) with the notation of (3.8) (details of
its derivation can be found in Appendix B):

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

�
3N∑

℘=(P,D1,D2)N

1

p2
G − M2

W

1

p2
H − M2

W

N∏
i=1

jμi
℘i

.
(3.9)

4 CEEX scheme for charged unstable emitters

In the following we shall implicitly assume that IR-singulari-
ties are regularised with the photon mass mγ . The exact
IR cancellations between the real photons phase-space inte-
grals

∫
mγ

d� and the virtual form-factor αB(mγ ) work very
schematically as follows:

σ =
∞∑
n=0

1

n!
∫

mγ

d�4+n(k1 . . . kn)

∑
spin

|eαB(mγ )M(k1 . . . kn)|2. (4.1)

One may, of course, introduce the traditional IR-cut Eγ >

Emin for all real photons, see Refs. [18,25] for details. This
we shall not do in the following, because it would obscure
notation and is in fact unnecessary (even in the MC realisation
we could stick to the mγ regulator).

In the following we shall present the formalism of CEEX
for e−e+ → W+W−, W± → X±. However, this formal-
ism is quite general and applies also to the single-W± produc-
tion and decay (also in hadron–hadron collisions) and also
to any other process with any unstable intermediate charged
particles of arbitrary spin.

4.1 Non-resonant variant of O(α1) CEEX for e−e+ → 4 f

Let us start from defining CEEX for the e−e+ → 4 f process
with the simplest possible variant of O(α1) CEEX, in which
the exponentiation procedure is not influenced by the pres-
ence of any narrow charged resonances in the Born matrix
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element M (0). This CEEXB scheme (according to the nota-
tion introduced in Sect. 3.1) can be used for the non-resonant
background in the e−e+ → 4 f process. It is a kind of warm-
up example in which we introduce some notation and termi-
nology employed in the following.

Suppressing momenta and spin indices of the fermions,
the O(α0)exp and O(α1)exp n-photon spin amplitudes can
be written in a straightforward way

M(0)
n

μ1,μ2,...μn
(k1, k2, . . . kn)

= 1

n!e
αBYFS

6 β̂
(0)
0

n∏
i=1

jμi (ki ), β̂
(0)
0 = M (0),

M(1)
n

μ1,μ2,...μn
(k1, k2, . . . kn)

= 1

n!e
αBYFS

6

⎧
⎨
⎩β̂

(1)
0

n∏
i=1

jμi (ki )

+
n∑
j=1

β̂
(1)
1

μ j (k j )
∏
i 	= j

jμi (ki )

⎫
⎬
⎭ ,

(4.2)

where the total electric current

jμ(ki ) = ie
∑

X=a,b,c,d,e, f

ĵμX (ki ),

ĵμX (ki ) ≡ QXθX
2pμ

X

2pXki
, (4.3)

sums contributions from all six external fermions X =
a, b, . . . f , see Fig. 1, and θX = +1 for the incoming particle
X (in the initial state), θX = −1 for the outgoing particle X
(in the final state). No emission from W ’s is seen in jμ. The
IF-finite β-functions are defined in the usual way

β̂
(1)
0 =

[
e−αBYFS

6 M (0)
0

]
O(α1)

,

β̂
(1)
1

μ(k) = M (1)
1

μ
(k) − jμ(k)M (0)

0 .

(4.4)

The UV-finite, IR-divergent, gauge-invariant YFS form-
factor is defined in the standard way, see also Appendix C:

BYFS
6 =

∫
i

(2π)3

d4k

k2 − m2
γ + iε

Jμ(k) ◦ Jμ(k),

Jμ(k) =
∑

X=a,b,c,d,e, f

Ĵμ
X (k),

Ĵμ
X (k) ≡ QXθX

2pμ
XθX + kμ

k2 + 2pXkθX + iε
,

(4.5)

where θX is defined as above, and we use the following short-
hand notation:

S(k) = J (k) ◦ J (k) =
∑

X=a,b,c,d,e, f
Y=a,b,c,d,e, f

JX (k) ◦ JY (k),

JX (k) ◦ JY (k) ≡ JX (k) · JY (−k), for X 	= Y,

JX (k) ◦ JX (k) ≡ JX (k) · JX (k).

(4.6)

As we see, BYFS
6 sums up the contributions from all six exter-

nal fermions. IR-cancellations occur after squaring, spin-
summing and integrating over the phase space, in a way
which was shown using several methods in Refs. [18,25]

4.2 Resonant variant of CEEX O(α1) for e−e+ → 4 f

In the following we shall discuss the O(α1) variant of CEEX
for e−e+ → 4 f in which the recoil in resonance propagators
is realised at any perturbative order and the �W /MW suppres-
sion of the NFI contributions is a natural, built-in feature,
valid in every perturbative order O(αr )exp, r = 0, 1, 2, . . ..
In order to formulate such a scheme completely, one has to
re-consider the isolation of IR-singular photon-emission fac-
tor to infinite order from the internal W lines, going beyond
the scope of the classic scheme of YFS [18]. The important
element of the isolation of the apparent IR-singularities due
to emission of photons from the resonant charged particles
is the reorganisation of the product of the internal propaga-
tors, derived in Appendix A. The virtual exponential form-
factor has also a more complicated structure and is re-derived
in Appendix C. Our derivation of the CEEX amplitudes is
based on rearrangement of the infinite perturbative expan-
sion in terms of Feynman diagrams, as in refs [18,25] and
the use of the pole-expansion.14 Although our aim are the
O(α1)CEEX amplitudes, the main features of the scheme can
already be defined and discussed for the simpler O(α0)CEEX

case, which will be discussed first. The extension of the pre-
sented technique to O(α2)CEEX with the complete non-soft
second-order photonic corrections and the genuine EW cor-
rections is straightforward.

4.2.1 Introductory double-pole O(α0) CEEX

Let us assume that for the e−e+ → 4 f process depicted in
Fig. 1 we have at our disposal the Born matrix element M(0)

0

which we expand into the non-pole part M (0)
0 (), the single-

pole part M (0)
0 (Q) and the double-pole part M (0)

0 (Q, R),
where Q and R are four-momenta in the W propagators

M(0)
0

μ
() = M (0)

0
μ
() + M (0)

0
μ
(Q) + M (0)

0
μ
(Q, R), (4.7)

14 We hope that the mathematical rigour of this proof will be improved
in the future works.
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The same pole-expansion is done for the exact single-photon
spin amplitudes

M(1)
1

μ
(k) = M (1)

1
μ
(k) + M (1)

1
μ
(Q, k) + M (1)

1
μ
(Q, R, k),

(4.8)

where k is the photon four-momentum and the index μ is
understood to be contracted with the photon polarisation vec-
tor. The one-loop corrected complete O(α1) spin amplitudes
in the POE we denote as M (1)

0 (), M (1)
0 (Q2) and M (1)

0 (Q, R):

M(1)
0

μ = M (1)
0

μ
() + M (1)

0
μ
(Q) + M (1)

0
μ
(Q, R). (4.9)

Let us focus now on the double-resonant part of the ampli-
tudes M (0)

0
μ
(Q, R) and M (1)

0
μ
(Q, R). The single-resonant

part is completely analogous (we shall list the differences)
and the non-resonant case has already been discussed in the
previous subsection.

The CEEX O(α0) spin amplitudes for n photons can be
derived as the following gauge-invariant subset of the com-
plete perturbative series

M(0)
n

μ1,μ2,...,μn
(k1, k2, . . . , kn)

=
∑

℘∈{P,D1,D2}n
eαB10(U℘,V℘) β̂

(0)
0

(
U℘, V℘

)

×
n∏

i=1

jμi
{℘i }(ki ),

U℘ = pc + pd +
∑

℘i=D1

ki , V℘ = pe + p f +
∑

℘i=D2

ki .

(4.10)

Here, the fermion four-momenta pA and helicities λA, A =
a, b, c, d, e, f are suppressed. Photons are grouped into three
sets: production, first decay and second decay, denoted as
P, D1, D2. The coherent sum is taken over all 3n assignments
of a photon to 3 stages of the process. Each assignment is rep-
resented by the vector (℘1, . . . , ℘n) whose components are
taking three possible values ℘ j = P, D1, D2. The corner-
stone of this construction are three gauge invariant electric
currents

jμP (ki ) = ie
∑

X=a,b,g,h

ĵμX (k), jμD1
(ki ) = ie

∑
X=g,c,d

ĵμX (k),

jμD2
(ki ) = ie

∑
X=h,e, f

ĵμX (k),

pg = U℘, ph = V℘,

(4.11)

defined in terms of elementary currents ĵX (k) of Eq. (4.3).
They include also ĵ ’s for twoW ’s, see Eq. (4.3). The essential
steps in derivation of the CEEX formula of Eq. (4.10) are
given in Appendices A, B and C.

The dependence of the amplitude in Eq. (4.10) on the four-
momenta was already analysed in the case of the single real
photon in the previous section. The case of many real pho-
tons is completely analogous. Let us turn now our attention
to a more interesting case of multiple virtual photos which
contribute to the virtual form-factor exp(B10).

The virtual IR-singularities factorise off in Eq. (4.10) into
the factor exp(B10). Let us recall that our aim is to reproduce
the �/M suppression of the NFI corrections already at the
O(α0)exp level. It would be incorrect to employ here the
classic YFS form-factor BYFS

6 of Eq. (4.5). This choice would
render Eq. (4.10) IR-finite, however, it would fail to resum
the α ln(�/M) contributions and miss the �/M suppression
of NFI corrections, at the O(α0)exp level. How to see it? One
may check it by explicit analytical calculation, similar to the
one performed in Ref. [25], or numerically. Quite generally,
the reason for the above failure is that the effective energy
scale for NFI is not

√
s but �W . The NFI contributions for

the real photon energies above �W are suppressed strongly
by the resonance propagator. However, this works for the
real but not for virtual photons in BY FS

6 , hence the energy
scale for virtual photons is necessarily

√
s. The mismatch

between the scale for real and virtual photon will cause the
NFI contribution to blow up at the O(α0)exp by orders of
magnitude, and even for O(α1)exp they may be far from the
reality.

The remedy for the above problem is well known for the
neutral resonances [25,51,52] and also can be deduced from
the O(α1) calculation (without exponentiation) of the NFI
term for the charged resonance of W , see Refs. [40,53,54].
The modified CEEX form-factor which should be used in
Eq. (4.10) is the following:

B10(pcd , pef ) =
∫

i

(2π)3

d4k

k2 − λ2 + iε

×
{
JP (k) ◦ JP (k)+ JD1(k) ◦ JD1(k)+ JD2(k) ◦ JD2(k)

+ p2
cd − M2

(pcd − k)2 − M2 2JP (k) ◦ JD1(k)

+ p2
e f − M2

(pef − k)2 − M2 2JP (k) ◦ JD2(k)

+ p2
cd−M2

(pcd+k)2−M2

p2
e f −M2

(pef −k)2−M2 2JD1(k) ◦ JD2(k)

}
,

(4.12)
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where

Jμ
P (k) =

∑
X=a,b,g,h

Ĵμ
X (k), Jμ

D1
(k) =

∑
X=g,c,d

Ĵμ
X (k),

Jμ
D2

(k) =
∑

X=h,e, f

Ĵμ
X (k),

pg = pcd + K1, ph = pef + K2,

(4.13)

see Eq. (4.6) for definition of elementary virtual current ĴX
and of its circle-products. In Eq. (4.10) the four-momenta
U℘, V℘ in B10(U℘, V℘) should be identified with pcd + K1

and pef + K2 in Eq. (4.12), where K1 and K2 are total four
momenta of all real photons in the two decay processes.
Note that the above form-factor is gauge invariant and UV-
finite. Moreover, each of its six components is also separately
gauge invariant and UV-finite. Almost all its components are
already available in the literature. We have omitted from dis-
cussion the important Coulomb effect, see Ref. [34,40] for
more details.

The index 10 in B10 reflects the fact that we have 10 emis-
sion currents in B10: 6 for fermions and 4 for W ’s – that is 2
for W ’s in the production and 2 for W ’s in the decays.

Heuristic derivation of the above CEEX form-factor,
directly from the Feynman diagram, is done in Appendix
C using similar techniques as in Subsection 3.2.2 of Ref.
[25]. In this derivation one may see explicitly why the first
three components for the production and decays are exactly
like in the standard YFS scheme, while three interferences
are modified.

4.2.2 The O(α1) CEEX for double-pole component

The construction of O(α0)exp for the e+e− → 4 f process
of the previous subsection was based, on one hand, on the
gauge invariant POE of the Born spin amplitudes into the
double-, single- and non-pole parts and, on the other hand,
on the soft photon approximation in which real and virtual
photon emission/absorption is represented as a product of the
universal (spin-independent) factors, taking care of the recoil
in all resonance propagators.

We intend now to extend the above scheme in such a way
that the complete O(α1) to the e+e− → 4 f process are or
can be included. The immediate question is to what extent
POE into the double-, single- and non-pole parts can be kept
at all at O(α1)?

Concerning POE atO(α1), we assume that both theO(α1)

amplitudes: M (1)μ
1 (k) with the emission of an additional sin-

gle photon and M (1)
0 with the complete one-loop corrections

can be pole-expanded into the double-, single- and non-pole

parts.15 Obviously, this can be done in many ways. Essen-
tially it can be done (in principle) because the two propa-
gators for the internal W line due to photon emission can
always be replaced by a sum of “two poles” using the iden-
tity of Eq. (A.2). Each of these terms can be made gauge
invariant by taking a residue value for the entire expression
multiplying the pole term, or more selectively, in its scalar
part. This can be done (in principle) for both the amplitudes
M (1)μ

1 (k) and M (1)
0 representing the exact results of the Feyn-

man diagrams at O(α1). The soft-photon-approximated uni-
versal part is already included in the calculation due to the
exponentiation, in the same way as at O(α0).

The double-poleO(α1) CEEX amplitude, including terms
of O( α

π
�
M ) due to the NFI interferences, reads as follows:

M(1)
n

μ1,μ2,...,μn
(k1, k2, . . . , kn)DP

=
∑

℘∈{P,D1,D2}n
eαB10(U℘,V℘)β̂

(1)
0

(
U℘, V℘

) n∏
i=1

jμi
{℘i }(ki )

+
n∑
j=1

∑

℘∈{P,D1,D2}n−1

eαB10(U℘,V℘)β̂
(1)μ j
1

(
U℘, V℘, k j

)

×
∏
i 	= j

jμi
{℘i }(ki ),

(4.14)

where

β̂
(1)μ
1 (U, V, k) = M (1)μ

1 (U, V, k)

−
∑

℘=P,D1,D2

jμ℘ (k)M (0)
0 (U℘, V℘). (4.15)

The IR-finite β̂0-functions is here defined as follows:

β̂
(1)
0 (U, V ) =

[
e−αB10(U,V )M (1)

0 (U, V )
]
O(α1)

= M (1)
0 (U, V ) − B10(U, V )M (0)

0 (U, V ),

(4.16)

where B10(U, V ) is the complete variant of Eq. (4.12) and
the one-loop corrections in the double-pole M (1)

0 (U, V ) have
to be complete at the O(α1), including terms of O( α

π
�
M ).

Special care should be taken in order to preserve gauge
invariance. Infrared regulation usingmγ or any other method
may be employed in the intermediate steps, but the final
B10(U, V ) will be IR-finite.

Needless to say that in the above expressions, as usual
in all resummation schemes, one has to provide a recipe
for extrapolating the O(α1) results, originally defined in the
phase space with zero or one real photon, to the phase space

15 The ultimate proof will be provided by someone who will do it in
practice.
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enriched with many additional “spectator” photons.16 The
uncertainty due to freedom in this extrapolation is of the
O(α2) class.

4.2.3 O(α1) CEEX for single-pole component

The above implementation of O(α1) CEEX for the DP com-
ponent of the QEDO(α1) corrections are complete including
O( α

π
�
M ) corrections due the NFI interferences. However, the

O( α
π

�
M ) corrections arise also from the entire QED O(α1)

correction to a single-pole component (which by itself is of
O( �

M )). It is therefore necessary to define O(α1) CEEX for
the SP part. In addition, CEEX for the SP process is also
of the vital importance for the qq̄ → W → f f̄ process at
hadron colliders, such as the LHC.

On the other hand, the non-pole (background) part, which
is of O(( �

M )2)), may included without QED corrections or
any kind of implementation of QED corrections, for instance
using the simple baselineO(α0) CEEX version of Sect. 4.2.1.

The CEEX O(α1)exp single-pole and double-pole spin
amplitudes will be combined additively as follows:17

M(1),μ1,...,μn
n (k1, k2, . . . , kn)DSP

= M(1),μ1,...,μn
n (k1, k2, . . . , kn)SP

+M(1),μ1,...,μn
n (k1, k2, . . . , kn)DP. (4.17)

The single-pole M
(1)
n (. . .)SP amplitude is constructed

analogously as in Eq. (4.10). The differences are that: (i) the
current jμP in the production process e+e− → fc+ f̄d +W+
has five components instead of four, (ii) the function B8

replaces B10, the B8 has less components, in particular one
interference term instead of three, (ii) the sum over photon
assignment is reduced to the sum over the set {℘} = (P, D1)

n

corresponding to 2n assignments:

M(1)
n

μ1,μ2,...,μn
(k1, k2, . . . , kn)SP

=
∑

℘∈{P,D1}n
eαB8(U℘)β̂

(1)
0

(
U℘

) n∏
i=1

jμi
{℘i }(ki )

+
n∑
j=1

∑

℘∈{P,D1}n−1

eαB8(U℘)β̂
(1)μ j
1{℘ j }

(
U℘, k j

)∏
i 	= j

jμi
{℘i }(ki ),

(4.18)

where

β̂
(1)μ
1 (U, k)

16 It is typically done using some kinematic manipulations on the four-
momenta which are fed into O(α1) formulae or using Mandelstam
variables—they are less sensitive to the presence of spectators.
17 In some four-fermion channels there is no possibility to form a
single-resonant W .

= M (1)μ
1 (U, k) −

∑
℘=P,D1

jμ℘ (k)M (0)
0 (U℘). (4.19)

The IR-finite β̂0-functions is defined here as follows:

β̂
(1)
0 (U ) =

[
e−αB8(U )M (1)

0 (U )
]
O(α1)

= M (1)
0 (U ) − B8(U )M (0)

0 (U ), (4.20)

where M (1)
0 (U ) is the single-pole part in the Born ampli-

tude of the e+e− → 4 f process and the one-loop corrected
single-pole M (1)

0 (U ) amplitude is complete at O(α1). The
B8(U ) function is the following variant of that in Eq. (4.12):

B8(pcd) = ie
∫

i

(2π)3

d4k

k2 − λ2 + iε

×
{
JP (k) ◦ JP (k) + JD1(k) ◦ JD1(k)

+ p2
cd − M2

(pcd + k)2 − M2 2JP (k) ◦ JD1(k)

}
.

(4.21)

The above O(α1) CEEX for the single-pole part of the
e+e− → 4 f process implemented in M

(1)
n (. . .)SP provides,

together with the double-pole CEEX amplitude M(1)
n (. . .)DP

of the previous section, the complete QED corrections at
the order of O(α1), O( �

M ) and O( α
π

�
M ) for the e+e− → 4 f

process. Let us keep in mind that the definition of theO( α
π

�
M )

terms in M
(1)
n (. . .)SP and M

(1)
n (. . .)DP depends on the exact

definition of the SP and DP components in POE. Only the
sum of them is uniquely defined—more precisely up to the
terms of O( α

π
( �
M )2).

In the above formalism, the fermions labeled e and f do
not form the resonance. In the case of the single-W produc-
tion in the quark–antiquark annihilation in hadron–hadron
collision, the same formalism applies but the particles e and
f are just absent.

4.2.4 Approximate version of O(α1) CEEX

Let us also consider one simpler case of the CEEX matrix
element, with the incomplete O( α

π
�
M ) corrections. It may be

of some practical significance for applications with limited
precision and will be described for the DP part only.

In this alternative scheme, the O(α0) part is kept the same
as in the full version of the CEEX scheme for the DP part
of Sect. 4.2.2. The main difference is in the simplification of
the non-soft O(α1) remnants, in which the non-factorisable
QED interferences between the production and the decays
are downgraded to the soft-photon approximation.

In such an approximation, the O(α1) non-soft corrections
are calculated separately for the production and two decay
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processes, and they contribute separately and additively to
both real β̂(1)μ1 and virtual β̂

(1)μ
0 :

β̂
(1)μ
1 (U, V, k) =

∑
X=P,D1,D2

β̂
(1)μ
1,X (U, V, k), β̂

(1)
0 (U, V )

=
∑

X=P,D1,D2

β̂
(1)
0,X (U, V ), (4.22)

where U = pcd , V = pef . The single real photon emission
spin amplitudes factorise into the production and decay parts

M
(1)μ
1 (k) = M

(1)μ
1,P (k) M(0)

0,D1
M

(0)
0,D2

+ M
(0)
1,P M

(1)μ
1,D1

(k) M(0)
0,D2

+ M
(0)
1,P M

(0)
0,D1

M
(1)μ
1,D2

(k)

= M
(0)
0,P

[
jμP (k)M(0)

0,D1
M

(0)
0,D2

+ M
(0)
0,D1

(k) jμD1
(k)M(0)

0,D2

+ M
(0)
0,D1

M
(0)
0,D2

(k) jμD2
(k))

]

+ β̃
(1)μ
P (k)M(0)

0,D1
M

(0)
0,D2

+M
(0)
1,P β̃

(1)μ
D1

(k)M(0)
0,D2

+ M
(0)
1,P M

(0)
0,D1

β̃
(1)μ
D2

(k)

= β̂
(0)
0 (U, V ) jμP (k) + β̂

(0)
0 (U + k, V ) jμD1

(k)

+ β̂
(0)
0 (U, V + k) jμD2

(k)

+ β̂
(1)μ
1P (k) + β̂

(1)μ
1D1

(k) + β̂
(1)μ
1D2

(k),

(4.23)

where β̃
(1)μ
X (k), X = P, D1, D2 are the CEEX elements

for the production and the decays separately, and we have
adopted a convention that the W propagator is included in the
lowest order decay amplitudeM(0)

0,Di
. An additional argument

(k) in M
(0)
0,Di

(k) marks that this W propagator includes the
momentum k of the photon emitted in the decay.

The resulting variant of the O(α1) CEEX amplitude reads
as follows:

M(1)
n

μ1,μ2,...,μn
(k1, k2, . . . , kn)

=
∑

℘∈{P,D1,D2}n
eαB10(U℘,V℘)

{
β̂

(1)
0

(
U℘, V℘

) n∏
i=1

jμi
{℘i }(ki )

+
n∑
j=1

β̂
(1)μ j
1{℘ j }

(
U℘, V℘, k j

)∏
i 	= j

jμi
{℘i }(ki )

}
.

(4.24)

The important difference with respect to the previous case is
that due to the splitting of β̂(1) into the production and decay
parts, the photon k j entering β̂(1) is included into the sum
over the photon assignments.

4.2.5 Higher order upgrades and inclusion of genuine
electroweak corrections

The upgrade of the CEEX amplitudes fromO(α1) toO(α2) is
straightforward, following the same path as in the analogous
case of the QED O(α2) CEEX scheme implemented in the
KKMC project [24,25]. The CEEX scheme offers great flexi-
bility, allowing to truncate a perturbative series at a different
order for ISR, FSR, IFI and IFF. This may be exploited in a
convenient staging of construction of the respective numer-
ical Monte Carlo program. In particular, for the ISR cor-
rections it would be good to include the LO O(α3) correc-
tions. From the experience of the KKMC project we know
that calculations of the CEEX O(α2) matrix element may be
slow, due to the need of summations over the assignments
of photons among production and decays. However, most of
numerical contributions from these photon assignments are
numerically negligible and one may invent methods of the
effective forecasting which assignments can be omitted from
the evaluation. This would speed up significantly numerical
MC calculations.18

In the present work we concentrate on the QED part of
the SM calculations for the e+e− → W+W− process. Is it
possible to factorise and treat separately the QED part from
the rest of the SM corrections, the genuine EW corrections?
The answer is positive because the soft-photon factorisation
for both the real and virtual photons is well established in
the framework of perturbative calculations [18]. The remain-
ing genuine EW O(αr ) r = 1, 2 corrections are located
in the IR-finite remnants β̂

(r)μ
0 , β̂

(r)μ
1 (k), β̂(r)μ1μ2

2 (k1, k2).
It is only important to remember that the CEEX scheme
works at the amplitude level and in the calculation of the
loop corrections leading to β̂

(r)μ
0 or β̂

(r)μ
1 (k), all the IR

divergences are removed by means of subtracting the B10

function—adding the real emissions à la Bloch–Norsieck
in order to obtain finite results is a methodological mis-
take! Because of that it is much easier to manage the gen-
uine EW corrections in the CEEX scheme of any pertur-
bative order than in any other scheme, especially beyond
O(α1).

In the KandY (YFSWW3) calculations of the LEP era,
the O(α1) genuine EW corrections were included in β̂

(1)μ
0

for the DP production part of the process (similarly as
in RACOONWW). In order to match a very high precision
of the FCC-ee experiments, it will be necessary to intro-
duce the O(α2) corrections in β̂

(2)μ
0 and β̂

(1)μ
1 (k) of the

DP component. They are not available yet. In addition, it
will be needed to introduce the O(α1) EW corrections in
β̂

(1)μ
0 of the SP component. This subgroup of corrections

can, in principle, be extracted from the existing EW O(α1)

18 This will be mandatory for the LO O(α3) corrections.
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calculations for the entire e+e− → 4 f process of Refs.
[31,32].

5 Relations between CEEX and EEX schemes

Tracing exact relations between various CEEX and EEX
schemes is quite important for at least two reasons. The EEX
implementation of the exclusive exponentiation in YFSWW3
is the only existing one for the e+e− → 4 f process, so it
is desirable to show that it can be embedded in the CEEX
scheme as a kind of a well-defined approximation. It will
also help to better understand the physics of photon emis-
sion from unstable charged intermediate particles and the
inherent limitations of the EEX exponentiation scheme in
YFSWW3, in particular clarifying the question: what is exactly
the mechanism of neglecting the NFI interferences in EEX
of YFSWW3?

Another important reason is that it would be desirable
to implement the CEEX matrix element using a MC cor-
rection weight on top of the same baseline MC distributions,
which is implemented in the MC event generator for the EEX
matrix element. This strategy was successfully exploited in
the KKMC program and also in the KandY hybrid Monte
Carlo. For these reasons it is interesting to establish the rela-
tion between the CEEX and EEX distributions all over the
entire multiphoton phase space.

5.1 From CEEXR to EEXR algebraically

As we have already indicated in the introduction, the
EEX differential distributions for the process e−e+ →
W−W+, W± → f f̄ , can be obtained as a limiting case
of the CEEX scheme for the process e−e+ → 4 f , defined in
this paper. Let us do it in the following. This is analogous to
the derivation of EEX of KORALZ out of the CEEX ampli-
tudes given in Sect. 4 of Ref. [25].19 The transition to EEX
of YFSWW3 requires a few additional steps described in the
next subsection.

As a starting point we take an approximate variant of
CEEX of Eq. (4.24), which is obtained from the exact one of
Eq. (4.14) by means of neglecting some non-IR interference
NFI terms:

σ = 1

f lux

∞∑
n=0

1

n!
∫

dLips4+n

× (pa + pb; pc, pd , pe, p f , k1 . . . kn)

19 The analogy is however incomplete, because here we take into
account photon emission from the intermediate charged W boson, while
in Ref. [25] neutral resonance Z was considered.

×
∑

℘∈{P,D1,D2}n
eαB10(U℘,V℘)

⎧
⎨
⎩β̂

(1)
0

(
U℘, V℘

) n∏
i=1

jμi
{℘i }(ki )

+
n∑
j=1

β̂
(1)μ j
1{℘ j }

(
U℘, V℘, k j

)∏
i 	= j

jμi
{℘i }(ki )

⎫
⎬
⎭

×
∑

℘′∈{P,D1,D2}n
eαB∗

10(U℘′ ,V℘′ )

⎧
⎨
⎩β̂

(1)
0

(
U℘′ , V℘′

) n∏
i=1

jμi
{℘′

i }(ki )

+
n∑
j=1

β̂
(1)μ j

1{℘′
j }
(
U℘′ , V℘′ , k j

)∏
i 	= j

jμi
{℘′

i }(ki )

⎫
⎬
⎭

∗
, (5.1)

where U℘ = pcd +∑
℘i=D1

ki and V℘ = pef +∑
℘i=D2

ki .
The consistent method of omitting all of the remaining

QED NFI interferences between the production and two
decays requires omitting from the double sum over photon
assignments all non-diagonal terms, ℘ 	= ℘′, and the inter-
ference terms in B10. After doing that the above omission
the sum over photons can be reorganised into a product of
three separate sums, one for the production and two for the
decays. In this way we get the following EEX expression:

σ = 1

f lux

∞∑
n=0

1

n!

×
∫

dLips4+n(pa + pb; pc, pd , pe, p f , k1 . . . kn)

×
∑

℘∈{P,D1,D2}n
e2α�BPDD(U℘,V℘)

×
n∏

i=1

| jμi
{℘i }(ki )|2

{
|β̂(1)

0

(
U℘, V℘

) |2

+
n∑
j=1

(
2�(β̂(1)

1{℘ j }(U℘, V℘, k j ) · j{℘ j }(k j )∗
)

+|β̂(1)
1{℘ j }(U℘, V℘, k j )|2

)
| j{℘ j }(k j )|−2

}
.

(5.2)

In the above expression the YFS form-factor e2α�B10 fac-
torises into the product of independent form-factors for the
production and two decay processes:

e2α�BPDD = e2α�BP e2α�BD1 e2α�BD2 . (5.3)

Eq. (5.2) can be rewritten in a more traditional EEX notation
as follows:
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σ = 1

f lux

∞∑
n=0

× 1

n!
∫

dLips4+n(pa + pb; pc, pd , pe, p f , k1 . . . kn)

×
∑

℘∈{P,D1,D2}n
e2α�BPDD(U℘,V℘)

×
n∏

i=1

S̃{℘i }(ki )

⎧
⎨
⎩β̄

(1)
0

(
U℘, V℘

)

+
n∑
j=1

β̄
(1)
1{℘ j }(U℘, V℘, k j )

[
S̃{℘ j }(k j )

]−1

⎫
⎬
⎭ ,

(5.4)

where

S̃X (k) = | jμX (k)|2, X = P, D1, D2. (5.5)

Note that in the above expression for each photon assign-
ment we perfectly know the four momentum in each W
propagator—simply because each photon is associated with
the production or one of the two decays.

In fact Eq. (5.2) looks like three separate EEX exponenti-
ation schemes for the three subprocesses. They talk to each
other only through total energy conservation and spin correla-
tions.20 This can be seen manifestly even more clearly when,
for the purpose of the MC implementation, Eq. (5.4) is trans-
formed into the following form in which the S̃-factors for the
production and the decays are factorised. For n photons in the
overall sum over 3n assignments of the photons {P, D1, D2}n
there are groups (partitions) of n!

n0!n1!n2! choices, with n0 pho-
tons in the production, n1 photons in the first decay and n2

photons in the second decay, n0 + n1 + n2 = n. The assign-
ments in each partition are related by the permutation of the
photons within the partition. We may replace in Eq. (5.4)
the whole such a partition just by one permutation member,
getting the following expression:

σ =
∞∑

n0=0

∞∑
n1=0

∞∑
n2=0

×
∫

dLips4+n0+n1+n2

× (pa + pb; pc, pd , pe, p f , k1 . . . kn2)

× 1

n0!
n0∏

i1=0

S̃P (ki0)
1

n1!
n1∏

i1=1

S̃D1(ki1)
1

n2!
n2∏

i2=1

S̃D2(ki2)

20 Connecting the production and the decays through the spin-density
matrix formalism is the logical solution in the EEX case, as for the
τ -pair production and decay in KORALZ.

× e2α�BPDD(U1,V2)

⎧
⎨
⎩β̄

(1)
0 (U1, V2)

+
n0∑
j=1

β̄
(1)
1{P}(U1, V2, k j ) S̃P (k j )

−1

+
n1∑
j=1

β̄
(1)
1{D1}(U1, V2, k j ) S̃D1(k j )

−1

+
n2∑
j=1

β̄
(1)
1{D2}(U1, V2, k j ) S̃D2(k j )

−1

⎫
⎬
⎭ , (5.6)

where U1 = pcd + ∑n1
i1=0 ki1 and V2 = pef + ∑n2

i2=0 ki2 .
One can always come back to the configuration of Eq. (5.4)
by means of symmetrisation over photons. In MC computa-
tions, the sum over photons is “randomised” in a natural way
and only one partition member is generated at a time, (using
effectively Eq. (5.6)) so the fact that the basic distribution for
EEXR is that of Eq. (5.4) can be easily overlooked, see also
discussion in [24].

From the above algebra we see in a detail how EEXR can
be embedded in a natural way in the full CEEXR , defined in
the previous section.

5.2 Last step towards EEXR of YFSWW3

The EEX of Eq. (5.6) is not exactly that of EEX of YFSWW3
and KandY, as described in Refs. [9,12]. Let us discuss the
remaining differences. The most important difference is that
QED matrix element for the W -boson decay in YFSWW3 is
implemented using the PHOTOS program whose has matrix
element is not in the EEX scheme, although very close to it. At
the precision of the LEP experiments this was the acceptable
and economic solution. There would be no problems with
replacing PHOTOS with the true EEX implementation for
the W decays because such an implementation is already
available in the WINHAC program developed for the single-
W production at hadron colliders [30].

The implementation of the EEX matrix elements for the
production process in YFSWW3 is described in fine detail in
Ref. [12]. It is based on the YFS3 event generator [27] for
the e+e− → 2 f process in which the final-state massive
fermions are replaced with W ’s. TheYFS3 program does not
include the QED initial-final state interferences (IFI) between
initial e± and final particles. Such interferences (present in
EEX of Eq. (5.6) were also added in YFSWW3 using the
reweighting technique of the BHWIDE program [48].

5.3 From EEXR to CEEXR in MC implementation

The upgrade from EEX of Eq. (5.6) to CEEX in the MC
implementation is feasible and well defined. In the Monte
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Carlo program implementing EEX, one usually generates
MC events according to some baseline distribution21 and the
final correcting weight introduces fine details of the EEX
matrix element. The CEEX matrix elements can be imple-
mented by reweighting events generated according to the
same baseline distributions as in the EEX case, just by replac-
ing the EEX final MC correcting weight with that of CEEX,
without any changes in the baseline MC. This kind of flexible
and economic solution was already applied in the KKMC pro-
gram [24]. Similarly as in KKMC, the MC weight correcting
from EEX to CEEX will be not bound from the above. There
are several solutions for this purely technical problem.

5.4 Photon distributions around Eγ ∼ �

Let us finally comments on two apparent deficiencies of the
EEXR scheme:

• lack of transmutation of photon distributions around
Eγ ∼ �,

• excess of photon-multiplicity for very soft photons, Eγ ≤
�.

The phenomenon of “transmutation of photon distri-
butions” occurs when photon energy changes from the
“semisoft region” � < Eγ � Ebeam down to “true soft
region” Eγ < �. In the true-soft region photon distributions
do not reflect the existence of the the single charged object,
the resonance – they reflect, instead, momenta and charges
of all its decay products. For these long range photons, the
resonance itself just lives too shortly to be “felt”. On the other
hand, the semi-soft photons with shorter wavelength can see
the resonance as a distinct object—its presence is imprinted
in the distributions of photon energy and angles. In fact, it
is the interference between the production-current jμP and
the decay-current jμD1,D2 which enforces the transition in the
photon distributions. This effect can be also seen explicitly
in the instrumental identity of Eq. (A.2), or in the explicit
one-photon emission amplitude of Eq. (3.7). The absence
of this interference in EEX, where all the NFI interferences
are neglected, causes that in EEX (of YFSWW3) the above
beautiful transmutation phenomenon cannot be present.22

The lack of the above interferences causes also certain
unphysical effect for very soft photons. As we know, in the
real world (and in CEEX) there is no IR singularity (nei-
ther real nor virtual) for the photon emission from the inter-
nal W line, see Eq. (3.7), while in EEX there is such (real

21 The baseline distribution has to include all the soft and collinear
singularities of the EEX distributions.
22 The transition between these two situations is modeled in our new
CEEX in a completely realistic way. It is continuous in the photon
energy.

and virtual), as seen explicitly in Eq. (5.6). How to explain
this paradox? Is this something dangerous? The artificial IR
divergence in EEX is not dangerous as long as we are at the
O( α

π
�
M ) precision level for the distributions which are inclu-

sive enough, such that we do not examine multiplicities and
angular spectra of the photons with Eγ < �. Extra unphys-
ical photons in this energy range do not contribute to inte-
grated cross section, because their contribution is countered
immediately by the virtual form-factor. They will however
affect multiplicity of such very soft photons.

The good agreement of the soft photon spectra between
YFSWW3 and RACOONWW confirms that the effect is not size-
able. The numerical estimates of Ref. [53] also suggest that
this effect is small, negligible for LEP2. On the other hand, in
the future high-statistics experiments it is worth to examine
the above effects for the photons with Eγ ∼ �W . It was pro-
posed in Ref. [53] that it may even provide an independent
relatively precise measurement of �W .

Summarising, the presence of the extra unphysical soft
photons with Eγ < � in EEX (and its version implemented
inYFSWW3) due to setting to zero all QED interference effects
between the production and decay processes is not harmful
at the precision level of O( α

π
�
M ). For the higher-precision

requirements, like that in FCC-ee, one should go back to
CEEXR , from which EEXR is derived, and get back for Eγ ∼
� fully exclusive realistic photon distributions.

6 Summary and outlook

In the present paper we have proposed a solution to the long-
standing problem of the systematic treatment of the soft and
hard photon emission from the unstable charged particles
and the interferences between production and decay parts
of the process, at any perturbative order. This is of practi-
cal importance for high-precision measurements of W+W−-
pair production at electron–positron colliders, such as FCC-
ee/ILC/CLIC, and for single-W production at hadron collid-
ers, such as LHC/FCC-hh, as well as in many other processes
with production and decay of charged unstable particles of
any spin. So far there is no practical implementation of the
full-scale calculation in the proposed scheme. However, it
has been outlined how to accomplish it in the framework of
some existing Monte Carlo (MC) event generators.

Our study has been focused on the process e+e− →
W+W− → 4 f which is to be used e.g. for the high-
precision W -boson mass and width measurements in the
planned electron–positron colliders, particularly FCC-ee. We
have argued that the most economical (and perhaps the only
feasible) way to achieve the required accuracy of theoreti-
cal prediction for this process it to apply the so-called pole
expansion (POE) to the general process of e+e− → 4 f , and
then to calculate the electroweak (EW) radiative corrections
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separately for each term of such an expansion to an appro-
priate order in the coupling constant α. More specifically, for
the leading term in POE, i.e. the so-called double-pole contri-
bution which comprises two resonant W -bosons, one would
need to include the fixed-order EW corrections up to O(α2)

for the on-shell-like W -pair production and W decay pro-
cesses, while for the non-leading terms, i.e. the single-pole
and non-pole contributions, the EW corrections at O(α1)

would be sufficient. The calculations of the O(α1) EW cor-
rections are already available for the whole e+e− → 4 f
process, while the O(α2) ones for the double-resonant con-
tribution do not exist yet, however they are feasible, in our
opinion, by the time of the planned FCC-ee physics run. It
should be stressed here, that there is also another approach,
complementary to POE discussed in this paper. It is based on
the effective field theory (EFT) [33–35] and dedicated for the
kinematical configurations near the WW -threshold. It uses
simultaneous expansion in three parameters, where the third

one is the Lorentz velocity β =
√
s − 4M2

W /2MW � 1 of
the W ’s. Such an expansion reduces substantially the num-
ber of diagrams to be evaluated, so that the higher-order EW
and QED corrections are likely within the reach of practical
calculations. The optimal and ultimate solution would be to
merge this kind of expansion with the standard, fully exclu-
sive, diagrammatic approach used for the calculation of the
matrix element in the Monte Carlo approach presented in this
article.

We would like to emphasise that the formalism of photon
radiation from W ’s developed in this work applies both to the
double-pole (DP) terms, see Sects. 4.2.1 and 4.2.2, and to the
single-pole (SP) terms, see Sect. 4.2.3. The non-pole (non-P)
part is addressed by the standard YFS theory, summarised in
Sect. 4.1. Thanks to the simultaneous coverage of the DP, SP
and non-P contributions, we believe that our approach can
be a basis for an arbitrarily precise Monte Carlo realisation,
regardless of how the non-IR residual matrix element (β-
functions in our notation) is calculated.

In addition to the above fixed-order radiative corrections,
in order to reach the requisite theoretical precision for the
above process, one needs to include higher-order QED cor-
rections corresponding to multiphoton emission from the
initial- and final-state leptons as well as from the intermediate
W -bosons. We have argued that the best framework in which
all this can be accomplished is the so-called coherent exclu-
sive exponentiation (CEEX) scheme. Its main advantage over
the traditional YFS exclusive exponentiation (EEX) method
is that it operates directly at the level of spin amplitudes.
Because of that, all multiphoton effects related to radiation
from the resonant W -bosons and to non-factorisable interfer-
ences can be accounted for in a straightforward way. So far,
the CEEX methodology was applied to e+e− → 2 f in the
KKMC event generator and proved to be crucial in providing

precision theoretical predictions for this process necessary
for the LEP experiments.

We have provided the respective general cross-section for-
mulae for the double-pole, single-pole and non-pole contri-
butions to the charged-current e+e− → 4 f process which
can be a basis for an appropriate MC implementation. An
important ingredient in that is resummation of real-photon
emissions including radiation from the intermediate W -
bosons and derivation of the corresponding virtual-photon
form-factor, done explicitly in Appendices A, B and C. Our
approach exploited the similarity between the virtual- and
real-emission QED form-factors guaranteed by the infra-red
cancellations.

We have also discussed the relation of the above CEEX
realisation to the existing EEX implementation in terms of the
hybrid MC program called KandY, being the combination
of two MC event generators: KORALW and YFSWW3. In this
implementation, the O(α3) YFS exponentiation for initial-
state radiation in the process e+e− → 4 f was combined with
the fixed-order O(α1) EW corrections in the W -pair produc-
tion and multiphoton radiation in the W -decays generated by
the PHOTOS program, while all the non-factorisable inter-
ferences were neglected. Such a solution proved to be good
enough for the LEP2 accuracy, but for the expected preci-
sion of the FCC-ee experiments it will not suffice. However,
it can constitute a good starting point and a MC platform
for development and implementation of the CEEX scheme
described in this paper. In parallel, one can also develop an
EEX approximation of the full-scale CEEX solution which
will be important for its numerical cross-checks. For this,
the implementation of EEX for the W -boson decays in the
WINHAC program can be used to replace the corresponding
PHOTOS radiation in KandY.
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Fig. 3 Single emission from the internal W line

A Factoring photon-emission from W

The following considerations are valid for a charged unstable
particle of any spin, eg. W±, τ± or t-quark. Let us start with
a simple identity for two propagators related to single photon
emission from an internal charged particle line

1

(Q2
0 − M2)(Q2

1 − M2)
= 1

(Q2
0 − Q2

1)(Q
2
1 − M2)

− 1

(Q2
0 − Q2

1)(Q
2
0 − M2)

(A.1)

where M2 = M2
W + iMW�W .

The kinematics is depicted in Fig. 3.
Noticing that Q2

0 − Q2
1 = 2k1Q0 − k2

1 = 2k1Q1 + k2
1, we

may rewrite the above as follows:

1

(Q2
0 − M2)(Q2

1 − M2)
= 1

(2k1Q1 + k2
1)(Q2

1 − M2)

+ 1

(−2k1Q0 + k2
1)(Q2

0 − M2)
. (A.2)

The reader will recognise the first term as representing a
photon (eikonal) emission factor in the production part of
the process times a resonance propagator (with the reduced
four momentum Q1 = Q0 − k1) and the second term as
the analogous emission factor in the decay process times
the resonance propagator (with the four-momentum Q0 =
Q1 + k1). Each of the two terms look IR-divergent, however
the two IR divergences cancel—the difference is finite. In
the original expression it was the resonance width �W which
was providing an infrared regulator for a photon with the
momentum k1 = Q1 − Q2.

Let us now consider the general case of the n-photon
emissions from the internal charged particle line, depicted in
Fig. 4, in the soft-photon approximation. The reorganisation
of the product of the propagators starts with the following
identity:

1

(Q2
0 − M2)(Q2

1 − M2) . . . (Q2
n − M2)

=
n∑
j=0

1∏ j−1
i=0 (Q2

i −Q2
j ) (Q2

j −M2)
∏n− j

i=1 (Q2
j+i−Q2

j )
.

(A.3)

It can be proven using the mathematical induction method.
Assuming that the identity is true for n, let us prove it for

n + 1. Using a short-hand notation yi = Q2
i − M2, one

obtains23

n+1∏
i=0

1

yi
= 1

yn+1

n∑
j=0

1

y j

n∏
i 	= j

1

(yi − y j )

=
n∑
j=0

1

(yn+1 − y j )

( 1

y j
− 1

yn+1

) n∏
i 	= j

1

(yi − y j )

=
n∑
j=0

1

y j

n+1∏
i 	= j

1

(yi − y j )

− 1

yn+1

n∑
j=0

n+1∏
i 	= j

1

(yi − y j )

=
n+1∑
j=0

1

y j

n+1∏
i 	= j

1

(yi − y j )
− 1

yn+1

n+1∏
i 	=n+1

1

(yi − yn+1)

− 1

yn+1

n∑
j=0

n+1∏
i 	= j

1

(yi − y j )

=
n+1∑
j=0

1

y j

n+1∏
i 	= j

1

(yi − y j )
− 1

yn+1

n+1∑
j=0

n+1∏
i 	= j

1

(yi − y j )

=
n+1∑
j=0

1

y j

n+1∏
i 	= j

1

(yi − y j )
. (A.4)

Alternatively, one can prove it with the help of partial frac-
tioning with respect to M2:

1

(Q2
0 − M2)(Q2

1 − M2) . . . (Q2
n − M2)

=
n∑
j=0

A j

Q2
j − M2

.

(A.5)

Multiplying Eq. (A.5) in a standard way by Q2
j − M2 and

substituting Q2
j = M2 we obtain

A j = 1∏ j−1
i=0 (Q2

i − Q2
j )
∏n− j

i=1 (Q2
j+i − Q2

j )
. (A.6)

Let us now examine the soft-photon limit in Eq. (A.3).
Taking the j-th term, we may identify

Q2
0 − Q2

j � (2k j Q j + k2
j ) + · · · + (2k2Q j + k2

2)

+ (2k1Q j + k2
1),

Q2
1 − Q2

j � (2k j Q j + k2
j ) + · · · + (2k2Q j + k2

2),

Q2
j−1 − Q2

j = (2k j Q j + k2
j ). (A.7)

23 The identity
∑n

j=0
∏n

i=0,i 	= j
1

xi−x j
= 0 is used in the last step.
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Fig. 4 Multiple emission from
the internal W line

and

Q2
j+1 − Q2

j = (−2k j+1Q j + k2
j+1)

Q2
n−1 − Q2

j � (−2k j+1Q j + k2
j+1) + · · ·

+ (−2kn−1Q j + k2
n−1)

Q2
n − Q2

j � (−2k j+1Q j + k2
j+1) + · · ·

+ (−2kn−1Q j + k2
n−1) + (−2knQ j + k2

n)

(A.8)

In the above equations we have neglected the subleading
products ki k j . This is allowed in the soft-photon approxima-
tion. On the other hand, terms k2

i could also be omitted in the
soft-photon approximation, but they are kept because they
render virtual photon integrals UV-finite.

In the next step we perform the usual sum over permutation
over all photons. This will lead to a “Poissonian” emission
formula, separately for the resonance production and decay
stages of the entire process, with the explicit sum over the
assignments of photons to the production, denoted by the
index P , and to the decay, denoted by the index D. We start
from Eq. (A.3) switching to a more compact notation:

R(Q2
i ) = Q2

i − M2,

N P
i = 2ki Q j + k2

i = (Q j + ki )
2 − Q2

j ,

ND
i = −2ki Q j + k2

i = (Q j − ki )
2 − Q2

j .

(A.9)

Inserting the relations of Eqs. (A.7) and (A.8) into Eq. (A.3)
and summing over permutations we obtain

∑
permut.

1

R(Q2
0)R(Q2

1) . . . R(Q2
n)

=
∑

permut.

n∑
j=0

[
1

N P
1 + N P

2 + N P
3 + . . . N P

j

1

N P
2 + N P

3 + . . . N P
j

. . .
1

N P
j

]

× 1

R(Q2
j )

×
[

1

ND
j+1

1

ND
j+1 + ND

j+2

. . .
1

ND
j+1 + ND

j+2 . . . ND
n

]
,

(A.10)

where for j = 0 and j = n, respectively, the term in the
first/second square-bracket pair should read as 1. Next, for
each j-th term we split the sum over all permutations of

(1, 2, 3, . . . , n) into two separate sums: one over permuta-
tions of (1, 2, 3, . . . , j) and another over permutations of
( j + 1, j + 2, . . . , n). These two sums are performed.24 The
sum over

(n
j
)

assignments of photons to production and decay
remains. Alternatively, the entire remaining sum can be rep-
resented as a sum over

∑
j

(n
j
) = (1 + 1)n = 2n terms

(photon assignments) as follows

∑
permut.

1

R(Q2
0)R(Q2

1) . . . R(Q2
n)

=
∑

℘=(P,D)n

∏
℘i=P

1

(Q℘ + ki )2 − Q2
℘

× 1

R(Q2
℘)

×
∏

℘i=D

1

(Q℘ − ki )2 − Q2
℘

, (A.11)

where

Q℘ = Q0 −
∑

℘i=P

ki = Qn +
∑

℘i=D

ki . (A.12)

The vectors ℘ = (℘1, ℘2, . . . ℘n) of the photon assign-
ments whose components have values equal to P or D, while∑

℘i=P (
∏

℘i=P ) denotes the sum over (product of) all i for
which ℘i = P , i.e. all photon which belong to the production
stage of the process.

Main features of Eq. (A.11), the principal result of this
Appendix, are the following:

• Its left-hand side represents “raw” Feynman diagrams
for multiple-photon emission from the charged-particle
internal line.

• Its right-hand side includes two photon emission factors:
one for the production part of the process (resonance for-
mation) and the second one for the decay part of the
process (resonance decay).

• It includes the single-resonance propagator of the stan-
dard form, with the complex mass M , and the four-
momentum Q℘ , which comprises momenta of all pho-
tons assigned to the resonance decay.

• It is rather striking that all photon-emission factors look
as if photons were emitted by the charged particle of the
mass Q2

℘! This is, of course, intuitively well justified and
quite appealing.

• The fact that the coherent sum is performed over all
the photon assignments to the production and the decay

24 Here we use twice the well-known identity∑
perm.

1
a1(a1+a2)(a1+a2+a3)...(a1+a2+...an)

= 1
a1a2...an

, where the sum

is over all permutations of (1, 2, 3, . . . , n).
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reflects the QED gauge invariance and the Bose–Einstein
statistics.

• It holds both for the virtual and real photons (this is why
we have kept k2

i ).

B Resummation of real-photon emissions

In this Appendix we show how to do the resummation of the
amplitude of the multiple-real-photon emission. We expect
that because of IR cancellations the basic algebraic struc-
ture of our derivation holds for the integrands of multiloop
corrections.

Let us begin with a short summary of the YFS method
performed in a combinatorial way. The process under con-
sideration is

e(pa)ν̄e(pb) −→ W −→ μ(pc)ν̄μ(pd).

At first, we consider the standard YFS scheme without radi-
ation nor recoil from W . As proven by YFS [18], the IR
radiation comes entirely from the charged external legs (e
and μ) and has a form of soft currents. The sum of graphs
with N real emissions is the following:

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

�
N∑
l=0

N !∑
π

(
2pμ1

a

2pakπ1

2pμ2
a

2pakπ1 + 2pakπ2

. . .
2pμl

a

2pakπ1 + 2pakπ2 + · · · + 2pakπl

)

×
(−2pμl+1

c

2pckπl+1

−2pμl+2
c

2pckπl+1 + 2pckπl+2

. . .
−2pμN

c

2pckπl+1 + 2pckπl+2 + · · · + 2pckπN

)

× 1

p2
ab − M2

. (B.1)

We execute now the sum over permutations of photons within
the a and c sub-groups according to the formula of footnote
24. This turns complicated sums into simple products:

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

� 1

p2
ab − M2

N∑
l=0

N !/ l!/(n−l)!∑
π/πl/πN−l

( l∏
i=1

2pμi
a

2pakπi

)

×
(N−l∏

i=1

−2pμl+i
c

2pckπl+i

)
. (B.2)

It takes now a few moments to realise that the combinato-
rial sum over permutations can be replaced by the sum over
partitions (cf. Eqs. (A.10) and (A.11))25

N∑
l=0

N !/ l!/(N−l)!∑
π/πa/πc

=
2N∑

℘=(a,c)N

. (B.4)

Consequently we get

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

� 1

p2
ab − M2

2N∑

℘=(a,c)N

( N∏
i=1

2θ℘i p
μi
℘i

2p℘i ki

)
, (B.5)

where θ equals +1 for initial state and −1 for final state.
Finally, we notice that the sum over partitions in Eq. (B.5)
can be rewritten in a compact form as26

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

� 1

p2
ab − M2

N∏
i=1

(
2pμi

a

2paki
− 2pμi

c

2pcki

)
. (B.6)

Let us now allow for the radiation from the W -boson. We
begin by analysing the numerator of the multiple-emission
graph of Fig. 4, i.e. of LHS of Eq. (A.3). The numerator
of the single photon emission with two accompanying W
propagators (in the small-photon-momentum limit) looks as
follows:
(−gλλ′ + pλ pλ′

/M2
W

)
V (p, k, p − k)λ′ρσ ′

(−gσ ′σ

+(p − k)σ
′
(p − k)σ /M2

W

)
k→0= (−gλσ + pλ pσ /M2

W

)
(−2pρ)

+gλ
ρ p

σ (p2 − M2
W )/M2

W + gσ
ρ p

λ(p2 − M2
W )/M2

W ,

(B.7)

where V (p, k, p − k)λ′ρσ ′ is the WγW vertex. Dropping
also the terms proportional to p2 − M2

W (i.e. putting p on-
shell) we obtain a self-repeating structure. With the help of

25 Note that the identity (B.4) generalises to more than two particles,
for example:

N∑
la ,lc,le=0

la+lc+le=N

N !/ la !/ lc !/ le !∑
π/πa/πc/πe

=
3N∑

℘=(a,c,e)N

. (B.3)

26 For instance, for N=2 we have four partitions:

2pμ1
a

2pak1

2pμ2
a

2pak2
− 2pμ1

a

2pak1

2pμ2
c

2pck2
− 2pμ1

c

2pck1

2pμ2
a

2pak2
+ 2pμ1

c

2pck1

2pμ2
c

2pck2

=
(

2pμ1
a

2pak1
− 2pμ1

c

2pck1

)(
2pμ2

a

2pak2
− 2pμ2

c

2pck2

)
.
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this recurrence, the numerator corresponding to the emission
line in Eq. (A.3) becomes

(−gλσ + Q jλQ jσ /M2
W

) n∏
i=1

(−2Q jμi ). (B.8)

Note that for the time being we keep the momentum Q j in the
W propagator off-shell and use the same Q j in the eikonal
factors. In the soft-photon limit there is a freedom in defining
these momenta and we shall exploit this freedom later on.

Now inclusion of the radiation from W into Eq. (B.1)
amounts to the following modification:

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

�
N∑

la ,lc,n=0
la+lc+n=N

N !∑
π

[(
2p

μπ1
a

2pakπ1

2p
μπ2
a

2pakπ1 + 2pakπ2

. . .
2p

μπla
a

2pakπ1 + 2pakπ2 + · · · + 2pakπla

)

−gλσ + Qλ
π0
Qσ

π0
/M2

W

Q2
π0

− M2
W

n∏
i=1

(−2Q
μla+i
π0 )

Q2
πla+i

− M2
W

×
(−2p

μπla+n+1
c

2pckπla+n+1

−2p
μπla+n+2
c

2pckπla+n+1 + 2pckπla+n+2

. . .
−2p

μπla+n+lc
c

2pckπla+n+1 + 2pckπla+n+2 + · · · + 2pckπla+n+lc

)]
,

(B.9)

where we temporarily choose Q0 as the four-momentum in
the numerators. The unmatched indices λσ in the W propa-
gator are to be treated “symbolically” as we do not write a
complete expression for M. At this moment we plug in the
formula (A.10)

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

�
N∑

la ,lc,n=0
la+lc+n=N

n∑
lg ,lh=0
lg+lh=n

N !∑
π

[(
2p

μπ1
a

2pakπ1

2p
μπ2
a

2pakπ1 + 2pakπ2

. . .
2p

μπla
a

2pakπ1 + 2pakπ2 + · · · + 2pakπla

)

×
( −2Q

μπla+1
π0

2Qπlg
kπla+1

−2Q
μπla+2
π0

2Qπlg
kπla+1 + 2Qπlg

kπla+2

. . .
−2Q

μπla+lg
π0

2Qπlg
kπla+1 + 2Qπlg

kπla+2 + · · · + 2Qπlg
kπla+lg

)

×
−gλσ + Qλ

πlg
Qσ

πlg
/M2

W

Q2
πlg

− M2
W

×
(

2Q
μπla+lg+1
π0

2Qπlg
kπla+lg+1

2Q
μπla+lg+2
π0

2Qπlg
kπla+lg+1 + 2Qπlg

kπla+lg+2

. . .
2Q

μπla+lg+lh
π0

2Qπlg
kπla+lg+1 + 2Qπlg

kπla+lg+2 + · · · + 2Qπlg
kπla+lg+lh

)

×
(

−2p
μπla+n+1
c

2pckπla+n+1

−2p
μπla+n+2
c

2pckπla+n+1 + 2pckπla+n+2

. . .
−2p

μπla+n+lc
c

2pckπla+n+1 + 2pckπla+n+2 + · · · + 2pckπla+n+lc

)]
.

(B.10)

The double sum can be converted into a single one

N∑
la ,lc,n=0

la+lc+n=N

n∑
lg,lh=0
lg+lh=n

=
N∑

la ,lc,lg,lh=0
la+lc+lg+lh=N

(B.11)

and the four groups of permutations can be executed as in
Eq. (B.2):

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

�
N∑

la ,lc,lg,lh=0
la+lc+lg+lh=N

N !/ la !/ lg !/ lh !/ lc!∑
π/πla /πlg /πlh /πlc

−gλσ + Qλ
πlg

Qσ
πlg

/M2
W

Q2
πlg

− M2
W

×
( la∏
i=1

2p
μπi
a

2pakπi

)( lg∏
i=1

−2Q
μπla+i
π0

2Qπlg
kπla+i

)( lh∏
i=1

2Q
μπla+lg+i
π0

2Qπlg
kπla+lg+i

)

×
( lc∏
i=1

−2p
μπla+lg+lh+i
c

2pckπla+lg+lh+i

)
. (B.12)

The first two terms in the brackets describe the emission from the
production part (from the lines a and g). Qπlg

≡ Qg is defined
there as Qg = pab − KP , KP = Ka + Kg and is the same
for all terms of the product for given (fixed) KP , regardless of
the choice of Ka and Kg . Therefore, these two products can be
combined into one as in Eqs. (B.5) and (B.6). The same holds for
the last two terms which describe emission from the decays with
Qg = pcd + KD, KD = Kc + Kh :

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

�
N∑

lP ,lD=0
lP+lD=N

N !/ lP !/ lD !∑
π/πlP /πlD

−gλσ + Qλ
πlg

Qσ
πlg

/M2
W

Q2
πlg

− M2
W
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×
lP∏
i=1

(
2p

μπi
a

2pakπi

− 2Q
μπi
π0

2Qπlg
kπi

)

×
lD∏
i=1

(
2Q

μπlP+i
π0

2Qπlg
kπlP+i

− 2p
μπlP+i
c

2pckπlP+i

)
, (B.13)

where la + lg = lP and lh + lc = lD . The sum over per-
mutations can be once more replaced by the sum over partitions
(cf. Eq. (B.4)):

M
(0)
N

μ1,...,μN
(k1, . . . , kN )

�
2N∑

℘=(P,D)N

−gλσ + Qλ
gQ

σ
g /M2

W

Q2
g − M2

W

×
N∏
i=1

(
2θ℘i p

μi
℘i

2p℘i ki
− 2θ℘i Q

μi
℘i

2Q℘i ki

)

=
2N∑

℘=(P,D)N

−gλσ + Qλ
gQ

σ
g /M2

W

Q2
g − M2

W

N∏
i=1

jμi
℘i , jμi

P

= 2pμi
a

2paki
− 2Qμi

g

2Qgki
, jμi

D

= 2Qμi
g

2Qgki
− 2pμi

c

2pcki
. (B.14)

In Eq. (B.14) we have used a freedom of defining Qπ0 to replace it
with Q℘i ≡ Qg . Note that, contrary to pX , the vectors QX depend
on the choice of partitions, i.e. vary from a partition to partition.
This prevents us from collapsing the remaining sum over partitions,
quite analogously as in the case of the neutral resonance.

C Details of virtual form-factor

In the following we are going to generalise the YFS [18] virtual
form-factor function αB to the general case with charged interme-
diate resonances.

In order to introduce the notation, let us first write down explicitly
the emission factor for a single-real photon

jμ(k) = ie
∑

X=a,b,c,d,e, f

QX θX
2pμ

X
2pXk

, (C.1)

where θX = +1, −1 for particles in the initial and final state, respec-
tively, QX is the charge of the particle (in the units of the positron
charge e) and the single-virtual photon current reads

Jμ(k) =
∑

X=a,b,c,d,e, f

Ĵμ
X (k), Ĵμ

X (k)

≡ QX θX
2pμ

X θX − kμ

k2 − 2pXkθX + iε
, (C.2)

see Fig. 5. For the virtual corrections we always have an even
number of the Jμ(k) currents paired in the so-called virtual S-

Fig. 5 Example of one real and one virtual photon emissions. The
electric current is a sum of contributions from all external particles.
This is why it is attached to the dashed line which crosses all relevant
external lines. The rest of the Feynman diagram is visualised as the
internal dark box

factor

S(k) = J (k) ◦ J (k)

=
∑

X=a,b,c,d,e, f
Y=a,b,c,d,e, f

JX (k) ◦ JY (k), (C.3)

where

JX (k) ◦ JY (k) = JX (k) · JY (−k), for X 	= Y,

JX (k) ◦ JX (k) = JX (k) · JX (k). (C.4)

In Fig. 5 we illustrate all that in a visual way. The contribution
JX (k) · JX (k) looks diagrammatically like the self-energy, but in
fact it comes from the charge renormalisation, see the discussion in
Refs. [18,55].

In the derivation of exp(αB) of Ref. [18] (taking as an example
the four-fermion production process) we arrive at a certain stage
where the contributions from all the real and virtual photons are
factorised.

The corresponding scattering amplitude with m real and any
number of virtual photons taken in the soft-photon approximation,
visualised in Fig. 6, reads
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Fig. 6 The EEX amplitude for four-fermion production. The electric current is a sum of contributions from all external particles. This is why it is
attached to the dashed line which crosses all relevant external lines. We use the collective notation for multiple-photon lines which is defined in the
plot

Mμ1μ2...μm (k1, k2, . . . , km)

= M

m∏
l=1

jμ(kl )
∞∑
n=0

1

n!
n∏

i=1

α

×
∫

i

(2π)3
d4ki

k2
i − λ2 + iε

Jμ(ki ) ◦ Jμ(ki ). (C.5)

The sum over virtual photons is done trivially, resulting in the expo-
nential form-factor:

Mμ1μ2...μm (k1, k2, . . . , km) = M

m∏
l=1

jμ(kl ) e
αB6 ,

B6 =
∫

i

(2π)3
d4k

k2 − λ2 + iε
J (k) ◦ J (k). (C.6)

Note that in the residual function M there is no “recoil” dependence
on photon momenta, we are therefore limited to very soft photons
(Eγ � �W ) in the process of our interest.

Let us now take into account the double-resonant character of
the process, see Fig. 7. After factorising all the real and virtual
soft photons, and introducing a new source of emission from the
intermediate resonant W ’s, we use the identity of Eq. (A.11) to
arrive at the amplitude depicted in Fig. 7, which can be written
explicitly as follows:

M
μ11

...μ3n3
n1n2n3 (k11 , . . . , k3n3

)

= M0

n1∏
i1=1

j
μi1
P (ki1)

n2∏
i2=1

j
μi2
D1

(ki2 )
n3∏

i3=1

j
μi3
D2

(ki3)

×
∞∑

n4=0

1

n4!
n4∏

i4=1

α

∫
i

(2π)3

d4ki4
k2
i4

− m2
γ + iε

JP (ki4 )

◦ JP (ki4 )

×
∞∑

n5=0

1

n5!
n5∏

i5=1

α

∫
i

(2π)3

d4ki5
k2
i5

− m2
γ + iε

JD1(ki5)

Fig. 7 The CEEX amplitude for WW production and two decays in
the soft-photon approximation. Visualised are all classes of virtual and
real photon emissions

◦ JD1(ki5)

×
∞∑

n6=0

1

n6!
n6∏

i6=1

α

∫
i

(2π)3

d4ki6
k2
i6

− m2
γ + iε

JD2 (ki6)

◦ JD2 (ki6)

×
∞∑

n7=0

1

n7!
n7∏

i7=1

2α

∫
i

(2π)3

d4ki7
k2
i7

− m2
γ + iε

JP (ki7)

◦ JD1(ki7)

×
∞∑

n8=0

1

n8!
n8∏

i8=1

2α

∫
i

(2π)3

d4ki8
k2
i8

− m2
γ + iε

JP (ki8)

◦ JD2 (ki8)
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×
∞∑

n9=0

1

n9!
n9∏

i9=1

2α

∫
i

(2π)3

d4ki9
k2
i9

− m2
γ + iε

JD1(ki9)

◦ JD2 (ki9)

× 1

(pcd + K2 − K7 + K9)2 − M2

× 1

(pef + K3 − K8 − K9) − M2 , (C.7)

where Kl = ∑nl
il=1 kil . We have defined nine groups of photons

(labeled by l); l = 1, 2, 3 corresponds, respectively, to the real
emission from the W -pair production and their decays, the virtual
photons corresponding to the same sources are denoted as the group
(4,5,6), while (7,8) corresponds to the virtual photons attached to
the production and the decay. Finally, the virtual photons denoted
as the group (9) connect the decays of the first and the second W -
boson.

The most interesting part in the above expression is that the prod-
uct of two resonance propagators includes all the relevant recoil
dependence on the real and virtual photon momenta. This depen-
dence can be read easily from Fig. 7. We are now not limited by
Eγ � �W , but rather by Eγ � √

s. One important feature is that
propagators do not depend on K4, K5 and K6—this is why the sums
over relevant photons can be immediately folded into three stan-
dard YFS form-factor eαB , for the production and decay processes.
This, however, cannot be done for the three virtual-interference
contributions because the propagators do depend on K7, K8 and
K9. The dependence on the real photons K2 and K3 is not harm-
ful for our task of summing up virtual contributions to the infinite
order:

M
μ11

...μ3n3
n1n2n3 (k11 , . . . , k3n3

)

= M0

n1∏
i1=1

j
μi1
P (ki1)

n2∏
i2=1

j
μi2
D1

(ki2 )
n3∏

i3=1

j
μi3
D2

(ki3)

× eαBP eαBD1 eαBD2

∞∑
n7=0

1

n7!
n7∏

i7=1

2α

×
∫

i

(2π)3

d4ki7
k2
i7

− m2
γ

JP (ki7) ◦ JD1(ki7)

×
∞∑

n8=0

1

n8!
n8∏

i8=1

2α

∫
i

(2π)3

d4ki8
k2
i8

− m2
γ

JP (ki8) ◦ JD2 (ki8)

×
∞∑

n9=0

1

n9!
n9∏

i9=1

2α

∫
i

(2π)3

d4ki9
k2
i9

− m2
γ

JD1(ki9) ◦ JD2 (ki9)

× 1

(U2 − K7 + K9)2 − M2

1

(V3 − K8 − K9) − M2 , (C.8)

where U2 = pcd + K2 and V3 = pef + K3, and

αBX =
∫

i

(2π)3
d4k

k2 − m2
γ + iε

JX (k) ◦ JX (k), X = P, D1, D2. (C.9)

At this point we use the following approximations (valid in the
soft-photon limit):

1

(U2 − K7 + K9)2 − M2 � 1

U2
2 − M2 − 2U2K7 + 2U2K9

= 1

U2
2 − M2

1

1 −∑
i7

2U2ki7
U2

2 −M2 +∑
i9

2U2ki9
U2

2 −M2

� 1

U2
2 − M2

∏
i7

1

1 − 2U2ki7
U2

2 −M2

∏
i9

1

1 + 2U2ki9
U2

2 −M2

� 1

U2
2 − M2

∏
i7

U2
2 − M2

(U2 − ki7 )
2 − M2

∏
i9

U2
2 − M2

(U2 + ki9)
2 − M2 ,

(C.10)

which, together with the analogous approximation for the second
propagator, allows us to fold-in three remaining sums into expo-
nents:

M
μ11

...μ3n3
n1n2n3 (k11 , . . . , k3n3

)

= M0

n1∏
i1=11

j
μi1
P (ki1)

n2∏
i2=12

j
μi2
D1

(ki2 )
n3∏

i3=13

j
μi3
D2

(ki3)

×eαB
CEEX
10 (pcd+K2,pef +K3)

1

(pcd + K2)2 − M2

× 1

(pef + K3) − M2 , (C.11)

where

αBCEEX
10 (U, V ) = αBP + αBD1 + αBD2 + 2αBP⊗D1(U )

+ 2αBP⊗D2 (V ) + 2αBD1⊗D2 (U, V ),

αBP⊗D1(U ) =
∫

i

(2π)3
d4k

k2 − m2
γ + iε

JP (k)

◦ JD1(k)
U2 − M2

(U − k)2 − M2 ,

αBP⊗D2 (V ) =
∫

i

(2π)3
d4k

k2 − m2
γ + iε

JP (k)

◦ JD2 (k)
V 2 − M2

(V − k)2 − M2 ,

αBD1⊗D2 (U, V ) =
∫

i

(2π)3
d4k

k2 − m2
γ + iε

JD1(k)

◦ JD2 (k)
U2 − M2

(U + k)2 − M2
V 2 − M2

(V − k)2 − M2 . (C.12)

Let us note that in the no-recoil limit U − k → U , V − k → V ,
i.e. k � �W , the function BCEEX

10 (U, V ) reduces to BCEEX
6 , in an

analogous way to Eq. (3.7).
Let us also mention that the only new functions introduced by

the extended exponentiation scheme are the B functions defined
in the last three lines of Eq. (C.12). These new virtual functions
have the improved UV behaviour as compared to the standard YFS
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form-factors, like BX of Eq. (C.9). Since these latter are UV finite,
so are the new ones. As for the IR or any “spurious” high-energy
divergencies, note that in the k → 0 limit the new form-factors
reduce to the standard YFS ones and the mass M in the new functions
is understood as complex, regularised by the width of the resonance,
so no new singularities are introduced as long as all the interferences
are kept.

In Eq. (C.11) and in all previous steps the contributions of real
photon were taken as just one term (in which we know to which sub-
process every real photon belongs) from the grand sum (as defined
e.g. in Eq. (4.14)), over all 3n photon assignments (P, D1, D2)n , in
which we know to which subprocess every real photon belongs.27

Let us restore this coherent sum over all photon assignments in the
following compact final expression:

Mμ1...μn (k1, k2, . . . , kn)

=
∑

℘∈(P,D1,D2)n

M0

n∏
i=1

jμi
℘i (ki ) e

αBCEEX
10 (U℘,V℘)

× 1

U2
℘ − M2

1

V 2
℘ − M2 , (C.13)

where U℘ = pcd + ∑
℘i=D1

ki and V℘ = pe f + ∑
℘i=D2

ki .

Equation (C.13) is the principal result of this Appendix. The
CEEX form-factor of Eq. (C.13) is valid for production of a pair of
any charged resonances of any spin. The case of a single charged
resonance, or more than two charged resonances, can be treated in
the same way.

The presented derivation of the virtual form-factor is based
to a large extent on the analogy with the real-emission part (see
Appendix B) and the cancellation between the real and virtual emis-
sions.

References

1. J. Alcaraz, et al., precision electroweak measurements and con-
straints on the standard model (2007). arXiv:0712.0929

2. S. Schael et al., Electroweak measurements in electron–positron
collisions at W-boson-pair energies at LEP. Phys. Rep. 532(2013),
119–244 (2013). https://doi.org/10.1016/j.physrep.2013.07.004.
arXiv:1302.3415

3. A. Abada et al., FCC physics opportunities. Eur. Phys. J. C 79(6),
474 (2019). https://doi.org/10.1140/epjc/s10052-019-6904-3

4. A. Abada et al., FCC-ee: the lepton collider. Eur. Phys. J. ST 228(2),
261–623 (2019). https://doi.org/10.1140/epjst/e2019-900045-4

5. A. Blondel, et al., Standard Model Theory for the FCC-ee: The Tera-
Z, in: mini workshop on precision EW and QCD calculations for the
FCC studies: methods and techniques CERN, Geneva, Switzerland,
January 12–13, 2018 (2018). arXiv:1809.01830

6. A. Blondel, A. Freitas, J. Gluza, S. Heinemeyer, S. Jadach, P. Janot,
T. Riemann, Theory requirements and possibilities for the FCC-ee
and other future high energy and precision frontier lepton colliders
(2019). arXiv:1901.02648

7. M.W. Grunewald, et al., Reports of the working groups on precision
calculations for LEP2 physics: proceedings. four fermion produc-
tion in electron positron collisions (2000). arXiv:hep-ph/0005309

27 The final form of the result took shape thanks to the use, at the earlier
step, the identity of Eq. (A.10).

8. W. Placzek, Precision predictions for W-pair production at LEP2.
Nucl. Phys. Proc. Suppl. 117, 172 (2003). https://doi.org/10.1016/
S0920-5632(03)90518-4. arXiv:hep-ph/0208138

9. S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was, The
Monte Carlo program KoralW version 1.51 and the concurrent
Monte Carlo KoralW and YFSWW3 with all background graphs
and first order corrections to W pair production. Comput. Phys.
Commun. 140(2001), 475–512 (2001). https://doi.org/10.1016/
S0010-4655(01)00296-X. arXiv:hep-ph/0104049

10. S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was, Precision
predictions for (un)stable W+ W- pair production at and beyond
LEP-2 energies. Phys. Rev. D 65, 093010 (2002). https://doi.org/
10.1103/PhysRevD.65.093010. arXiv:hep-ph/0007012

11. S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was,
Exact O (alpha) gauge invariant YFS exponentiated Monte Carlo
for (un)stable W+W− production at and beyond LEP-2 ener-
gies. Phys. Lett. B 417, 326–336 (1998). https://doi.org/10.1016/
S0370-2693(97)01253-7. arXiv:hep-ph/9705429

12. S. Jadach, W. Płaczek, M. Skrzypek, B.F.L. Ward, Z. Wa̧s,
The Monte Carlo event generator YFSWW3 version 1.16 for
W pair production and decay at LEP2/LC energies. Comput.
Phys. Commun. 140, 432–474 (2001). https://doi.org/10.1016/
S0010-4655(01)00288-0. arXiv:hep-ph/0103163

13. J. Fleischer, F. Jegerlehner, M. Zralek, Radiative corrections to
helicity amplitudes for W pair production in e+e− annihila-
tion. Z. Phys. C 42(1989), 409 (1989). https://doi.org/10.1007/
BF01548446

14. K. Kolodziej, M. Zralek, Helicity amplitudes for spin 0 or spin 1
boson production in e+e− annihilation. Phys. Rev. D 43(1991),
3619–3625 (1991). https://doi.org/10.1103/PhysRevD.43.3619

15. J. Fleischer, K. Kolodziej, F. Jegerlehner, W pair produc-
tion in e+e− annihilation: Radiative corrections including hard
bremsstrahlung. Phys. Rev. D 47(1993), 830–836 (1993). https://
doi.org/10.1103/PhysRevD.47.830

16. J. Fleischer, F. Jegerlehner, K. Kolodziej, G.J. van Olden-
borgh, EEWW: A generator for e+e− → W+W− includ-
ing one loop and leading photonic two loop corrections. Com-
put. Phys. Commun. 85, 29–39 (1995). https://doi.org/10.1016/
0010-4655(94)00113-G. arXiv:hep-ph/9405380

17. S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was, Monte
Carlo program KoralW 1.42 for all four-fermion final states in e+e−
collisions. Comput. Phys. Commun. 119, 272–311 (1999). https://
doi.org/10.1016/S0010-4655(99)00219-2. arXiv:hep-ph/9906277

18. D.R. Yennie, S.C. Frautschi, H. Suura, The infrared divergence
phenomena and high-energy processes. Ann. Phys. 13(1961), 379–
452 (1961). https://doi.org/10.1016/0003-4916(61)90151-8

19. S. Jadach, Z. Was, R. Decker, J.H. Kuhn, The tau decay library
TAUOLA: Version 2.*4. Comput. Phys. Commun. 76, 361–380
(1993). https://doi.org/10.1016/0010-4655(93)90061-G

20. E. Barberio, B. van Eijk, Z. Was, PHOTOS: a universal Monte
Carlo for QED radiative corrections in decays. Comput. Phys.
Commun. 66(1991), 115–128 (1991). https://doi.org/10.1016/
0010-4655(91)90012-A

21. A. Denner, S. Dittmaier, M. Roth, D. Wackeroth, Electroweak radia-
tive corrections to e+ e- → W W → 4 fermions in double pole
approximation: The RACOONWW approach. Nucl. Phys. B 587,
67–117 (2000). https://doi.org/10.1016/S0550-3213(00)00511-3.
arXiv:hep-ph/0006307

22. A. Denner, S. Dittmaier, M. Roth, D. Wackeroth,
RACOONWW1.3: a Monte Carlo program for four fermion
production at e+e− colliders. Comput. Phys. Commun. 153, 462–
507 (2003). https://doi.org/10.1016/S0010-4655(03)00205-4.
arXiv:hep-ph/0209330

23. S. Jadach, M. Skrzypek, QED challenges at FCC-ee precision mea-
surements. Eur. Phys. J. C 79(9), 756 (2019). https://doi.org/10.
1140/epjc/s10052-019-7255-9. arXiv:1903.09895

123

http://arxiv.org/abs/0712.0929
https://doi.org/10.1016/j.physrep.2013.07.004
http://arxiv.org/abs/1302.3415
https://doi.org/10.1140/epjc/s10052-019-6904-3
https://doi.org/10.1140/epjst/e2019-900045-4
http://arxiv.org/abs/1809.01830
http://arxiv.org/abs/1901.02648
http://arxiv.org/abs/hep-ph/0005309
https://doi.org/10.1016/S0920-5632(03)90518-4
https://doi.org/10.1016/S0920-5632(03)90518-4
http://arxiv.org/abs/hep-ph/0208138
https://doi.org/10.1016/S0010-4655(01)00296-X
https://doi.org/10.1016/S0010-4655(01)00296-X
http://arxiv.org/abs/hep-ph/0104049
https://doi.org/10.1103/PhysRevD.65.093010
https://doi.org/10.1103/PhysRevD.65.093010
http://arxiv.org/abs/hep-ph/0007012
https://doi.org/10.1016/S0370-2693(97)01253-7
https://doi.org/10.1016/S0370-2693(97)01253-7
http://arxiv.org/abs/hep-ph/9705429
https://doi.org/10.1016/S0010-4655(01)00288-0
https://doi.org/10.1016/S0010-4655(01)00288-0
http://arxiv.org/abs/hep-ph/0103163
https://doi.org/10.1007/BF01548446
https://doi.org/10.1007/BF01548446
https://doi.org/10.1103/PhysRevD.43.3619
https://doi.org/10.1103/PhysRevD.47.830
https://doi.org/10.1103/PhysRevD.47.830
https://doi.org/10.1016/0010-4655(94)00113-G
https://doi.org/10.1016/0010-4655(94)00113-G
http://arxiv.org/abs/hep-ph/9405380
https://doi.org/10.1016/S0010-4655(99)00219-2
https://doi.org/10.1016/S0010-4655(99)00219-2
http://arxiv.org/abs/hep-ph/9906277
https://doi.org/10.1016/0003-4916(61)90151-8
https://doi.org/10.1016/0010-4655(93)90061-G
https://doi.org/10.1016/0010-4655(91)90012-A
https://doi.org/10.1016/0010-4655(91)90012-A
https://doi.org/10.1016/S0550-3213(00)00511-3
http://arxiv.org/abs/hep-ph/0006307
https://doi.org/10.1016/S0010-4655(03)00205-4
http://arxiv.org/abs/hep-ph/0209330
https://doi.org/10.1140/epjc/s10052-019-7255-9
https://doi.org/10.1140/epjc/s10052-019-7255-9
http://arxiv.org/abs/1903.09895


Eur. Phys. J. C (2020) 80 :499 Page 29 of 29 499

24. S. Jadach, B.F.L. Ward, Z. Was, The precision Monte Carlo event
generator KK for two fermion final states in e+e− collisions. Com-
put. Phys. Commun. 130, 260–325 (2000). https://doi.org/10.1016/
S0010-4655(00)00048-5. arXiv:hep-ph/9912214

25. S. Jadach, B.F.L. Ward, Z. Was, Coherent exclusive exponen-
tiation for precision Monte Carlo calculations. Phys. Rev. D
63, 113009 (2001). https://doi.org/10.1103/PhysRevD.63.113009.
arXiv:hep-ph/0006359

26. S. Jadach, B.F.L. Ward, YFS2: the second order Monte Carlo
for fermion pair production at LEP / SLC with the initial
state radiation of two hard and multiple soft photons. Comput.
Phys. Commun. 56(1990), 351–384 (1990). https://doi.org/10.
1016/0010-4655(90)90020-2

27. S. Jadach, B.F.L. Ward, Final state multiple photon effects in
fermion pair production at SLC / LEP. Phys. Lett. B 274(1992),
470–472 (1992). https://doi.org/10.1016/0370-2693(92)92017-B

28. S. Jadach, Z. Was, Monte Carlo simulation of the process e+ e- –>
tau+ tau- including radiative O(alpha**3) QED corrections, mass
and spin. Comput. Phys. Commun. 36(1985), 191–211 (1985).
https://doi.org/10.1016/0010-4655(85)90123-7

29. S. Jadach, B.F.L. Ward, Z. Was, The Monte Carlo program
KORALZ, version 3.8, for the lepton or quark pair production at
LEP / SLC energies. Comput. Phys. Commun. 66, 276–292 (1991).
https://doi.org/10.1016/0010-4655(91)90077-X

30. W. Placzek, S. Jadach, Multiphoton radiation in leptonic W boson
decays. Eur. Phys. J. C 29, 325–339 (2003). https://doi.org/10.
1140/epjc/s2003-01223-4. arXiv:hep-ph/0302065

31. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Complete elec-
troweak O(alpha) corrections to charged-current e+e− → 4
fermion processes. Phys. Lett. B 612, 223–232 (2005). https://
doi.org/10.1016/j.physletb.2005.03.007. https://doi.org/10.1016/
j.physletb.2011.09.020 [Erratum: Phys. Lett.B704,667(2011)]
(2005). arXiv:hep-ph/0502063

32. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Electroweak
corrections to charged-current e+e− → 4 fermion processes:
Technical details and further results. Nucl. Phys. B 724,
247–294 (2005). https://doi.org/10.1016/j.nuclphysb.2005.06.033.
https://doi.org/10.1016/j.nuclphysb.2011.09.001 [Erratum: Nucl.
Phys.B854,504(2012)] (2005). arXiv:hep-ph/0505042d

33. M. Beneke, P. Falgari, C. Schwinn, A. Signer, G. Zanderighi, Four-
fermion production near the W pair production threshold. Nucl.
Phys. B 792, 89–135 (2008). https://doi.org/10.1016/j.nuclphysb.
2007.09.030. arXiv:0707.0773

34. S. Actis, M. Beneke, P. Falgari, C. Schwinn, Dominant NNLO
corrections to four-fermion production near the W-pair production
threshold. Nucl. Phys. B 807, 1–32 (2009). https://doi.org/10.1016/
j.nuclphysb.2008.08.006. arXiv:0807.0102

35. C. Schwinn, Prospects for higher-order corrections to W-pair pro-
duction near threshold in the EFT approach. In: Theory Report on
the 11th FCC-ee Workshop, pp. 77–90 (2019)

36. S. Jadach, W. Płaczek, M. Skrzypek, Exponentiation in QED and
quasi-stable charged particles. Symmetry 11(11), 1389 (2019).
https://doi.org/10.3390/sym11111389

37. R.G. Stuart, Production cross-sections for unstable particles.
Nucl. Phys. B 498, 28–38 (1997). https://doi.org/10.1016/
S0550-3213(97)00276-9. arXiv:hep-ph/9504215

38. S. Jadach, W. Placzek, M. Skrzypek, B.F.L. Ward, Z. Was, On
theoretical uncertainties of the W boson mass measurement at
LEP-2. Phys. Lett. B 523, 117–126 (2001). https://doi.org/10.1016/
S0370-2693(01)01310-7. arXiv:hep-ph/0109072

39. W. Beenakker, A. Denner, Standard model predictions for W
pair production in electron–positron collisions. Int. J. Mod.
Phys. A 9(1994), 4837–4920 (1994). https://doi.org/10.1142/
S0217751X94001965

40. A.P. Chapovsky, V.A. Khoze, Screened Coulomb ansatz for the
nonfactorizable radiative corrections to the off-shell W+ W-

production. Eur. Phys. J. C 9, 449–457 (1999). https://doi.org/10.
1007/s100529900070. arXiv:hep-ph/9902343

41. S. Jadach, B.F.L. Ward, Exponentiation of Soft Photons in the
Monte Carlo: The Case of Bonneau and Martin. Phys. Rev.
D 38, 2897 (1988). https://doi.org/10.1103/PhysRevD.39.1471.2.
https://doi.org/10.1103/PhysRevD.38.2897 [Erratum: Phys. Rev.
D39,1471(1989)]

42. S. Jadach, B.F.L. Ward, Z. Was, Coherent exclusive exponentiation
CEEX: the Case of the resonant e+e− collision. Phys. Lett. B 449,
97–108 (1999). https://doi.org/10.1016/S0370-2693(99)00038-6.
arXiv:hep-ph/9905453

43. S. Jadach, B.F.L. Ward, Multi-photon Monte Carlo for bhabha scat-
tering at low angles. Phys. Rev. D 40(1989), 3582–3589 (1989).
https://doi.org/10.1103/PhysRevD.40.3582

44. S. Jadach, B.F.L. Ward, Z. Was, The Monte Carlo program
KORALZ, version 4.0, for the lepton or quark pair production at
LEP/SLC energies. Comput. Phys. Commun. 79, 503–522 (1994).
https://doi.org/10.1016/0010-4655(94)90190-2

45. S. Jadach, E. Richter-Was, B.F.L. Ward, Z. Was, Monte
Carlo program BHLUMI-2.01 for Bhabha scattering at low
angles with Yennie–Frautschi–Suura exponentiation. Comput.
Phys. Commun. 70, 305–344 (1992). https://doi.org/10.1016/
0010-4655(92)90196-6

46. S. Jadach, W. Placzek, E. Richter-Was, B.F.L. Ward, Z. Was,
Upgrade of the Monte Carlo program BHLUMI for Bhabha scatter-
ing at low angles to version 4.*04. Comput. Phys. Commun. 102,
229–251 (1997). https://doi.org/10.1016/S0010-4655(96)00156-7

47. S. Jadach, B.F.L. Ward, Z.A. Was, S.A. Yost, Systematic studies of
exactmathcalO(α2L) CEEX EW corrections in a hadronic MC for
precision Z/γ ∗ physics at LHC energies (2017). arXiv:1707.06502

48. S. Jadach, W. Placzek, B.F.L. Ward, BHWIDE 1**00: O(alpha)
YFS exponentiated Monte Carlo for Bhabha scattering at wide
angles for LEP-1 / SLC and LEP-2. Phys. Lett. B 390, 298–308
(1997). https://doi.org/10.1016/S0370-2693(96)01382-2. (also
hep-ph/9608412; The Monte Carlo program BHWIDE is available
from http://cern.ch/placzek). arXiv:hep-ph/9608412

49. A. Denner, S. Dittmaier, M. Roth, Nonfactorizable photonic cor-
rections to e+ e- –> W W –> four fermions. Nucl. Phys. B 519,
39–84 (1998). https://doi.org/10.1016/S0550-3213(98)00046-7.
arXiv:hep-ph/9710521

50. W. Beenakker, F.A. Berends, A.P. Chapovsky, Radiative corrections
to pair production of unstable particles: results for e+ e- –> four
fermions. Nucl. Phys. B 548, 3–59 (1999). https://doi.org/10.1016/
S0550-3213(99)00110-8. arXiv:hep-ph/9811481

51. M. Greco, G. Pancheri-Srivastava, Y. Srivastava, Radiative correc-
tions for colliding beam resonances. Nucl. Phys. B 101(1975), 234–
262 (1975). https://doi.org/10.1016/0550-3213(75)90304-1

52. M. Greco, G. Pancheri-Srivastava, Y. Srivastava, Radiative cor-
rections to e+e− → μ+μ− Around the Z0. Nucl. Phys. B
171, 118 (1980). https://doi.org/10.1016/0550-3213(80)90363-6.
https://doi.org/10.1016/0550-3213(82)90458-8 [Erratum: Nucl.
Phys. B 197, 543 (1982)]

53. V.S. Fadin, V.A. Khoze, A.D. Martin, Interference radiative phe-
nomena in the production of heavy unstable particles. Phys. Rev. D
49(1994), 2247–2256 (1994). https://doi.org/10.1103/PhysRevD.
49.2247

54. S. Dittmaier, A General approach to photon radiation off fermions.
Nucl. Phys. B 565(2000), 69–122 (2000). https://doi.org/10.1016/
S0550-3213(99)00563-5. arXiv:hep-ph/9904440

55. S. Weinberg, The Quantum Theory of Fields. The Press Syndicate
of the University of Cambridge (1995)

123

https://doi.org/10.1016/S0010-4655(00)00048-5
https://doi.org/10.1016/S0010-4655(00)00048-5
http://arxiv.org/abs/hep-ph/9912214
https://doi.org/10.1103/PhysRevD.63.113009
http://arxiv.org/abs/hep-ph/0006359
https://doi.org/10.1016/0010-4655(90)90020-2
https://doi.org/10.1016/0010-4655(90)90020-2
https://doi.org/10.1016/0370-2693(92)92017-B
https://doi.org/10.1016/0010-4655(85)90123-7
https://doi.org/10.1016/0010-4655(91)90077-X
https://doi.org/10.1140/epjc/s2003-01223-4
https://doi.org/10.1140/epjc/s2003-01223-4
http://arxiv.org/abs/hep-ph/0302065
https://doi.org/10.1016/j.physletb.2005.03.007
https://doi.org/10.1016/j.physletb.2005.03.007
https://doi.org/10.1016/j.physletb.2011.09.020
https://doi.org/10.1016/j.physletb.2011.09.020
http://arxiv.org/abs/hep-ph/0502063
https://doi.org/10.1016/j.nuclphysb.2005.06.033
https://doi.org/10.1016/j.nuclphysb.2011.09.001
http://arxiv.org/abs/hep-ph/0505042d
https://doi.org/10.1016/j.nuclphysb.2007.09.030
https://doi.org/10.1016/j.nuclphysb.2007.09.030
http://arxiv.org/abs/0707.0773
https://doi.org/10.1016/j.nuclphysb.2008.08.006
https://doi.org/10.1016/j.nuclphysb.2008.08.006
http://arxiv.org/abs/0807.0102
https://doi.org/10.3390/sym11111389
https://doi.org/10.1016/S0550-3213(97)00276-9
https://doi.org/10.1016/S0550-3213(97)00276-9
http://arxiv.org/abs/hep-ph/9504215
https://doi.org/10.1016/S0370-2693(01)01310-7
https://doi.org/10.1016/S0370-2693(01)01310-7
http://arxiv.org/abs/hep-ph/0109072
https://doi.org/10.1142/S0217751X94001965
https://doi.org/10.1142/S0217751X94001965
https://doi.org/10.1007/s100529900070
https://doi.org/10.1007/s100529900070
http://arxiv.org/abs/hep-ph/9902343
https://doi.org/10.1103/PhysRevD.39.1471.2
https://doi.org/10.1016/S0370-2693(99)00038-6
http://arxiv.org/abs/hep-ph/9905453
https://doi.org/10.1103/PhysRevD.40.3582
https://doi.org/10.1016/0010-4655(94)90190-2
https://doi.org/10.1016/0010-4655(92)90196-6
https://doi.org/10.1016/0010-4655(92)90196-6
https://doi.org/10.1016/S0010-4655(96)00156-7
http://arxiv.org/abs/1707.06502
https://doi.org/10.1016/S0370-2693(96)01382-2
http://arxiv.org/abs/hep-ph/9608412
https://doi.org/10.1016/S0550-3213(98)00046-7
http://arxiv.org/abs/hep-ph/9710521
https://doi.org/10.1016/S0550-3213(99)00110-8
https://doi.org/10.1016/S0550-3213(99)00110-8
http://arxiv.org/abs/hep-ph/9811481
https://doi.org/10.1016/0550-3213(75)90304-1
https://doi.org/10.1016/0550-3213(80)90363-6
https://doi.org/10.1103/PhysRevD.49.2247
https://doi.org/10.1103/PhysRevD.49.2247
https://doi.org/10.1016/S0550-3213(99)00563-5
https://doi.org/10.1016/S0550-3213(99)00563-5
http://arxiv.org/abs/hep-ph/9904440

	QED exponentiation for quasi-stable charged particles: the e-e+toW-W+ process
	Abstract 
	1 Introduction
	2 Pole expansion for W-pair production
	3 General discussion
	3.1 Various kinds of exclusive exponentiation
	3.2 Photons from intermediate semi-stable charged particle

	4 CEEX scheme for charged unstable emitters
	4.1  Non-resonant variant of calO(α1) CEEX for e-e+to4f
	4.2 Resonant variant of CEEX calO(α1) for e-e+to4f

	5 Relations between CEEX and EEX schemes
	5.1 From CEEXR to EEXR algebraically
	5.2 Last step towards EEXR of YFSWW3
	5.3 From EEXR to CEEXR in MC implementation
	5.4 Photon distributions around EγsimΓ

	6 Summary and outlook
	Acknowledgements
	A Factoring photon-emission from W
	B Resummation of real-photon emissions
	C Details of virtual form-factor
	References




