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Abstract We discuss the Drell–Yan dilepton production
using the transverse momentum dependent parton distribu-
tions evolved with the Catani–Ciafaloni–Fiorani–Marche-
sini–Kwieciński (CCFM-K) equations in the single loop
approximation. Such equations are obtained assuming angu-
lar ordering of emitted partons (coherence) for x ∼ 1 and
transverse momentum ordering for x � 1. This evolution
scheme also contains the Collins–Soper–Sterman (CSS) soft
gluon resummation. We make a comparison with a broad
class of data on transverse momentum spectra of low mass
Drell–Yan dileptons.
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1 Introduction

The Drell–Yan (DY) dilepton production [1] is one of the
most intensively studied processes in particle physics. The
existence of a hard electroweak probe (photon or Z boson),
which does not interact strongly and decays into a pair of
leptons, provides a clear experimental signature of the par-
tonic interactions in the colliding hadrons and significantly
simplifies their theoretical description. For these reasons,
the DY process is very efficient tool for the investigation
of hadronic structure [2], in particular the distributions of
partons’ transverse momentum. The key concept of the the-
oretical analysis of DY scattering, called factorization, is a
separation between long-range and short-range degrees of
freedom. The basic, collinear factorization theorem assumes
no transverse momenta of partons in hadrons [3]. Its applica-
tion to the Drell–Yan production is very well established and
commonly used. The present state of art calculation for the
DY process includes next-to-next-to-leading order (NNLO)
QCD corrections [4–6].

There are several kinematical regimes where the fixed-
order collinear QCD does not provide good description of
data. In particular, when transverse momentum of lepton
pair is much smaller than it’s invariant mass, qT � M , the
large logarithms logn(M/qT ) occur in all orders of pertur-
bative expansion. These corrections are effectively resumed
within the Collins, Soper and Sterman (CSS) approach [7].
As a result, the collinear factorization need to be replaced
by a new factorization based on the transverse momentum
distributions (TMDs) [8]. For state of art TMD analyses of
Drell–Yan process, see [9–14]. It is interesting to ask what
is the transition from the small transverse momentum region
to the region of qT ∼ M , where fixed order perturbative
QCD should apply. As it was shown in [15], when one con-
siders moderate values of M ∼ 5 − 19 GeV, the fixed-order
predictions underestimate data in the region of qT ∼ M .

Such apparent troubles with the collinear factorization
prompts us to approach the DY process using more gen-
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eral concepts like kT -factorization [16–21] which allow
to address the issue of intrinsic transverse momentum of
partons. It should be mentioned, however, that the kT -
factorization approach is less popular since the higher QCD
corrections are much harder to obtain than in the collinear
framework. Also, unlike collinear factorization, it lacks for-
mal proof. Despite these facts, many theoretical and phe-
nomenological analyses of the DY process were made [22–
37]. The theoretical improvement was accompanied by many
experimental results from fixed–target [38–41] and collider
[42–46] experiments.

In this paper, we examine in detail the low mass DY
productions using the kT -factorization approach combined
with the transverse momentum parton distributions defined in
the Catani–Ciafaloni Fiorani–Marchesini branching scheme
(CCFM) [47–50]. The original motivation for the CCFM
branching was to extend angular ordering (coherence) of
soft parton emission in the space-like branching from the
region of x ∼ 1 to the region of small x � 1. In this way, a
unified evolution equation for transverse momentum depen-
dent gluon distribution was found with angular ordering in
both regions of x in the approximation called all loop. In
the fully inclusive case, this equation interpolates between
the DGLAP equation at moderate x and the BFKL equation
obtained in the small x limit. It is worth emphasizing that
the CCFM branching scheme for x ∼ 1 contains the CSS
resummation of soft gluon emissions [51]. The Monte Carlo
implementation of the all loop CCFM branching scheme was
done in [52–54]. A general Monte Carlo scheme for QCD
evolution was also constructed with the Parton Branching
method [55–57] and subsequent analyses were presented in
[58,59].

In the region of large or moderate values of x , when the
small x coherence can be neglected, the CCFM scheme gives
the DGLAP evolution equation with coherence at large x
only. This approximation, called single loop, was studied
in [50,52] for the gluon distribution. The extension of this
scheme in terms of evolution equations for both quark and
gluon distributions was proposed by Kwieciński in [60]. This
is why we call them the CCFM-K equations. The parton
distributions which are obtained by solving these equations
depend on transverse momenta and their properties were
analyzed in [61–65]. The first analysis of the weak gauge
boson production with the CCFM-K equations was done in
[66] while the low mass DY production with photon was
addressed in [67]. Similarly to the all-loop case, the one-loop
CCFM-K equations contain a part of the CSS resummation
of soft parton emissions [63].

The main goal of the presented analysis is a compre-
hensive analysis of all available data on transverse momen-
tum spectra in low mass DY production with the CCFM-K
evolved parton distributions and the leading order cross sec-
tions computed in kT factorization. We assume the most eco-

nomical form of the initial conditions for the evolution with
only one adjustable parameter. In this way, we concentrate on
the most important effects of the CCFM-K evolution which
are responsible for good description of data for qT ∼ M .
The small qT description is acceptable in most cases, espe-
cially for higher masses, although precise comparison should
involve more adjustable parameters in the initial conditions
like in the CSS approach. This is left for future studies.

The paper is organized as follows. In Sect. 2 we give
an overview of the CCFM framework and its version pro-
posed by Kwieciński in which quark and gluon transverse
momentum dependent distributions and the CCFM-K evo-
lution equations are introduced. We also discuss the relation
of the CCFM-K approach to the CSS formalism (with the
full derivation presented in “Appendix A”). In Sect. 3 we
describe the application of the discussed formalisms to the
leading order DY cross section with both on-shell and off-
shell matrix elements in the CCFM-K case. In Sect. 4 we
show numerical results and compare them with the low mass
DY data. We summarize in Sect. 5.

2 CCFM approach

2.1 Branching kinematics

Below we describe kinematics of the CCFM parton branch-
ing schemes in two approximations - single and all loop. We
work in the Sudakov base with two light cone vectors

P1 = 1
2

√
S(1, 0, 0, 1) P2 = 1

2

√
S(1, 0, 0,−1) (1)

in which the momenta in the branching process shown in
Fig. 1 are given by

ki−1 = xi−1P1 + x̄i−1P2 + k(i−1)T ,

ki = xi P1 + x̄i P2 + kiT . (2)

Notice that the momentum fraction are proportional to the
plus/minus components, e.g.

xi = k+
i

P+
1

= k0
i + k3

i√
S

, x̄i = k−
i

P−
2

= k0
i − k3

i√
S

. (3)

The emitted parton momentum can be found from the
momentum conservation

pi = k(i−1)T − kiT = (xi−1 − xi )P1 + (x̄i−1 − x̄i )P2

+(k(i−1)T − kiT ), (4)

where xi−1 > xi . Denoting the transverse component by
piT = k(i−1)T−kiT = (0, �piT , 0) and assuming that p2

i = 0,
one can compute the minus component to find

pi = (xi−1 − xi ) P1 + �p 2
iT

(xi−1 − xi )S
P2 + piT (5)
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Fig. 1 Parton branching momenta

The rapidity of the emitted parton is given by

yi = 1

2
ln

(
p+
i

p−
i

)
= − ln

| �piT |
xi−1(1 − zi )

√
S
, (6)

where zi = xi/xi−1 < 1. In the massless case yi =
− ln tan(θi/2) where θi is the emission angle with respect
to the z axis defined by the collinear momenta P1 and P2,
therefore

tan
θi

2
= | �piT |

xi−1(1 − zi )
√
S

. (7)

The CCFM branching scheme [50] is defined with the help
of the rescaled transverse momentum of the emitted parton,

�qiT = �piT
1 − zi

. (8)

Thus, the transverse momentum conservation at the vertex i
reads

�k(i−1)T = �kiT + (1 − zi ) �qiT . (9)

From (7) we obtain for the modulus

qiT ≡ |�qiT | = xi−1
√
S tan(θi/2). (10)

The single loop approximation is defined by the condition

qiT > q(i−1)T , (11)

thus for zi → 0 we find the transverse momentum ordering
of emitted partons

| �piT | > | �p(i−1)T |. (12)

For finite z ∼ 1, however, from (10) applied to (11) we have

xi−1 tan
θi

2
> xi−2 tan

θi−1

2
(13)

and for zi−1 = (xi−1/xi−2) → 1 we obtain angular ordering
of parton emissions

θi > θi−1. (14)

Such a phenomenon is called coherence [47–50]. Thus, in
the single loop approximation partons are emitted with trans-
verse momentum ordering for z → 0 and angular ordering
for z → 1. The all loop approximation is defined by the
condition

qiT > zi−1 q(i−1)T (15)

which is equivalent to the condition

tan
θi

2
> tan

θi−1

2
, (16)

giving the angular ordering condition (14). Thus, in the all
loop approximation partons are emitted with angular order-
ing for any value of z.

2.2 CCFM equation in all loop approximation

The CCFM branching schemes allow to define the corre-
sponding parton distributions. In the all loop approximation
[50] only the gluon distribution fg is defined up till now
through the equation

fg(x, kT , Q) = f 0
g (x, kT , Q0)

+
∫

d2 �q
πq2

∫ 1

x

dz

z
θ(Q − zq)θ(q − Q0)

αs (q)

2π
�S(Q, zq)

× (2Nc)

[
�NS(kT , q, z)

z
+ θ(1 − z − Q0/q)

1 − z

]

× fg

(
x

z
, |�kT + (1 − z)�q|, q

)
(17)

which relates the gluon distribution at vertex i with the gluon
distribution at vertex (i − 1). In the above, kT = |�kT | and
q = |�q| are transverse momenta depicted in Fig. 1 and �S is
the Sudakov form factor given by

�S(Q, zq)

= exp

{
−

∫ Q2

(zq)2

dp2

p2

αs(p2)

2π

∫ 1−Q0/p

0
dz′z′Pgg(z′)

}
,

(18)

where Pgg is the gluon-gluon splitting function (27), which
resums virtual corrections for z → 1. For z → 0, the virtual
emissions are resumed by the non-Sudakov form factor

�NS(kT , q, z) = exp

{
−

∫ 1

z
dz′ 2Nc

z′
∫ k2

T

(z′q)2

dp2

p2
αs(p2)

2π

}
.

(19)
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Notice that only the 1/z part of Pgg(z) is present under the
integral. The first theta function in Eq. (17) reflects ordering
(15) in which Q is a hard scale which terminates the CCFM
evolution,

zq = z

(
x

z

)√
S tan

θ

2
< Q . (20)

Therefore, for given x and
√
S, the hard scale determines the

maximal emission angle

θmax = 2 arctan
Q

x
√
S
. (21)

The second theta function in (17) imposes the condition

q > Q0 	 �QCD (22)

which assures that αs(q) � 1 and the CCFM evolution
scheme is perturbative. From the third theta function in (17),
we find the following condition for the real gluon emission

0 < z < (1 − Q0/q) , (23)

which allows to avoid singularity of Pgg(z) at z = 1.
Non-perturbative effects are encoded in the initial condition,
f 0
g (x, kT , Q0), imposed at a scale Q0.

Equation (17) can be used for the Monte Carlo genera-
tion of a parton cascade with angularly ordered emissions
which leads to the gluon distribution fg . Intensive studies
with the CCFM-K equations in all-loop approximation were
done using Monte Carlo program CASCADE [52–54].

2.3 CCFM-K evolution equations

The mixing between the transverse and longitudinal variables
in the theta function θ(Q−zq)prevents writing Eq. (17) in the
form of an evolution equation. However, this can be done in
the single loop approximation in which the branching scheme
leads to the CCFM-Kwieciński (CCFM-K) evolution equa-
tions for both quark and gluon distributions. The evolution
scale is defined in such a case by the rescaled momentum Q.

In order to obtain the CCFM-K evolution equations in
the single loop approximation, the branching conditions in
Eq. (17) are replaced by [60–63]

�(Q − zq) → �(Q − q),

�NS(kT , q, z) → 1. (24)

Thus, for z → 0, the angular ordering is replaced by the
transverse momentum ordering while for z → 1 the angular
ordering is still valid. In addition, quark splittings, q → qg,
q̄ → q̄g and g → qq , are taken into account which allow
to introduce quark distributions fi=1,...,2N f in addition to the
gluon distribution fg . In this way we obtain [63]

fi (x, kT , Q)

= f 0
i (x, kT )

+
∫ 1

0

dz

z

∫
d2 �q
πq2

αs(q2)

2π
θ(Q − q)θ(q − Q0)

×
{
θ(z − x)

[
Pqq (z) fi

(
x

z
, k′

T , q

)

+ Pqg(z) fg

(
x

z
, k′

T , q

)]

− zPqq (z) fi (x, kT , q)

}
,

fg(x, kT , Q)

= f 0
g (x, kT ) +

∫ 1

0

dz

z

∫
d2 �q
πq2

αs(q2)

2π
θ(Q − q)θ(q − Q0)

×
⎧⎨
⎩θ(z − x)

⎡
⎣Pgq (z)

2N f∑
i=1

fi

(
x

z
, k′

T , q

)

+ Pgg(z) fg

(
x

z
, k′

T , q

)⎤⎦

− z
[
Pgg(z) + 2N f Pqg(z)

]
fg(x, kT , q)

⎫⎬
⎭ , (25)

where the argument of the parton distributions on the r.h.s.
equals

k′
T = |�kT + (1 − z)�q|. (26)

The one loop real emission splitting functions are given by1

Pqq(z) = CF
1 + z2

1 − z
,

Pqg(z) = TR
{
z2 + (1 − z)2

}
,

Pgq(z) = CF
1 + (1 − z)2

z
,

Pgg(z) = 2CA

{
z

1 − z
+ 1 − z

z
+ z(1 − z)

}
, (27)

where CF = 4/3, CA = 3, TR = 1/2 and N f is the number
of active flavours. Notice that after integrating both sides of
Eq. (25) over �kT , the ordinary DGLAP equations are found
for the collinear quark and gluon distributions,

qi (x, Q) =
∫

d2�kT fi (x, kT , Q) ,

g(x, Q) =
∫

d2�kT fg(x, kT , Q) , (28)

1 The celebrated “+” prescription is taken into account by the negative
virtual emission terms in Eq. (25).
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Equation (25) can be written with the help of the Fourier
transformation

f̃i,g(x, �b, Q) =
∫

d2�kT ei
�kT ·�b fi,g(x, kT , Q) (29)

which for �b = 0 gives the PDFs (28). Since the parton dis-
tributions depend on kT = |�kT |, we perform the azimuthal
angle integration with help of the relation

ei
�kT ·�b = J0(kT b) + 2

∞∑
n=1

in Jn(kT b) cos φ (30)

and obtain the parton distributions which depend on b = |�b|,

f̃i,g(x, b, Q) = π

∫ ∞

0
dk2

T J0(kT b) fi,g(x, kT , Q) . (31)

Thus, taking the Fourier transform of both sides of Eq. (25),
we find the evolution equations which are diagonal in b:

∂ f̃i (x, b, Q)

∂ ln Q2 = αs(Q2)

2π

∫ 1

0

dz

z

{
θ(z − x)J0((1 − z)Qb)

×
[
Pqq(z) f̃i

(
x

z
, b, Q

)

+Pqg(z) f̃g

(
x

z
, b, Q

)]

− zPqq(z) f̃i (x, b, Q)

}
,

∂ f̃g(x, b, Q)

∂ ln Q2 = αs(Q2)

2π

∫ 1

0

dz

z

{
θ(z − x)J0((1 − z)Qb)

×
⎡
⎣Pgq(z)

2N f∑
i=1

f̃i

(
x

z
, b, Q

)

+ Pgg(z) f̃g

(
x

z
, b, Q

)⎤
⎦

− z
[
Pgg(z) + 2N f Pqg(z)

]
f̃g(x, b, Q)

}
.

(32)

These are the CCFM-K equations which we use in our forth-
coming analysis. As expected, for b = 0 we obtain the
DGLAP evolution equations for the collinear PDFs (28), i.e.

f̃i (x, b = 0, Q) = qi (x, Q), f̃g(x, b = 0, Q) = g(x, Q)

(33)

It should be emphasized that the studies with the CCFM-
K equations were also done using the Parton Branching (PB)
method for the construction of the TMD parton distributions
[55,56] which is based on Monte Carlo algorithms. Recently,
the low mass DY production was analyzed with this method
in [59]. The main difference between our approach and the

PB method, aside from technical issues, lies in the treatment
of the strong coupling constant αs in the CCFM-K equations.
We keep it outside the integrals on the rhs of Eq. (31) with the
scale given by the evolution variable Q, whereas in the PB
method αs is inside the integrals over z since it depends on the
transverse momentum of an emitted parton, kT = (1 − z)Q.
In such a case, a cutoff on the upper limit of z is necessary
to avoid the Landau pole in αs(kT ).

2.4 Initial conditions and b-dependence

In order to solve Eq. (32), we need initial conditions spec-
ified as functions of x and b at some perturbative scale
Q0 	 �QCD . They have to fulfill the conditions saying
that for b = 0 the collinear PDFs are recovered. Thus the
simplest possible choice is given in the factorized form

f̃i (x, b, Q0) = qi (x, Q0)F(b) ,

f̃g(x, b, Q0) = g(x, Q0)F(b), (34)

where qi and g are the LO collinear quark and gluon distribu-
tions at scale Q0 and the non-perturbative form factor obeys
the condition F(0) = 1. In the forthcoming analysis we will
use the gaussian form factor with one free parameter b0,

F(b) = exp(−b2/b2
0). (35)

In principle, different form factors can be used for quarks
and gluons. However, with the common form factor, it is
possible to write the solution of the CCFM-K equations for
any value of Q2 as a product

fi,g(x, b, Q) = f CCFMK
i,g (x, b, Q) F(b) . (36)

where f CCFMK
i,g is the solution for F(b) ≡ 1. This is because

the Eq. (32) are homogeneous, thus the multiplication by
the common form factor F(b) can be done at the beginning
or the end of the evolution. In this way, the perturbative and
non-perturbative dependences of the solution are clearly sep-
arated.

This effect is shown in Fig. 2 for the singlet quark dis-
tribution, fS = ∑

i fi , plotted as a function of b for fixed
x = 10−2. The dashed curves are the initial conditions at
Q0 = 1 GeV with the MSTW08 LO PDFs [68] while the
solid curves are evolved to Q = 100 GeV. On the left plot,
the b-dependence of the evolved curve is purely perturbative
while on the right plot the curves were multiplied by the form
factor (35). We see that its impact is the strongest for large
values of b while for small values, the b-dependence of the
full solution remains perturbative. After the Fourier trans-
formation to the kT -space, we find broadening of the parton
distributions due to the CCFM-K evolution, studied in detail
in [62,64,65].
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Fig. 2 The singlet quark
distribution f CCFMK

S from
Eq. (36) as a function of b for
fixed x = 10−2 and two scales:
initial Q0 = 1 GeV and final
Q = 100 GeV (left plot). These
distributions where multiplied
by the gaussian form factor (35)
on the right plot

Fig. 3 The solution of Eq. (32)
for singlet quark (left plot) and
gluon distributions (right plot) at
Q = 100 GeV and x = 10−2,
obtained for F(b) ≡ 1 (solid
lines) and the CSS
approximation (38) (dot-dashed
lines). The ratio CSS/CCFMK
curves are shown as the red
solid lines

2.5 Relation to CSS resummation

The CCFM-K equations contain a part of the Collins,
Soper and Sterman (CSS) resummation of soft parton emis-
sions in the limit z → 1. In “Appendix A”, we present the
proof that for the values of the parameter b such that

1/Q � b � 1/Q0 , (37)

the solution to the CCFM-K equations (32) is given by the
CSS formulas [7]

fi (x, b, Q) = exp

{
−

∫ Q2

1/b2

dq2

q2

αs(q2)

2π

×
[
A(1)
q ln(q2b2) + B(1)

q

] }
qi (x, 1/b)

fg(x, b, Q) = exp

{
−

∫ Q2

1/b2

dq2

q2

αs(q2)

2π

×
[
A(1)
g ln(q2b2) + B(1)

g

] }
g(x, 1/b) (38)

where the parameters A(1)
q,g and B(1)

q,g are defined in Eq. (90).
The above formulas were derived by picking large loga-
rithms, ln(Qb) and ln(1/Q0b), in the CCFM solution. It
should be noted, however, that Eq. (38) do not contain the
NLL (next-to-leading logarithmic) terms proportional to α2

s

under the integrals (see Sect. 3.3) since the splitting functions
in Eq. (32) are in the leading order approximation.

In Fig. 3 we present the numerical solution to the CCFM-
K equations (32) with F(b) = 1 (solid lines) against the CSS
approximation (38) (dot-dashed lines) for the singlet quark
(left plot) and gluon (right plot) distributions. For the chosen
scales, Q0 = 1 GeV and Q = 100 GeV, the range (37) corre-
sponds tob ∈ [10−2, 1] GeV−1. We see that the CSS approxi-
mations extracted from the CCFM-K equation works reason-
able well for b ∈ [10−2, 10−1] GeV−1. For b = 10−2 GeV−1

the two analyzed curves coincide, which results from the
observation that for the scale Q = 1/b = 100 GeV, corre-
sponding to this point, both the CSS formulas (38) and the
CCFM-K solution are equal to the collinear PDFs at the scale
Q. This is obvious for Eq. (38), while for the CCFM-K solu-
tion it is a manifestation of the DGLAP limit (33) at b = 0,
which becomes already effective for b = 10−2 GeV−1.
Beyond the lower limit in (37), the CSS approximation sig-
nificantly deteriorates and the approximation (38) cannot
describe the CCFM-K solutions.

The condition 1/Q < bwhich was necessary for us to find
the connection between the CCFM-K and CSS approaches
is not present in the original CSS formulation [7], where
b can be arbitrary small. Nevertheless, recent studies [69]
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introduces such a constraint, i.e. b is limited from below by
bmin ∼ 1/Q. Analyzing this idea in the context of the CCFM-
K approach, however, would go beyond the main thrust of
our analysis.

3 Drell–Yan cross section with kT -dependent PDFs

The Drell–Yan cross section differential in photon’s momen-
tum is given by

dσ DY

dyγ dM2 d2qT
= α2

em

24π3S2M2

(−Wμ
μ

)
, (39)

where (yγ , M, qT ) are photon’s rapidity, virtuality and trans-
verse momentum whileWμ

μ is the trace of the hadronic tensor
Wμν . With the lowest order matrix element for the process
qq → γ ∗, the trace is given by the transverse momentum
factorization formula

Wμ
μ = (2π)4

2Nc

S

M2

∫
d2k1T d

2k2T δ2(�qT − �k1T − �k2T )

×
N f∑
i=1

e2
i

[
fi (x1, �k1T , M) fī (x2, �k2T , M)

+ (1 ↔ 2)
]

Tr
[
/k1γ

μ /k2γμ

]
(40)

where �k1T , �k2T are quark transverse momenta, x1,2 are their
longitudinal momenta and fi , fī are transverse momentum
dependent quark/antiquark distributions taken at the scale
Q = M .

3.1 On-shell matrix element

The trace in (40) is the squared matrix element of the process
q(k1)q(k2) → γ ∗ in the lowest order. For the on-shell matrix
element, we use the quark/antiquark momenta in the collinear
approximation

k1 = x1P1 , k2 = x2P2 . (41)

what assures gauge invariance of the matrix elements. In such
a case

Tr
[
/k1γ

μ /k2γμ

] = x1x2Tr
[
/P1γ

μ /P2γμ

] = −4Sx1x2 (42)

and the DY cross section (39) is given by

dσ DY

dyγ dM2 d2qT
= 4πα2

em

3Nc M4

∫
d2k1T d

2k2T δ2(�qT − �k1T − �k2T )

×
N f∑
i=1

e2
i x1x2

[
fi (x1, �k1T , M) fī (x2, �k2T , M) + (1 ↔ 2)

]
,

(43)

It is easy to check that after integrating (43) over �qT , we find
the leading order form of the Drell–Yan cross section with
collinear PDFs given by Eq. (28)

dσ DY

dyγ dM2

= σ0

M4

N f∑
i=1

e2
i x1x2

[
qi (x1, M

2)q̄i (x2, M
2) + (1 ↔ 2)

]
,

(44)

where σ0 = 4πα2
em/3Nc. Inserting the delta function

δ2(�k1T + �k2T − �qT ) =
∫

d2b

(2π)2 ei(
�k1T +�k2T −�qT )·�b (45)

to Eq. (43), we find the DY cross section with theb-dependent
parton distributions (29)

dσ DY
on−shell

dyγ dM2 d2qT
= σ0

M4

∫
d2 �b

(2π)2 e−i �qT ·�b
N f∑
i=1

e2
i x1x2

×
[
f̃i (x1, �b, M) f̃ī (x2, �b, M) + (1 ↔ 2)

]
.

(46)

For the parton distributions which depend on b = |�b|, the
angular integration with the help of relation (30) gives

dσ DY
on−shell

dyγ dM2 dq2
T

= σ0

M4

∫ ∞

0

bdb

2
J0(qT b)

N f∑
i=1

e2
i x1x2

×
[
f̃i (x1, b, M) f̃ī (x2, b, M) + (1 ↔ 2)

]
.

(47)

We will use this expression for the comparison with the DY
data using the parton distributions which are solutions of the
CCFM-K equations with the momentum fractions in the on-
shell form

x1,2 = M√
S
e±yγ . (48)

3.2 Off-shell matrix elements

In approach with the off-shell matrix, the trace (42) is
replaced by

Tr
[
/k1γ

μ /k2γμ

] → Tr
[
(x1 /P1)�

μ(x2 /P2)�μ

]
, (49)

where �μ is the Fadin-Sherman photon-quark vertex [70,71]

�μ = �μ(k1, k2) = γ μ − 2/k1

x2S
Pμ

1 − 2/k2

x1S
Pμ

2 . (50)

and the quark/antiquark momenta k1,2 take into account
transverse components

k1 = x1P1 + k1T , k2 = x2P2 + k2T , (51)

They are given by kT i = (0, �kT i , 0) for i = 1, 2 while the
momentum fractions xi are determined from the momentum
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conservation at the vertex, q2 = (k1 + k2)
2, which gives

x1,2 = MT√
S
e±yγ , MT =

√
M2 + q2

T . (52)

It is easy to check that the Fadin-Sherman vertex obeys the
gauge invariance relation

(k1 + k2)μ�μ(k1, k2) = 0. (53)

Computing the trace (49), we obtain

Tr
[
(x1 /P1)�

μ(x2 /P2)�μ

] = −4Sx1x2

(
1 − 2�k1T · �k2T

M2
T

)

= −4Sx1x2

(
M2 + �k2

1T + �k2
2T

M2
T

)

(54)

where we used momentum conservation at the photon vertex
to write the last equality. Notice that because of the transverse
mass M⊥ in the denominator, the off-shell kinematics takes
into account the corrections in powers ofq2⊥/M2 to all orders.
With thes results, the cross section (39) is given by

dσ DY
off−shell

dyγ dM2 d2qT
= 4πα2

em

3Nc M2M2
T

×
∫

d2k1T d
2k2T δ2(�qT − �k1T − �k2T )

(
1 +

�k2
1T + �k2

2T

M2

)

×
N f∑
i=1

e2
i x1x2

[
fi (x1, �k1T , M) fī (x2, �k2T , M) + (1 ↔ 2)

]
.

(55)

Inserting the delta function (45) and performing the Fourier
transformation, we obtain the following cross section with
the parton distributions which depend on b = |�b|

dσ DY
off−shell

dyγ dM2 dq2
T

= σ0

M2M2⊥

∫ ∞

0

bdb

2
J0(qT b)

×
N f∑
i=1

e2
i x1x2

{
f̃i (x1, b, M) f̃ī (x2, b, M)

− 1

M2

(
�b f̃i (x1, b, M) f̃ī (x2, b, M)

+ fi (x1, b, M)�b f̃ī (x2, b, M)
)

+ (1 ↔ 2)

}
(56)

where �b is the radial part of the two-dimensional Laplacian

�b = ∂2

∂b2 + 1

b

∂

∂b
. (57)

Fig. 4 Transverse momentum dependence of the DY cross sections:
data from proton–proton R209 experiment are compared with CCFM-K
on-shell cross section (47) (solid line), CCFM-K off-shell cross section
(56) (dash-dotted line) and CSS cross section (59) (dashed line)

By the comparison with the cross section (47), we see that
(56) has different mass dependence,

dσ DY
off−shell ∼ σ0

M4(1 + q2
T /M2)

, vs. dσ DY
on−shell ∼ σ0

M4 . (58)

It should be emphasized that the corrections q2
T /M2 which

are resummed to the factor 1/M2⊥ in (56) are entirely due
to off-shellness of the matrix element. In the CSS approach
such corrections, if large, signal the breaking of the CSS
approximation. However, in the approach with transverse
momentum dependent parton distributions (like the CCFM-
K approach), they are naturally incorporated in the PDFs and
off-shell matrix element. This is the main advantage of this
method.

Numerical studies show that the contribution from the
terms in the third and fourth lines in (56) is negligible. There-
fore, for the same values of x1 and x2, the cross section
dσ DY

off−shell is suppressed by a factor M2/M2⊥ in comparison
to dσ DY

on−shell. In addition, in the off-shell case the PDFs are
taken at larger values of x1 and x2, compare (48) and (52),
which additionally suppresses dσ DY

off−shell at large q⊥. This
effect is clearly visible in Fig. 4 where we plot the CCFM-K
predictions against the Fermilab R209 data [42]. The solid
line corresponds to the on-shell cross section (47) with the
CCFM-K parton distributions evolved from the initial condi-
tions (34) at Q0 = 1 GeV with the MSTW08 LO PDFs [68]
and the form factor (35) with b0 = 2.7 GeV−1. The dash-
dotted line is obtained from the off-shell cross section (56)
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with the same parton distributions. We also show, for general
orientation, the prediction from the CSS formula (59) (red
dashed line) which is discussed in detail in the next section.

3.3 CSS approach

The CSS approach to the DY process has a long history
which starts with the pioneering work [7]. In this approach,
collinearly colliding quarks emit gluons with a total trans-
verse momentum qT which is balanced by the transverse
momentum of the DY boson. The soft and collinear diver-
gences for qT → 0 in real emission are not fully cancelled
by virtual corrections and manifest themselves by the pres-
ence of large logarithms, log(M/qT ), which are resummed in
the CSS approach. This leads for example to evolution equa-
tions with two scales in the NNLL approximation. The recent
state-of-art analyses of the DY data with the CSS approach
up to the order N3LL were done in [13,14].

Such a precision in the CSS approach is beyond the scope
of our present analysis since we do not aim at a compre-
hensive description of the data using this approach. It only
serves for the comparison with the results of the CCFM-K
approach in which qT of the DY boson is the sum of intrinsic
transverse momenta of colliding partons, see the formulae
(39) and (40). For this reason, we also do not consider the
so-called “Y term”, which was proposed in [7] to match the
CSS formula with the fixed-order results. Thus, we will use
the CSS formulae in the NLL approximation with one scale
evolution. Nevertheless, all the problems which are encoun-
tered in the description of the DY data in this approxima-
tion are still present in the analyses done with higher order
approximations.

The DY cross section in the CSS approach up to the NLL
order is given by

dσ DY
CSS

dyγ dM2dq2
T

= σ0

M2

∫ ∞

0

bdb

2
J0(qT b)

×
N f∑
i=1

e2
i

{
Wiī (x1, x2, b, Q) + (1 ↔ 2)

}
,

(59)

where Q = M and x1,2 = Me±yγ /
√
S. The parton luminosities

Wiī in the above read

Wiī (x1, x2, b, Q) = f ′
i (x1, c/b∗) f ′̄

i
(x2, c/b∗) e2S(b∗,Q)

×WNP (x1, x2, b, Q), (60)

where f ′
i/ī

are effective quark/antiquark distributions

f ′
i/ī

(x, μ) =
∫ 1

x

dz

z

{
Cq(x/z, αs(μ))) qi/ī (z, μ)

+Cg(x/z, αs(μ)) g(z, μ)
}

(61)

with the MS NLO collinear PDFs qi/ī (z) and g(z) and the coef-
ficient functions

Cq(z, αs) = δ(1 − z)

+ αs

2π
CF

[
1 − z +

(
π2

2
− 4

)
δ(1 − z)

}
,

Cg(z, αs) = αs

2π
TR [2z(1 − z)] . (62)

The scale μ in (61) is given by μ = c/b∗ with c = 2e−γE ≈ 1.12
and

b∗ = b√
1 + b2/b2

max

. (63)

TIn this way, b∗ interpolates between b∗ = 0 and b∗ = bmax for
b → ∞ such that the scale

μ ∈ [c/bmax,∞) (64)

Thus, choosing bmax = c/Q0, where Q0 is an initial scale for the
DGLAP evolution, we ensure that the collinear PDFs are always
defined during the integration over b in (59). In our presentation,
we use the MSTW08 NLO PDFs [68] and choose Q0 = 1 GeV.

The power S in the exponent in (60) is given by

S(b, Q) = −
∫ Q2

c2/b2

dq2

q2

[
Aq(αs(q

2)) ln

(
Q2

q2

)

+ Bq(αs(q
2))

]
(65)

where the coefficients Aq and Bq are defined by the general
perturbative expansion

Aq(αs) =
∞∑
n=1

( αs

2π

)n
A(n)
q ,

Bq(αs) =
∞∑
n=1

( αs

2π

)n
B(n)
q . (66)

Introducing B = ln(Q2b2/c2) and L = L(Q) = ln(Q2/�2),
the LL approximation is defined by the terms proportional to
B(B/L)n while in the NLL approximation terms proportional
to (B/L)n are added. Thus, in he NLL approximation which we
consider, the coefficients are given by [72–74]

A(1)
q = CF , A(2)

q = CFK , B(1)
q = −3

2
CF (67)

and K = CA( 67
18 − 1

6π2) − 10
9 TRN f . By the comparison of the

power S given by (65) with that in (38), we see that the CCFM-
K equations only partially resum the next-to-leading logarithms
since the term proportional to A(2)

q , which is formally of the NLL
accuracy, is missing in (38). It can be obtained, however, from
the CCFM-K equations with the higher order splitting functions.
Using the two-loop running coupling constant

αs(q
2) = 1

β0L(q)
− β1

β3
0

ln L(q)

L2(q)
(68)
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where β0 = (11CA − 4TRN f )/12π and β1 = (153 −
19N f )/24π2, and performing the integration in (65), one
obtains the final NLL form of S [74], which we use in our pre-
sentation

S = A(1)
q

πβ0

[
L ln

(
1 − B

L

)
+ B

]

− A(2)
q

π2β2
0

[
ln

(
1 − B

L

)
+ B

L − B

]
+ B(1)

q

πβ0
ln

(
1 − B

L

)

+ A(1)
q β1

πβ3
0

[
B

L − B
(1 + ln L)

+
(

L

L − B
+ ln L

)
ln

(
1 − B

L

)
+ 1

2
ln2

(
1 − B

L

)]
.

(69)

The factor WNP = exp{−SN P } in (60) describes the non-
perturbative contribution [75–77]. In our presentation, we use
the form factor from the BLNY fit [78] to the DY data:

SN P = [a1 + a2 ln(Q/Q1) + a3 ln(100 x1x2)] b2, (70)

where

a1 = 0.21 GeV2 , a2 = 0.68 GeV2,

a3 = −0.1 GeV2 , Q1 = 3.2 GeV. (71)

4 Comparison to data

For the comparison with the low mass DY data, we use the
CCFM-K approach with both on-shell and off-shell matrix ele-
ments (see Sects. 3.1 and 3.2). In this approach, we only have
one free parameter, b0 in the non-perturbative form factor (35),
which we somewhat optimized to the value b0 = 2.7 GeV−1.
For the initial PDFs we use the MSTW08 LO PDF set [68].

We also show the CSS results at the NLL accuracy with the
BLNY form factor (70) and the MSTW08 NLO PDF set [68]
(see the previous section). We use this more refined form factor
and PDF sets (compared to those of CCFM-K) in order to reach
better description of data within the CSS formalism at the NLL
accuracy. The results depend to some extent on the value of
the parameter bmax = c/Q0 in Eq. (63) but not such that the
general conclusions concerning the CSS description should be
changed. For example, using Q0 = 2 GeV makes the curves
stronger suppressed for large qT .

Any attempt to have exactly the same set of parameters for
both the CSS and CCFM-K approaches leads to significant dete-
rioration of the agreement with the data in one or the other
description. This is not a surprise since the CSS and CCFM-K
approaches have different starting points (collinear versus kT –
factorization) and are derived in different approximations (NLL
versus LL). Therefore, they have to be optimized with respect
to the DY data description separately. To check the impact of
the choices we made, we produced the results for NLL CSS
with the Gaussian form factor (35) (with properly chosen b0)
and MSTW08 LO PDF. It turns out that in such a case, the

description of data at small qT is worse than for the one with the
NLO PDFs and the non-perturbative contribution (70). More-
over, as expected, the rapid fall of the CSS curves at high qT is
still present (see also [15] for detailed discussion of difficulties
with matching the CSS approach to fixed order calculation and
description of data at qT ∼ M).

4.1 DY from fixed target experiments

We start with the data from the fixed target experiments E288
[38], E605 [39], E866 [41] and E722 [40]. The cross section
Ed3σ/d3q measured in these experiments is related to (47) and
(59) as follows

E
d3σ

d3q
= 2M�M

π

dσ DY

dyγ dM2 dq2
T

(72)

where �M is the bin size of the DY pair mass distribution. In
addition, the E605, E866 and E722 experiments also measured
the cross section in bins of the Feynman variable

xF ≡ 2q3

√
S

=
2
√
M2 + q2

T√
S

sinh yγ , (73)

where the r.h.s. gives the relation between xF and the DY pho-
ton rapidity yγ . The energies of the proton projectile were equal
to: 200, 300 and 400 GeV (at E288), and 800 GeV (at E605,
E866 and E772). These translate into the center of mass ener-
gies

√
S = 19.4, 23.8, 27.4 and 38.8 GeV, respectively. The

experiments differ by the targets used: E288 used Cu or Pt, E605
used Cu, E866 used H or D and E772 used 2H. All the cross sec-
tions were normalized by the number of nucleons in the target
nucleus. In what follows, we neglect nuclear effects of the tar-
gets and compare unmodified CCFM-K and CCS approaches
with such data.

In Fig. 5 we show the data from the E288 experiment [38] for
three values of energies and rapidities. At each panel, the trans-
verse momentum dependence of the DY cross section is shown
with fixed mass M and rapidity y (or xF )2. The mass range
equals M = 4.5−12.5 GeV. In Fig. 6 we show the data from
the E605 [39] and E866 experiments [41] for

√
S = 38.8 GeV,

xF = 0.1 and the mass range M = 4.7−15.5 GeV. In Fig. 7 we
show the data from the E866 experiment for

√
S = 38.8 GeV,

three values of xF and the mass range M = 4.7−14.85 GeV.
Finally, in Fig. 8 we show the data from the E772 experiment
[40] for

√
S = 38.8 GeV, 0.1 < xF < 0.3 and the mass range

M = 5.5−14.5 GeV.
The data in Figs. 5, 6, 7 and 8 are compared to theoretical

curves: CCFM-K on-shell (blue solid curves), CCFM-K off-
shell (blue dashed-dotted curves) and CSS (red dashed curves).
Comparing CCFM-K to CSS we see that at small qT the CSS
resummation predicts higher cross-section than CCFM-K and
better agrees with the E288 and E605 data. This comes from the
fact that the parameters of the non-perturbative form factor (70)
were fitted in [78] to the data while in the CCFM-K approach

2 In most cases we use the centers of the bins in M and xF , after checks
that the experimental bin sizes are not very important.
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Fig. 5 Transverse momentum
dependence of DY cross section:
data from fixed target
experiment E288 [38] are
compared with on-shell
CCFM-K (blue solid), off-shell
CCFM-K (blue dash-dotted) and
CSS (red dashed) approaches
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Fig. 6 Transverse momentum
dependence of DY
cross-section: data from fixed
target experiments E605 [39]
(upper panels) and E866 [41]
(lower panels) are compared
with on-shell CCFM-K (blue
solid), off-shell CCFM-K (blue
dash-dotted) and CSS (red
dashed) approaches

we fixed just one free parameter b0 in the form factor (35) to
b0 = 2.7 GeV−2.

The motivation for that was to show the potential of the
CCFM-K approach to describe the large qT data without going
into details of fitting the parameter b0, as in the CSS approach.
Thus, at larger qT (2–3 GeV, depending on M and xF ), the
CSS curves drop rapidly as we do not match them to the fixed

order calculation by adding the “Y term”. On the other hand, the
CCFM-K curves describe the data reasonably well. Note also
that for M ∼ 9 GeV, the data from E288 are significantly above
the theoretical predictions which is related to the production of
ϒ meson, not considered in our calculations.

The E866 and E772 data seems to be systematically above
theoretical predictions at small qT , except for a few values of M
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Fig. 7 Transverse momentum
dependence of DY
cross-section: data from fixed
target experiment E866 [41] are
compared with on-shell
CCFM-K (blue solid), off-shell
CCFM-K (blue dash-dotted) and
CSS (red dashed) approaches
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Fig. 8 Transverse momentum
dependence of DY
cross-section: data from fixed
target experiment E772 [40] are
compared with on-shell
CCFM-K (blue solid), off-shell
CCFM-K (blue dash-dotted) and
CSS (red dashed) approaches

Fig. 9 Transverse momentum dependence of DY cross-section in
proton–proton collisions: data from PHENIX [46] compared with on-
shell CCFM-K (blue solid), off-shell CCFM-K (blue dash-dotted) and
CSS (red dashed) approaches

and xF . As before, CCFM-K provides good description of the
data at large qT . In general, one sees better description of data
for higher DY masses.

Comparing the CCFM-K on-shell and off-shell approaches
one sees that the former approach agrees better with data as

providing slower drop with qT . The difference is larger for qT ∼
M , as one should expect, see discussion at the end of Sect. 3.2.

4.2 DY in proton–proton collisions

We also consider the data from two experiments measuring the
DY production in proton–proton collisions at moderate energies:
R209 [42] with

√
S = 62 GeV and PHENIX [46] with

√
S =

200 GeV. For R209 we apply a change of variables,

dσ

d2qT
=

∫
5−8 GeV

dM
M

√
S√

M2 + q2
T

dσ DY

dy dM2 dq2
T

, (74)

whereas PHENIX is using the cross section Ed3σ/d3q given
by (72).

The theoretical results were compared with the R209 data
in Fig. 4. CCFM-K provides very good description of data up
to qT ∼ 4 GeV and slightly underestimate cross-section for
higher qT while CSS overestimates the cross section at small
qT and decreases rapidly at high values. For the PHENIX data
shown in Fig. 9, CCFM-K gives a better description than CSS,
which overestimates the data at moderate values of qT . We note
that as for fixed target experiments, the on-shell CCFM-K better
describes the data then the off-shell approach.

5 Summary

Using the CCFM-K parton distributions and the partonic cross-
section with on-shell and off-shell matrix element, we analyze
the transverse momentum spectra of the DY dileptons from all
available low mass data. The overall description of these data is
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quite good, given the simplicity of the non-perturbative Gaussian
input (35) with only one free parameter b0, being the Gaussian
width. We have chosen optimized value of this parameter for all
experiments to show the potential of the CCFM-K approach in
the description of the data for large dilepton transverse momen-
tum qT .

However, for small qT we found less successful description,
especially in low mass bins. This calls for an approach with more
non-perturbative parameters in initial conditions for the CCFM-
K evolution akin to the BLNY fit [78] of the non-perturbative
form factor (70) in the CSS approach. This is justified since the
CCFM-K evolution includes elements of the CSS resummation.
In this sense our paper should be treated as a step towards unified
description of the low mass DY data, where the CSS approach
matched to the fixed order calculation experiences some troubles
[15].

One should also note that the presented analysis is based on
the LO matrix elements and the CCFM-K evolution equations in
the single loop approximation. For these reasons, we decided to
postpone the analysis with more complicated non-perturbative
input to future studies with the NLO matrix elements and evo-
lution equations. The first attempt in this direction was done
recently in [59] using the Parton Branching method. Finally, it
is important to stress that the future analysis should also include
the Tevatron and LHC data on the weak bosons production.
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A Relation of CCFM-K to CSS

Following the method presented in [63], we show the CCFM-K
resummation contains the soft gluon resummation of Collins,
Soper and Sterman (CSS) [7]. In order to simplify the notation,

we apply the Mellin transform

f̄ (n, b, Q) =
∫ 1

0
dx xn f̃ (x, b, Q) (75)

to both sides of Eq. (32) to obtain

∂ f̄i (n, b, Q)

∂ ln Q2 = P̄qq(n, b, Q) f̄i (n, b, Q)

+ P̄qg(n, b, Q) f̄g(n, b, Q),

∂ f̄g(n, b, Q)

∂ ln Q2 = P̄gq(n, b, Q) f̄S(n, b, Q)

+ P̄gg(n, b, Q) f̄g(n, b, Q), (76)

where f̄S = ∑2N f
i=1 f̄i is the singlet quark distribution and the

Mellin moments of the splitting functions read

P̄qq(n, b, Q) = αs(Q2)

2π

∫ 1

0
dz Pqq(z)

× {
zn J0((1 − z)Qb) − 1

}
,

P̄qg(n, b, Q) = αs(Q2)

2π

∫ 1

0
dz Pqg(z) z

n J0((1 − z)Qb),

P̄gq(n, b, Q) = αs(Q2)

2π

∫ 1

0
dz Pgq(z) z

n J0((1 − z)Qb),

P̄gg(n, b, Q) = αs(Q2)

2π

∫ 1

0
dz

{
Pgg(z) z

n J0((1 − z)Qb)

−z[Pgg(z) + 2N f Pqg(z)]
}
. (77)

Notice that for b = 0 in (76) we obtain the DGLAP evolution
equations. This fact motivates the following decomposition of
the diagonal splitting functions

P̄qq(n, b, Q) = P̄qq1(n, b, Q) + P̄qq2(b, Q),

P̄gg(n, b, Q) = P̄gg1(n, b, Q) + P̄gg2(b, Q), (78)

where

P̄qq1(n, b, Q) = αs(Q2)

2π

∫ 1

0
dz Pqq(z)(z

n − 1)J0((1 − z)Qb),

(79)

P̄qq2(b, Q) = αs(Q2)

2π

∫ 1

0
dz Pqq(z) {J0((1 − z)Qb) − 1} ,

(80)

P̄gg1(n, b, Q) = αs(Q2)

2π

∫ 1

0
dz

{
zn Pgg(z) − z[Pgg(z)

+2N f Pqg(z)]
}
J0((1 − z)Qb), (81)

P̄gg2(b, Q) = αs(Q2)

2π

∫ 1

0
dz z[Pgg(z) + 2N f Pqg(z)]

× {J0((1 − z)Qb) − 1} . (82)

Thus, for b = 0, P̄qq2 = P̄gg2 = 0, and P̄qq1 and P̄gg1 become
the ordinary Altarelli-Parisi splitting functions. This is why we
write (76) in the form
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∂ f̄i
∂ ln Q2 − P̄qq2 f̄i = P̄qq1 f̄i + P̄qg f̄g,

∂ f̄g
∂ ln Q2 − P̄gg2 f̄g = P̄gq f̄S + P̄gg1 f̄g, (83)

where for simplicity we suppressed the arguments. We look for
the solutions in the form

f̄i (n, b, Q) = eSq (b,Q) ¯̄fi (n, b, Q) ,

f̄g(n, b, Q) = eSg(b,Q) ¯̄fg(n, b, Q), (84)

where

Sq(b, Q) =
∫ Q2

Q2
0

dq2

q2 P̄qq2(b, q),

Sg(b, Q) =
∫ Q2

Q2
0

dq2

q2 P̄gg2(b, q). (85)

Inserting (84) to (83), we find

∂ ¯̄fi
∂ ln Q2 = P̄qq1

¯̄fi +
(
eSg−Sq P̄qg

) ¯̄fg,

∂ ¯̄fg
∂ ln Q2 =

(
eSq−Sg P̄gq

) ¯̄fS + P̄gg1
¯̄fg. (86)

We are interested in the approximate solution when b obeys
relation (37), i.e. for

Q0 � 1/b � Q . (87)

In such a case, the powers of large logarithms, ln(Qb) and
ln(1/Q0b), organize the calculations. We will show that in such
an approximation the solution is given by the Mellin moments
of the CSS formulas (38)

f̄i (n, b, Q) = exp

{
−

∫ Q2

1/b2

dq2

q2

αs(q2)

2π

×
[
A(1)
q ln(q2b2) + B(1)

q

] }
q̄i (n, 1/b), (88)

f̄g(n, b, Q) = exp

{
−

∫ Q2

1/b2

dq2

q2

αs(q2)

2π

×
[
A(1)
g ln(q2b2) + B(1)

g

] }
ḡ(n, 1/b) (89)

where the coefficients

A(1)
q = CF , B(1)

q = −3

2
CF ,

A(1)
g = CA, B(1)

g = 2

3
TRN f − 11

6
CA. (90)

Proof The dominant contribution to the integrals with the Bessel
function J0(u) comes from the region u < 1, therefore, we use
the following approximations

J0(u) ≈ θ(c − u), 1 − J0(u) ≈ θ(u − c), (91)

where θ is the Heaviside step function and c ∼ 1. The precise
value of this parameter is important for numerical studies but

for simplicity of this analysis we set c = 1. Thus, the quark
exponent Sq in (85) with P̄qq2 given by (80) is given by

Sq(b, Q) = −
∫ Q2

Q2
0

dq2

q2

αs(q2)

2π∫ 1

0
dz Pqq(z) θ [(1 − z)qb − 1]. (92)

For qb < 1, the argument of the theta function is negative and
Sq = 0. Thus, we have

Sq(b, Q) = −
∫ Q2

Q2
0

dq2

q2

αs(q2)

2π
θ(q − 1/b)

×
∫ 1

0
dz Pqq(z) θ(1 − z − 1/qb). (93)

From the first theta functionq > 1/b 	 Q0 which sets the lower
integration limit to 1/b. In this way, we avoid resummation of
large logarithms ln(1/Q0b) which are shifted to the functions
¯̄fi,g in (84) and need to be resummed separately. Since 1/b < Q

in our approximation, the upper integration limit Q2 in (93) is
not affected by the first theta function. Writing Pqq in the form

Pqq(z) = CF

(
2

1 − z
− (1 + z)

)
, (94)

we find the result which agrees with the exponent in (88)

Sq(b, Q) = −
∫ Q2

1/b2

dq2

q2

αs(q2)

2π

×
∫ 1−1/qb

0
dz CF

{
2

1 − z
− (1 + z)

}

≈ −
∫ Q2

1/b2

dq2

q2

αs(q2)

2π

{
CF ln(q2b2) − 3

2
CF

}
,

(95)

where in the last line we neglected terms with subleading powers
of logs ln(Qb) after the integration. A similar calculation for Sg
in (85) leads to the exponent (89)

Sg(b, q) ≈ −
∫ Q2

1/b2

dq2

q2

αs(q2)

2π

{
CA ln(q2b2)

+2

3
TRN f − 11

6
CA

}
. (96)

The large logs ln(1/Q0b) are resummed using the DGLAP evo-
lution equations. To show this, we write (86) in the integral form

¯̄fi (n, b, Q) = ¯̄fi (n, b, Q0)

+
∫ Q2

Q2
0

dμ2

μ2 P̄qq1(n, b, μ) ¯̄fi (n, b, μ)

+
∫ Q2

Q2
0

dμ2

μ2 eSg(b,μ)−Sq (b,μ) P̄qg(n, b, μ) ¯̄fg(n, b, μ) .

(97)

The first integral on the r.h.s. is given by

123
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I1 =
∫ Q2

Q2
0

dμ2

μ2

αs(μ
2)

2π

×
(∫ 1

0
dz Pqq(z)(z

n − 1)J0((1 − z)μb)

)
¯̄fi (n, b, μ)

(98)

where we used (79). Approximating

J0((1 − z)μb) ≈ θ(1 − (1 − z)μb) , (99)

we notice that in order to get the leading logs ln(1/Q0b) we
have to assume that μb < 1. In such a case, the integration over
z in (98) is not constrained but the integration over μ is limited
to μ < 1/b � Q. In this way

I1 ≈
∫ 1/b2

Q2
0

dμ2

μ2
αs(μ

2)

2π

(∫ 1

0
dz (zn − 1)Pqq (z)

)
¯̄fi (n, b, μ) .

(100)

Applying the same approximations to second integral in (97),
we obtain

I2 ≈
∫ 1/b2

Q2
0

dμ2

μ2

αs(μ
2)

2π
eSq (b,μ)−Sg(b,μ)

×
(∫ 1

0
dzzn Pqg(z)

)
¯̄fg(n, b, μ). (101)

From (95), in the integration region, μ < 1/b, we have
Sq(b, μ) = Sg(b, μ) = 0. Therefore, we can set the exponent
in I2 equal one and (97) reads

¯̄fi (n, b, 1/b) = ¯̄fi (n, b, Q0) +
∫ 1/b2

Q2
0

dμ2

μ2

αs(μ
2)

2π

×
(∫ 1

0
dz Pqq(z)(z

n − 1)

)
¯̄fi (n, b, μ) +

+
∫ 1/b2

Q2
0

dμ2

μ2

αs(μ
2)

2π

(∫ 1

0
dzzn Pqg(z)

)

× ¯̄fg(n, b, μ) . (102)

These are the DGLAP equation for the moments of quark the
distributions evolved to the scale Q = 1/b. The analogous con-
siderations for the gluon distributions lead to the gluon coun-
terpart of the DGLAP equations. It can easily be checked that
for μ > 1/b, the theta function (99) imposes the condition
z > 1−1/(μb) leads to subleading logarithms which we neglect.

��
To make a connection with the collinear PDFs, we note that

for the values of bwhich we consider, b � 1/Q0 ∼ 1 GeV−1, to
good approximation b ≈ 0 in the functions ¯̄fi,g in (102). Thus,
choosing the initial conditions equal to the Mellin moments of
the collinear PDFs,

¯̄fi (n, b ≈ 0, Q0) = qi (n, Q0),

¯̄fg(n, b ≈ 0, Q0) = ḡ(n, Q0), (103)

we find the collinear PDFs at the scale 1/b

¯̄fi (n, b ≈ 0, 1/b) = qi (n, 1/b),
¯̄fg(n, b ≈ 0, 1/b) = ḡ(n, 1/b). (104)

This concludes the proof that (88) and (89) are the approxi-
mate solutions to the CCFM-K equations. As a final remark, the
parameter c �= 1 in (91) leads to the replacement 1/b → c/b in
all the formulae above.
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F. Hautmann et al., Collinear and TMD parton densities from fits
to precision DIS measurements in the parton branching method.
Phys. Rev. D 99, 074008 (2019). arXiv:1804.11152

58. A. Bermudez Martinez et al., Production of Z-bosons in the
parton branching method. Phys. Rev. D 100, 074027 (2019).
arXiv:1906.00919

59. A. Bermudez Martinez et al., The transverse momentum spectrum
of low mass Drell–Yan production at next-to-leading order in the
parton branching method (2020). arXiv:2001.06488

60. J. Kwiecinski, Unintegrated gluon distributions from the trans-
verse coordinate representation of the CCFM equation in the single
loop approximation. Acta Phys. Polon. B 33, 1809–1822 (2002).
arXiv:hep-ph/0203172

123

http://arxiv.org/abs/hep-ph/9610276
http://arxiv.org/abs/hep-ph/9405388
http://arxiv.org/abs/hep-ph/9609384
http://arxiv.org/abs/hep-ph/0012035
http://arxiv.org/abs/hep-ph/0208141
http://arxiv.org/abs/0805.4821
http://arxiv.org/abs/0805.3763
http://arxiv.org/abs/1008.2652
http://arxiv.org/abs/1205.1759
http://arxiv.org/abs/1211.5539
http://arxiv.org/abs/1412.4675
http://arxiv.org/abs/1510.00650
http://arxiv.org/abs/1602.06740
http://arxiv.org/abs/1609.04300
http://arxiv.org/abs/1611.04449
http://arxiv.org/abs/1811.04361
http://arxiv.org/abs/1810.04061
http://arxiv.org/abs/1905.07331
https://doi.org/10.2172/1155678
http://arxiv.org/abs/hep-ex/0301031
http://arxiv.org/abs/1404.1212
http://arxiv.org/abs/1412.1115
http://arxiv.org/abs/1505.07024
http://arxiv.org/abs/1805.02448
http://arxiv.org/abs/hep-ph/9412327
http://arxiv.org/abs/hep-ph/0012143
http://arxiv.org/abs/1407.5935
http://arxiv.org/abs/1704.01757
http://arxiv.org/abs/1708.03279
http://arxiv.org/abs/1804.11152
http://arxiv.org/abs/1906.00919
http://arxiv.org/abs/2001.06488
http://arxiv.org/abs/hep-ph/0203172


Eur. Phys. J. C (2020) 80 :455 Page 19 of 19 455

61. A. Gawron, J. Kwiecinski, Unintegrated gluon distributions in a
photon from the CCFM equation in the single loop approximation.
Acta Phys. Polon. B 34, 133–148 (2003). arXiv:hep-ph/0207299

62. A. Gawron, J. Kwiecinski, W. Broniowski, Unintegrated parton
distributions of pions and nucleons from the CCFM equations in
the single loop approximation. Phys. Rev. D 68, 054001 (2003).
arXiv:hep-ph/0305219

63. A. Gawron, J. Kwiecinski, Resummation effects in Higgs boson
transverse momentum distribution within the framework of unin-
tegrated parton distributions. Phys. Rev. D 70, 014003 (2004).
arXiv:hep-ph/0309303

64. E. Ruiz Arriola, W. Broniowski, Solution of the Kwiecinski evolu-
tion equations for unintegrated parton distributions using the Mellin
transform. Phys. Rev. D 70, 034012 (2004). arXiv:hep-ph/0404008

65. W. Broniowski, E. Ruiz Arriola, Partonic quasidistributions of the
proton and pion from transverse-momentum distributions. Phys.
Rev. D 97, 034031 (2018). arXiv:1711.03377

66. J. Kwiecinski, A. Szczurek, Unintegrated CCFM parton distribu-
tions and transverse momentum of gauge bosons. Nucl. Phys. B
680, 164–176 (2004). arXiv:hep-ph/0311290

67. A. Szczurek, G. Slipek, Parton transverse momenta and Drell–
Yan dilepton production. Phys. Rev. D 78, 114007 (2008).
arXiv:0808.1360

68. A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for
the LHC. Eur. Phys. J. C 63, 189–285 (2009). arXiv:0901.0002

69. J. Collins, L. Gamberg, A. Prokudin, T.C. Rogers, N. Sato, B. Wang,
Relating transverse momentum dependent and collinear factoriza-
tion theorems in a generalized formalism. Phys. Rev. D 94, 034014
(2016). arXiv:1605.00671

70. V.S. Fadin, V.E. Sherman, Fermion reggeization in nonabelian cal-
ibration theories. Pisma Zh. Eksp. Teor. Fiz. 23, 599–602 (1976)

71. L.N. Lipatov, M.I. Vyazovsky, QuasimultiRegge processes with
a quark exchange in the t channel. Nucl. Phys. B 597, 399–409
(2001). arXiv:hep-ph/0009340

72. J. Kodaira, L. Trentadue, Summing soft emission in QCD. Phys.
Lett. B 112, 66 (1982)

73. J. Kodaira, L. Trentadue, Single logarithm effects in electron-
positron annihilation. Phys. Lett. B 123, 335–338 (1983)

74. S. Catani, E. D’Emilio, L. Trentadue, The gluon form-factor to
higher orders: gluon gluon annihilation at Small Q−transverse.
Phys. Lett. B 211, 335–342 (1988)

75. J.-W. Qiu, X.-F. Zhang, Role of the nonperturbative input in QCD
resummed Drell-Yan QT distributions. Phys. Rev. D 63, 114011
(2001). arXiv:hep-ph/0012348

76. E.L. Berger, J.-W. Qiu, Differential cross-section for Higgs boson
production including all orders soft gluon resummation. Phys. Rev.
D 67, 034026 (2003). arXiv:hep-ph/0210135

77. A. Kulesza, W.J. Stirling, Nonperturbative effects and the
resummed Higgs transverse momentum distribution at the LHC.
JHEP 12, 056 (2003). arXiv:hep-ph/0307208

78. F. Landry, R. Brock, P.M. Nadolsky, C.P. Yuan, Tevatron Run-1
Z boson data and Collins-Soper-Sterman resummation formalism.
Phys. Rev. D 67, 073016 (2003). arXiv:hep-ph/0212159

123

http://arxiv.org/abs/hep-ph/0207299
http://arxiv.org/abs/hep-ph/0305219
http://arxiv.org/abs/hep-ph/0309303
http://arxiv.org/abs/hep-ph/0404008
http://arxiv.org/abs/1711.03377
http://arxiv.org/abs/hep-ph/0311290
http://arxiv.org/abs/0808.1360
http://arxiv.org/abs/0901.0002
http://arxiv.org/abs/1605.00671
http://arxiv.org/abs/hep-ph/0009340
http://arxiv.org/abs/hep-ph/0012348
http://arxiv.org/abs/hep-ph/0210135
http://arxiv.org/abs/hep-ph/0307208
http://arxiv.org/abs/hep-ph/0212159

	Drell–Yan production with the CCFM-K evolution
	Abstract 
	1 Introduction
	2 CCFM approach
	2.1 Branching kinematics
	2.2 CCFM equation in all loop approximation
	2.3 CCFM-K evolution equations
	2.4 Initial conditions and b-dependence
	2.5 Relation to CSS resummation

	3 Drell–Yan cross section with kT-dependent PDFs
	3.1 On-shell matrix element
	3.2 Off-shell matrix elements
	3.3 CSS approach

	4 Comparison to data
	4.1 DY from fixed target experiments
	4.2 DY in proton–proton collisions

	5 Summary
	Acknowledgements
	A Relation of CCFM-K to CSS
	References




