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Abstract We study a model including a real scalar field
φ non-minimally coupled to F(R) gravity, which is confor-
mally equivalent to an Einstein–Hilbert theory, involving two
real scalar fields. We consider three special cases of the poten-
tial of the field φ in the F(R)-frame: a vanishing potential, a
mass term and a Higgs potential. All these lead to non-trivial
two-field potentials in the Einstein-frame which in particular
directions resemble the well-known Starobinsky model. We
find, that all these cases can yield viable inflationary models
in complete agreement with current observational data.

1 Introduction

The mechanism of cosmological inflation [1–6] was first
introduced in 1980’s in order to solve crucial problems of
the Big Bang Cosmology, such as the horizon, the flatness
and the Monopole problems. Inflation is a period of acceler-
ated (quasi-de Sitter) expansion of the very early Universe,
which elegantly allows for near large-scale homogeneity and
spatial flatness of our Universe. An extra bonus of introduc-
ing inflation in Standard Cosmology is that it can explain
the formation of large-scale structure, being the only known
mechanism to do this. Quantum fluctuations during the infla-
tionary epoch presumably seeded the perturbations which
grew under gravitational instability into the structures we
observe today [7]. Due to this, the inflationary mechanism
has been intensively studied resulting to a better theoreti-
cal understanding of it. Also, in recent years, the interest in
inflationary cosmology has grown considerably because of
the great amount of data made available sourcing from vari-
ous cosmological surveys. Despite its successful predictions
the origin of inflation is not well understood, as yet. It is more
like a phenomenological construction, whose origin should
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be sought in some fundamental theory, such as high-energy
particle physics or gravity.

In particle physics, superstring theory and supergravity,
multiple scalar fields are involved and some of them may
play the role of inflaton. Furthermore, in curved spacetime
and in the context of renormalization of scalar fields we have
the arise of non-minimal couplings between scalar fields and
the Ricci scalar [8,9]. Thus it is reasonable to search for infla-
tionary models which include many fields non-minimally
coupled to gravity, whose potential energy dominates the
energy–momentum tensor and drives inflation [10–16]. For
a model of inflation to be viable it should be in agree-
ment with the recent observational constraints for the spec-
tral index, the tensor-to-scalar ratio and non-gaussianity (for
multi-field inflation). These quantinties are defined in the
context of cosmological perturbations [7,17–30] and their
constraints obtained from observetions of cosmic microwave
background (CMB), according to [31,32], are:

ns = 0.9649 ± 0.0042 68 % CL,

r < 0.064 95 % CL,

fN L = 0.8 ± 5.0 68 % CL.

(1)

Among the single-field models of inflation, various classes
of models can be in agreement with the aforementioned con-
straints. The first is the well studied non-minimally coupled
Higgs inflation [33–52] which provides a particle origin to
inflaton, but is also strongly connected with gravity. The sec-
ond is the class of models of chaotic inflation [53–55] and
its variants, and another is natural inflation models [56,57].
Also a well-known motivated model is the Starobinsky model
of inflation [1], which remarkably was proposed almost four
decades ago and furnishes a gravitational origin to inflaton.
This model can be seen as the simplest inflationary model
within the context of F(R) theories of gravity [58–70], as
the only extension from Einstein Gravity is the addition to
the Hilbert–Einstein action of an extra R2 term
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S =
∫

d4x
√−g̃

[
−1

2
R̃ + 1

12M2 R̃
2
]

, (2)

where above M is a parameter with dimensions of mass,
g̃μν is the metric tensor and R̃ is the Ricci scalar. In this
paper, the reduced mass Planck is dimensionless and equal
to 1, and we use the (+,−,−,−) spacetime signature nota-
tion. This action is classically equivalent, through a con-
formal transformation, to the following scalar-tensor theory
with a non-minimal coupling between the scalar field φ and
gravity

S =
∫

d4x
√−g

[
− 1

2
R + 1

2
gμν∂μφ∂νφ

− 3

4
M2

(
1 − e−

√
2
3 φ

)2 ]
.

(3)

Using the slow-roll inflation formalism and the agreement
with the observables the value of M is restricted to M �
1.3 · 10−5.

The great success of Starobinsky inflation model and its
elegant physical interpretation of inflaton has led to an inten-
sive study of inflationary models that are extensions or mod-
ifications of this model in the framework of F(R) theories
or F(R, φ) theories studied in the metric formalism [71–98]
(see for instance [99] for a beautiful discussion of inflation
in the Jordan frame). The latter have the meaning of being
F(R) theories in the presence of scalar fields, which are
in general non-minimally coupled to gravity. An alternative
variational principle leading to the equations of motion of
General Relativity, which has been intensively studied for
cosmological purposes [100–115], is the Palatini formalism
[60,64,116–118], in which the metric tensor gμν and the con-
nection Γ λ

μν are treated as independent variables. Motivated
by the multi-field scope of particle physics and the viability
of Starobinsky inflation, in this paper we study the robust-
ness of Starobinsky inflation in the presence of a scalar field
non-minimally coupled to gravity both in the R and the R2

term.
This paper is organized as follows. In Sect. 2 we present

the general theoretical setup of the model at hand. In Sect. 3
we specialize our study and obtain numerical results for the
observables for the case where the pre-existing scalar field is
massless and its potential is zero. In Sect. 4 we do the same
work with the addition of a mass term for the pre-existing
scalar field. In Sect. 5 we identify φ with the SM Higgs boson
at the electroweak scale. We conclude and discuss potential
extensions and future study of this model in Sect. 6.

2 Theoretical setup

Our starting point is an inflationary model including a real
scalar field φ non-minimally coupled to F(R) gravity. This
model, is described by the action, in the F(R)-frame,

S =
∫

d4x
√−g̃

[
F(R̃, φ) + 1

2
g̃μν∂μφ∂νφ −U (φ)

]
. (4)

For this theory we can obtain a better physical understanding
by working in the Einstein frame. It can easily be seen that
this theory is classically equivalent to

S =
∫

d4x
√−g̃

[
F(Φ, φ) + ψ(Φ − R̃)

+ 1

2
g̃μν∂μφ∂νφ −U (φ)

]
,

(5)

as the equations of motion for the field ψ , which plays the
role of a Lagrange multiplier, yield

∂L
∂ψ

= 0 ⇒ Φ = R̃. (6)

The corresponding equations of motion for Φ are then

∂L
∂Φ

= 0 ⇒ ∂F(Φ, φ)

∂Φ
= −ψ ⇒ Φ = ξ(ψ, φ). (7)

Thus the action (5) can be written in the following form in
the Jordan frame

S =
∫

d4x
√−g̃

[
− ψR̃ + F(ξ(ψ, φ), φ) + ψξ(ψ, φ)

+1

2
g̃μν∂μφ∂νφ −U (φ)

]
. (8)

In order to pass to the Einstein frame we perform a con-
formal transformation of the metric tensor g̃μν = gμν/2ψ

[8,9]. Under this transformation the Ricci scalar transforms
as

R̃ = 2ψR + 3

ψ
gμν∂μψ∂νψ + 6ψ2∇μ

(
∂μψ

ψ2

)
. (9)

The action, after eliminating a total derivative, is given by

S =
∫

d4x
√−g

[
− R

2
+ 3

4

(
∂ψ

ψ

)2

+ gμν

4ψ
∂μφ∂νφ

− U (φ) − ψξ(ψ, φ) − F(ξ(ψ, φ), φ)

4ψ2

]
.

(10)

Finally, using the field redefinition 2ψ = e

√
2
3 ρ , which leads

to a canonical kinetic term for the field ρ, we obtain the
following form for the action in the Einstein frame:
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S =
∫

d4x
√−g

[
− R

2
+ 1

2
gμν∂μρ∂νρ

+ 1

2
e−

√
2
3 ρgμν∂μφ∂νφ − V (φ, ρ)

]
.

(11)

In this the potential V (φ, ρ) is given by

V (φ, ρ) =e−2
√

2
3 ρ

(
− 1

2
e

√
2
3 ρ

ξ(ρ, φ)

− F(ξ(ρ, φ), φ) +U (φ)
)
.

(12)

An interesting model belonging to this class of theories is
that proposed in [82] where

F(R, φ) = −1

2
f (φ)R + 1

12M2(φ)
R2 (13)

In this f (φ) and M2(φ) are two generic functions, which
should be positive defined in order to avoid ghosts. In this
model one can easily find, using Eq. (12), that the potential
V (φ, ρ) is given by the following expression

V (φ, ρ)=e−2
√

2
3 ρ

[
3

4
M2(φ)

(
f (φ) − e

√
2
3 ρ

)2

+U (φ)

]
,

(14)

which however is in disagreement with the result derived
in [82] 1. In the following we shall study the cosmological
prediction of this model with the potential as given by (14).

The equations of motion for the two scalar fields (ρ, φ)

in a spatially flat Friedman–Robertson–Walker spacetime

ds2 = dt2 − α2(t)dx2 (15)

assuming that the fields are only time-dependent, based on
the observed homogeneity and isotropy of our Universe at
large scales, following from the action (11) are given by

ρ̈ + 3H ρ̇ + 1√
6
e−

√
2
3 ρ

(φ̇)2 = −V,ρ, (16)

φ̈ + 3H φ̇ −
√

2

3
ρ̇φ̇ = −e

√
2
3 ρV,φ, (17)

where we denote ˙ ≡ d/dt , V,I = ∂V/∂φ I with I = φ, ρ

and H = α̇/α is the Hubble rate. The Einstein equations for
the action (11) lead to the following Friedmann equations

1 The potential found therein is of the form V (φ, ρ) =
3
4 M

2(φ)

[
f (φ) − e

√
2
3 ρ

]2

+ e2
√

2
3 ρU (φ).

3H2 = ρ̇2

2
+ φ̇2

2
e−

√
2
3 ρ + V (φ, ρ), (18)

Ḣ = −1

2

[
ρ̇2 + φ̇2e−

√
2
3 ρ

]
. (19)

In order to find the time-evolution of the fields ρ, φ and the
scale factor we need just to solve the equations of motion
(16), (17) and (18). The equation (19) is not independent but
it is related to the other three equations of motion.

It is worth noting that the action (11) can be seen as a
special case of the well-studied generalized non-linear sigma
model of multifield inflation

S =
∫

d4x
√−g

[
− R

2
+ 1

2
GI J g

μν∂μφ I ∂νφ
J − V (φ I )

]
.

(20)

In the above expression, the Latin indices account for the
number of the fields of the theory and GI J is the metric tensor
of the curved field space manifold. Then, in correspondence
with the theory of Gravity, we have the definition for the
covariant derivative:

DJ AI = AI,J − Γ K
I J AK , (21)

with AI being a vector in the field space and Γ K
I J being the

corresponding Christoffel symbols in the curved field space,
calculated by the expression

Γ K
I J = 1

2
GK L(∂IGL J + ∂JGI L − ∂LGI J ). (22)

The Einstein equations for the action (20) are of the usual
form

Rμν − R

2
gμν = Tμν, (23)

where the stress tensor is given by the expression

Tμν=GI J ∂μφ I ∂νφ
J −gμν

[
GI J

2
gρλ∂ρφ I ∂λφ

J + V (φ I )

]
.

(24)

The equations of motion for the fields φ I are given by the
expression

gμνφ I
;μ;ν + gμνΓ I

J K ∂μφ J ∂νφ
K − GIK V,K = 0 (25)
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In this generalized model the slow-roll parameters are defined
[92] as2

ε = 1

2

G I J V,I V,J

V 2 , (26)

η = 4ε − DK V,JGK LV,LG JMV,M

εV 3 . (27)

and should obey the ordinary (from one-field inflation mod-
els) slow-roll conditions

ε � 1 and η � 1. (28)

Also for this case of inflationary models, there have been
derived some well known expressions for the spectral index
and the tensor-to-scalar ratio that we measure today from the
CMB spectrum. The definition of ns and r happens in the
context of cosmological perturbations. In the framework of
this theory we have quantum fluctuations of the fields sourc-
ing perturbations in the metric and vice versa. Let us briefly
mention, using the description used in [11–13], the basic con-
cepts for the understanding of the quantities needed for the
calculation of ns and r in the concept of multi-field inflation.
For a more complete view of this theory we recommend the
reader to see these articles and the references therein [7,10–
16,21–29].

The results that we will quote in the following are obtained
by keeping only first order terms in the perturbative expan-
sion of the spacetime-dependent fields, ϕ I (xμ), around the
time-dependent background fields, φ I (t)

φ I (xμ) = ϕ I (t) + δφ I (xμ), (29)

and of the spacetime metric around the spatially flat FRW
background

ds2 = (1 + 2A)dt2 − 2α(t)∂i Bdx
i dt

− α2(t)[(1 − 2ψ)δi j + 2∂i∂ j E]dxidx j .
(30)

In order to have a gauge-invariant formalism and due to the
fact that the fluctuations δφ I do not transform covariantly
under spacetime gauge transformations, it is necessary to
introduce the gauge-invariant Mukhanov–Sasaki variables

QI = δφ I + ϕ̇ I

H
ψ. (31)

Using these variables we can rewrite the equations of motion
(25) separating to background and first-order expressions as

Dt ϕ̇
I + 3H ϕ̇ I + GIK V,K = 0, (32)

2 In this work we assume slow-roll, slow-turn solutions. For highly
curved field spaces the dominant behaviour can be of different nature
(see e.g. [119]).

and

D2
t Q

I + 3HDt Q
I +

[
k2

α2 δ IJ + MI
J − Dt

α3

(
α3

H
ϕ̇ I ϕ̇I

)]
QJ = 0,

(33)

where k is the comoving wave number and the derivative Dt

is defined as

Dt A
I ≡ ȦI + Γ I

J K AJ ϕ̇K , (34)

while the mass-squared matrix MI
J is defined as

MI
J ≡ G I K (DJDK V ) − RI

LM J ϕ̇
L ϕ̇M (35)

A useful quantity for the simplification of the analysis of the
multi-field cosmological perturbations is the length of the
velocity vector for the background fields given by

σ̇ 2 = GI J ϕ̇
I ϕ̇ J , (36)

from which one can define the adiabatic (curvature) and
entropy (isocurvature) directions in the curved field space
via the unit vectors

σ̂ I ≡ ϕ̇ I

σ̇
and ŝ I ≡ ωI

ω
, (37)

where the turn-rate vector is given by ωI (t) ≡ Dt σ̂
I and

ω = |ωI |. In a two-field model any vector in field space can
be decomposed into components along these two unit vectors

AI = σ̂ I σ̂J A
J + ŝ I ŝJ A

J (38)

Using this we can decompose the Mukhanov–Sasaki vari-
ables along adiabatic and entropy directions

Qσ ≡ σ̂I Q
I and Qs ≡ ŝI Q

I (39)

Using these new definitions of the Mukhanov–Sasaki vari-
ables and making a Fourier transformation of the form
∂i∂

i F(t, xi ) = −(k2/α2)Fk(t) we obtain from equation (33)
the following two equations

Q̈σ + 3H Q̇σ +
[
k2

α2 + Mσσ − ω2 − 1

α3

d

dt

(
α3σ̇ 2

H

)]
Qσ

= 2

[
d

dt
− σ̂ I V,I

σ̇
− Ḣ

H

]
(ωQs),

(40)

and

Q̈s + 3H Q̇s +
[
k2

α2 + Mss + 3ω2
]
Qs = 4ωk2

σ̇ α2 Ψ, (41)
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with Ψ the gauge-invariant Bardeen potential

Ψ ≡ ψ + α2H

(
Ė − B

α

)
. (42)

Above we used the following definitions for the mass-squared
matrix

Mσσ ≡ σ̂I σ̂
JMI

J and Mss ≡ ŝI ŝ
JMI

J . (43)

The effective mass of the isocurvature perturbations is
defined by

μ2
s ≡ Mss + 3ω2. (44)

If μ2
s/H

2 � 1, the isocurvature perturbations are heavy
during slow-roll, so the growth of Qs is strongly suppressed.
On the other hand a tachyonic mass, μ2

s < 0, leads to the
rapid amplification of the isocurvature modes.

The gauge-invariant curvature perturbation and the renor-
malized entropy perturbation are expressed in terms of the
Qs and Qσ via the relations

R ≡ H

σ̇
Qσ and S ≡ H

σ̇
Qs . (45)

In the long-wavelength and slow-roll limits these two func-
tions can be found (from the differential equations of the
Mukhanov–Sasaki variables) to obey the differential equa-
tions

Ṙ = 2ωS + O
(

k2

α2H2

)
(46)

Ṡ = β(t)HS + O
(

k2

α2H2

)
(47)

with the function β(t) given by

β(t) = −2ε − nss + nσσ − 4ω2

3H2 . (48)

In the above equation nss and nσσ are the slow-roll parame-
ters defined by

nss ≡ Mss

V (φ I )
and nσσ ≡ Mσσ

V (φ I )
. (49)

The solutions of Eqs. (46) and (47) can be written in the form

R(t) = R(t∗) + TRS(t∗, t)S(t∗), (50)

S(t) = TSS(t∗, t)S(t∗), (51)

where

TSS(t∗, t) = exp

[∫ t

t∗
dt ′β(t ′)H(t ′)

]
, (52)

TRS(t∗, t) =
∫ t

t∗
dt ′2ω(t ′)TSS(t∗, t ′), (53)

are the transfer functions which relate the gauge-invariant
perturbations at the time t∗, when the perturbations of pivot
scale during the inflationary era crossed outside the Hubble
volume for the first time, to their value at some later time t .

The dimensionless primordial spectra PR(k), PS(k) and
CRS(k) are defined at some time t after inflation during the
radiation-dominated era when all cosmological scales are
still outside the horizon

CRS∗(k, t∗) ≡ k3

2π2 〈R(t∗)S∗(t∗)〉, (54)

PS(k, t) ≡ k3

2π2 〈S(t)S∗(t)〉, (55)

PR(k, t) ≡ k3

2π2 〈R(t)R∗(t)〉
= PR(k, t∗) + 2TRSCRS∗(k, t∗) + T 2

RSPS(k, t∗).
(56)

Due to the fact that we are interested in the calculation
of the power spectrum PR(k) to first-order in the slow-roll
parameters we keep only term to zeroth-order in PR(k, t∗),
CRS∗(k, t∗) and PS(k, t∗), where we have

CRS∗(k, t∗) � 0, (57)

PR(k, t∗) = PS(k, t∗) � V

24π2ε

∣∣∣∣
t=t∗

. (58)

Thus replacing back to (56) we obtain the equation which
relates the power spectrum of curvature perturbations at time
t∗ to its value a latter time t

PR(k, t) = P(k, t∗)
[
1 + T 2

RS(t∗, t)
]

(59)

The spectral index can be determined via the power spectrum
of the curvature perturbations from the expression

ns(t) = 1+ ∂ lnPR
∂ ln k

� 1+ d ln V

d ln k
− d ln ε

d ln k
+ d ln(1 + T 2

RS)

d ln k
.

(60)

Using the fact that the derivative with respect to ln k can be
converted to a time derivative via the relation d ln k/dt =
(1 − ε)H and that for the second and the third term of (60)
holds true

d ln V

d ln k
� −2ε and

d ln ε

d ln k
= 4ε − 2nσσ , (61)
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find that (60) takes the form

ns(t) = ns(t∗)−
(

2ω(t∗)
H(t∗)

+ β(t∗)TRS(t∗, t)
)

sin(2Δ) (62)

where we have used the definitions

cos(Δ) ≡ TRS
(1 + T 2

RS)
1/2

, (63)

ns(t∗) ≡ 1 − 6ε(t∗) + 2ησσ (t∗). (64)

As it regards the tensor-to-scalar ratio, r , it can be deter-
mined from the ratio between the power spectrum of the
tensor perturbations and that of the curvature perturbations,
meaning

r ≡ PT (k, t)

PR(k, t)
. (65)

Due to the vanish of T i
j terms for i = j to first-order the

tensor perturbations evolve in the same way as in the single-
field models and thus PT is given by the expression

PT (k, t∗) ≡ k3

2π2 〈δgμνδg
μν∗〉 � 8

(
H

2π

)2
∣∣∣∣∣
k=αH

= 2V

3π2

∣∣∣∣
t=t∗
(66)

Thus for the tensor-to-scalar ratio in two-field models from
Eqs. (59) and (66) we obtain

r � 16ε(t∗)
1 + T 2

RS

. (67)

From the above expression it is obvious that if the maximum
value rmax = 16ε(t∗) is in agreement with the observed con-
straint (1), there is no need of calculation of the transfer
functions, as far as r is concerned.

For the system at hand one can easily infer, by comparing
(11) and (20), identifying φ1 by ρ and φ2 by φ, that the metric
tensor GI J has the following form

GI J =
(

1 0

0 e−
√

2
3 ρ

)
. (68)

Then, by the use of (22) we find that the only non-zero com-
ponents of Γ K

I J are

Γ
φ
φρ = Γ

φ
ρφ = −

√
1

6
and Γ

ρ
φφ =

√
1

6
e−

√
2
3 ρ

. (69)

Thus, using the definitions (26), (27) and (21) for our case,
we are leaded to the following expressions for the slow-roll
parameters

ε =
(
V,ρ

)2

2V 2 + e

√
2
3 ρ

(
V,φ

)2

2V 2 , (70)

η = 4ε − 1

εV 3

(
V,ρρV

2
,ρ + 2e

√
2
3 ρV,ρφV,φV,ρ

+
√

1

6
e

√
2
3 ρV 2

,φV,ρ + e2
√

2
3 ρV,φφV

2
,φ

)
, (71)

ησσ =
(
(σ̂ ρ)2 ∂2V

∂ρ2 + (σ̂ φ)2 ∂2V

∂φ2 + 2σ̂ ρ σ̂ φ ∂2V

∂φ∂ρ

+ 2σ̂ ρ σ̂ φ

√
6

∂V

∂φ
− (σ̂ φ)2

√
6

e−
√

2
3 ρ ∂V

∂ρ

) 1

V
, (72)

where the unit vectors σ̂ φ , σ̂ ρ appearing in the equations
above are

σ̂ ρ = ρ̇√
ρ̇2 + e−

√
2
3 ρ

φ̇2

and σ̂ φ = φ̇√
ρ̇2 + e−

√
2
3 ρ

φ̇2

.

(73)

So far we have not specified the functions U (φ), f (φ) and
M(φ) defining the function F(R̃, φ), (13), which defines the
model given in (4). In order to proceed to predictions of the
inflationary observables within the context of this type of
models in the following sections, and for different forms of
the potentialU (φ), we choose the functions M2(φ) and f (φ)

to be the same as those employed in [82],

M2(φ) = M2(1 + βφ2) and f (φ) = 1 + αφ2. (74)

In these α and β are some constants signaling deviations
from Starobinsky model. We mainly focus on the parameter
regime where α, β > 0. Negative values for the parameters α

and β are also acceptable provided that the functions M2(φ)

and f (φ) remain positive to avoid ghosts.
In the next sections we will be concentrated on the calcu-

lation of the spectral index ns and the tensor-to-scalar ratio
r in the pivot scale. The main difference of our two-field
inflationary model against the Starobinsky model is the pres-
ence of isocurvature perturbations. Those perturbations turn
out to be very small and undetectable so far. So, we did not
examine primordial non-Gaussianities in our deformation of
Starobinsky inflationary model, because we expect it to be
negligible, like in the pure Starobinsky model of inflation
and thus in agreement with the constraints [31,32]. Also, for
all the cases which will be studied in the following sections
we found that the effective mass, μs , of the isocurvature per-
turbations is small and negative and thus the formalism we
presented in this section is applicable.
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3 The Case U(φ) = 0

In this section we review the special case, already studied
in [82], when φ is a free massless field, in the F(R)-frame.
We have U (φ) = 0 and thus the scalar potential V (φ, ρ)

becomes

V (φ, ρ) = 3

4
e−2

√
2
3 ρ M2(1 + βφ2)

(
1 + αφ2 − e

√
2
3 ρ

)2

,

(75)

which is semi-positive definite. From the above expression
we observe that for α = β = 0 we retain the Starobinsky
potential, as we expected. For non-zero values of α and β

we have a deformation of the potential in the φ direction,
leading to the stabilization of the field φ. In the case where
only α = 0, the parameter β cannot grow well beyond 50.
Actually, the marginal case where β = 50, is marginally
out due to the non agreement with the ns data. The increase
of the parameter β does not have a significant effect on the
value of r . On the other hand, if β = 0, then α cannot be
bigger than ∼ 10−3. Also, according to our numerical cal-
culations if both α and β grow well beyond 10 the infla-
tion becomes again non-viable for the same reason, namely
our model fails to get the observed value of ns . From now
on and in the following, for the parameters α, β and M we
choose for definiteness the values α = 0.01, β = 0.001
and M = 1.3 · 10−5, like in the pure Starobinsky model. In
Fig. 1 we show the profile of the potential for this choice of
parameters. It is worth observing that in this potential we do
not have a unique Minkowski vacuum but rather a valley of
Minkowski vacua on the contour determined by the points

(φmin, ρmin) = (c,
√

3
2 ln(1 + αc2)), where c ∈ IR. As we

shall see below, the choice of the initial values of the fields
φ and ρ lead us to the vacuum (φmin, ρmin) = (0, 0). The
choice of different initial conditions will have as a result an
altered vacuum which can lead us to successful inflation.

In order to calculate the scalar spectral index and the
tensor-to-scalar ratio in the pivot scale, we solve numeri-
cally the equations of motion (16) , (17) and (18) to find the
time evolution of the fields φ and ρ. Our results are shown
in Fig. 2. In all graphs displayed the time t is normalized by
M . From Fig. 2 we can see that at the end of inflation the
field ρ oscillates near in its approach to the minimum of the
potential, whereas the field φ does not. In fact φ drops off
rapidly (Fig. 3). The oscillation of the field ρ can be seen
after the time t = 605. Using the numerical results for φ and
ρ, we then solve Eq. (18), find the time dependence of the
scale factor a(t) and plot the time evolution of the Hubble
parameter and the number of e-foldings, as shown in Fig. 4.
From the bottom diagram of Fig. 4 we can find the pivot scale
used for the calculation of the spectral index and the tensor-

Fig. 1 The potential V (φ, ρ) for α = 0.01, β = 0.001 and M =
1.3 · 10−5

to-scalar ratio. Furthermore, using the relations (70) and (71)
we calculate the slow-roll parameters ε and η, respectively,
and we present their behaviour as a function of time in Fig.
5. From that figure we can see that the slow-roll parameters
ε and η indeed obey the slow-roll conditions (28). Finally,
using relations (64) and (67) we calculate the spectral index
ns and the max value of the tensor-to-scalar ratio in the pivot
scale. For N � 50 − 60 we find that3

ns = 0.965 ± 0.004 and r = 0.0037∓0.0007. (76)

These values for ns and r are in agreement with the con-
straints (1) and thus lead to viable inflation. Scales of cos-
mological interest first crossed the Hubble radius between
50 and 60 e-foldings before the end of inflation. As indicated
in Fig. 3, TRS remains small between N = 50 and 60, so
corrections to ns and r from TRS remain negligible.

It is worth pointing out, that trying different values for
the initial conditions of the fields we observed that for big-
ger values of φ we have smaller duration of the inflationary
period (number of e-foldings) but always in agreement with
the observational constraints (1). In fact we have a wide range
of allowed initial values for the field φ, for every initial value
of ρ, to obtain at least 50–60 e-foldings of inflation. There-
fore we do not have fine tuning for the initial conditions since
a wide range of them leads to realistic inflation.

4 The Case U(φ) = 1
2m

2φ2

Now we make a simple but physical extension of the calcula-
tion we made in the previous section, by adding a mass term

3 The calculation of ns and r has been made between 50 and 60 e-
foldings, so the ± or ∓ signs correspond to 50 (down sign) and 60
(upper sign) e-foldings, respectively.
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Fig. 2 Top: the field φ(t) as a function of time. Bottom: the field ρ(t)
as a function of time

Fig. 3 The transfer function TRS as a function of number of e-foldings

for the field φ in our action. The scalar potential V (φ, ρ) in
this case takes the form

V (φ, ρ) =e−2
√

2
3 ρ

[3

4
M2(1 + βφ2)

(
1 + αφ2 − e

√
2
3 ρ

)2

+ 1

2
m2φ2

]
.

(77)

This model for the case of α = β = 0 was studied in refer-
ences [83,92] where it was found that it yields viable inflation
without the need of fine-tunning. Specifically, in [92], using
the δN formalism, the non-gaussianity was calculated and

Fig. 4 Top: the Hubble parameter as a function of time. Bottom: the
logarithm of the scale factor a(t). With the black line is denoted the
time of the last 60 e-folds before the end of inflation

Fig. 5 Top: the running of slow-roll parameter ε. Bottom: the running
of slow-roll parameter η
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Fig. 6 The potential V (φ, ρ) for α = 0.01, β = 0.001 and m = M =
1.3 · 10−5

was found to be in agreement with the observed constraints
[31,32]. Thus our expectation of feasible non-gaussianity for
the case α = 0.01 and β = 0.001 is strengthened. In this
model, values for α and β greater than 10 but less than 102

are also acceptable as we have checked numerically.
In Fig. 6 we see the profile of the potential for the choice of

parameters α = 0.01, β = 0.001 and m = M = 1.3 · 10−5.
From this graph we observe, in contrast to the potential con-
sidered in the previous section, that in this potential we have
a unique Minkowski vacuum, at the point (φmin, ρmin) =
(0, 0). For the mass m we study the cases between m/M = 1
and m/M = 103. Our results for the fields, the Hubble
parameter and the number of e-foldings, as functions of time
for three typical values of the ratio m/M are presented in
Figs. 7 and 8. In all the cases we use the same initial condi-
tions for the fields ρ = 7.4 and φ = 6.

From these figures and our results we find that with
increasing of the ratio m/M we have new effects that are
absent in the massless case. First, we observe that we have
the damped oscillation of the field φ, whose frequency is
increased with increasing the ratio m/M . Thus we may have
a possible contribution of the field φ to the reheating as m
increases. This effect can be also observed for the massless
case we studied in the previous section for larger values of
the constant α (larger than 1), but for these values the via-
bility of the inflationary model breaks down. Second, we
see that in the beginning we have a valid increase of the
field ρ which first reaches a maximum value and then starts
the slow-roll inflationary process. This maximum value is
increased with increasing the ratio m/M . Specifically, in the
case m/M = 1 the field ρ does not increase, in the case
m/M = 102 increases till the maximum value 7.6 and in the
casem/M = 103 till 8.4. Last, we notice that with increasing
the ratiom/M the duration of the inflationary period becomes
longer.

Fig. 7 Top: the field φ(t) as a function of time for the values of the
ratio m/M = 1, 102, 103 . Bottom: the field ρ(t) as a function of time
for the values of the ratio m/M = 1, 102, 103

Fig. 8 Top: the Hubble parameter as a function of time for the values of
the ratio m/M = 1, 102, 103. Bottom: the logarithm of the scale factor
a(t) as a function of time for the values of the ratio m/M = 1, 102, 103
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From our results we find that the values for the observables
in the case of including the mass term in the potential agree
with the constraints (1), for values of m/M ranging from
1 to 103, and thus also this case leads to viable inflation.
For example for the case of m/M = 1 the spectral index
and the tensor-to-scalar ratio are ns = 0.963 ± 0.004 and
r = 0.0037∓0.0007, while in the case of m/M = 103, they
are ns = 0.963 ± 0.003 and r = 0.0037∓0.0007.

5 The Case U(φ) = 1
4λ(φ2 − υ2)2

In the following, we shortly study the case where φ is identi-
fied as the Standard Model Higgs boson. The scalar potential
V (φ, ρ) in this case takes the form

V (φ, ρ) = e−2
√

2
3 ρ

[3

4
M2(1 + βφ2)

(
1 + αφ2 − e

√
2
3 ρ

)2

+ 1

4
λ(φ2 − υ2)2

]
. (78)

We focus on the case where λ = m2
h/2υ2 � 0.13 is fixed by

the measured Higgs vacuum expectation value υ � 246GeV
and Higgs boson mass mh � 125GeV at the electroweak
scale. The case β = 0 was exhaustively studied in [87] where
it is also being studied the case of smaller values of λ that are
suggested by the Standard Model RG flow, which drives the
running coupling λ to very small values at high energy scales.
As discussed in [87] and [89] in the case where β = 0 the
constraints in the parameter α somehow relaxed, compared
to the previous models, in order to be in agreement with all
data. That is α � 103 − 104. Such values for the parameter
α are also acceptable for β > 0.

The potential (78) is positive defined and it contains a two-
fold degenerated Minkowski minimum and a saddle-point,
being a minimum for ρ and a maximum for φ, which respec-
tively are given by

(φmin, ρmin) =
(

±υ,

√
3

2
ln(1 + αυ2)

)
and

(φsp, ρsp) =
(

0,

√
3

2
ln(1 + λυ4

3M2 )

)
.

(79)

At the extrema, the potential acquires the values

V (φmin, ρmin) = 0 and

V (φsp, ρsp) = λ

4

1

1/υ4 + 1/3M2 .
(80)

From the above equations we observe that the places of the
extrema of the potential and the values of the potential cal-
culated there do not depend on the constant β and thus are
the same with the places found for the case β = 0 studied

within [87]. Furthermore, solving the equation dV
dφ

= 0, it
is trivial to find the trajectory that the inflaton takes place in
the potential valley, but it is too complicated to be presented.
Nevertheless in the limit where β → 0 and for negligibly

small υ the known trajectory, φ2 = e

√
2
3 ρ−1

α+λ/3αM2 , is recovered.
We study this model for the case where α = 0.01 and

β = 0.001 as in the previous sections and for different initial
values for φ, φ = 6, 1, 0.6 and 10−3 and ρ = 7.4. The
behaviour of the field ρ does not change in this range of
initial values of φ.

In all cases the spectral index and the tensor-to-scalar ratio
are ns = 0.964 ± 0.004 and r = 0.0037∓0.0007, leading
thus to viable inflation.

6 Conclusion

Inspired by the success of the Starobinsky model and the
multifield nature of theories of particle physics we study
the inflationary model proposed in [82]. In the begining, we
review the feauture of a general F(R, φ) theory of grav-
ity, which is conformally equivalent to an Einstein–Hilbert
theory including two scalar fields. Specializing to the case
F(R, φ) = − 1

2 f (φ)R+ 1
12M2(φ)

R2 and U (φ) = 0, as con-
sidered in [82], we found that it leads to a two-field potential
differing from the one given in [82]. However this also yields
a viable inflationary model, as concluded therein.

Moreover, we considered other cases, as well, by adding
a mass term for the field φ in the action. We found that this
case also yields a viable inflationary model, while the evo-
lution of the fields depends mostly on the ratio m/M . More
specifically, we found that with increasing the ratio m/M we
have new effects that are absent in the massless case, such as
the observation of damped oscillations of the field φ, whose
frequency is increased with increasing the ratio m/M . The
ratiom/M affects the duration of the inflationary period, too.
Furthermore, in a Higgs-like potential, identifying the field
φ with the Standard Model Higgs boson, we also found a
viable inflation.

Finally, in the constraints we have provided for α and β

in the studied models we expect the non-gaussianities to be
relatively small because φ is almost stabilized to its vacuum
value before the last 50 − 60 e-folds such that in these last
e-folds the Starobinsky trajectory of ρ drives the inflation.
This observation also depends on the initial conditions for φ

and ρ, but we checked that for initial conditions such that we
have sufficient e-folds for inflation and the field φ contributes
to the last 50 − 60 of them, the predictions for ns were not
in the range predicted by the observations.

Within the goals of future work, in the context of this
model, and in order to check its viability, would be the study
of reheating and preheating after the end of inflation, but
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this lies beyond the scope of this paper. Regarding possi-
ble extensions of this model these mainly include consider-
ations of other physical scalar potentials, in the place of the
U (φ) studied here and/or the insertion of more complicated
non-minimal couplings between gravity and the pre-existing
scalar field which are motivated by higher dimensional theo-
ries, such as non-minimal kinetic terms and d’ Alembertian
of Ricci scalar terms, or Supergravity theories.
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