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Abstract In this article, we have investigated the equa-
tions of motion of the photons coupled to Weyl tensor by
the geometric optics approximation and the corresponding
shadow in a Brane-World black hole spacetime. It is shown
that there exists a double shadow for a black hole since the
coupling photons with different polarization directions prop-
agate along different paths in the spacetime. Furthermore, we
discuss the effects of the metric parameter α related to the
cosmological constant, X-cold dark matter parameter β and
the coupling parameter λ on the umbra (the overlap region
of the double shadow) and the penumbra. We also obtain the
finite-distance corrections to the deflection angle of light in
the Brane-World black hole spacetime as the photons coupled
to Weyl tensor by using a recent geometric method.

1 Introduction

In the context of the unification of the physical forces and
also in cosmology, the extra dimensions models have been
increasing interest during recent years [1–10]. Among them
the Brane-World cosmological models [11–13], motivated
by string theory (M-theory), have been proposed in which
the standard fields are confined to a four-dimensional (4D)
world viewed as a hypersurface (the brane) embedded in
a higher-dimensional space-time (the bulk) through which
only gravity can propagate [14,15]. With the help of the brane
scenario, one could possibly solve some disturbing prob-
lem of high-energy physics, such as the hierarchy problems
(the problem of the big difference between the electroweak
scale MEW ∼ 1 TeV and the Planck scale Mpl ∼ 1016 TeV)
and the cosmological constant problem [16–21]. As the most
well-known model in the Brane-World theory, Randall and
Sundrum (RS) models [18,19] achieve the confine of the
standard fields through the imposition of Z2 symmetry and
use of the Israel junction conditions which relates the extrin-
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sic curvature of the brane to the energy-momentum tensor
of the matter. However, this method works only when the
theories have one extra dimension. In Ref. [22], Heydari-
Fard and Razmi studied a Brane-World embedded in a m-
dimensional bulk by means of the confining potential. The
field equations obtained on the brane contained an extra term
which was identified with the X-cold dark matter. The same
method was used in [23,24] to find the spherically symmetric
vacuum solutions of the field equations on the brane. These
solutions could account for the accelerated expansion of the
universe and offered an explanation for the galaxy rotation
curves without assuming the existence of dark matter and
without working with modified Newtonian dynamics.

The interactions between electromagnetic field and curva-
ture tensor are not included in the standard Einstein–Maxwell
theory. Drummond et al. [25] first found that such kind of the
couplings could be appeared naturally in quantum electrody-
namics with the photon effective action originating from one-
loop vacuum polarization on a curved background spacetime.
The coupling between electromagnetic field and curvature
tensor change the propagation path and dispersion relation of
the coupled photons in spacetime, which lead to the birefrin-
gence of light in the gravitational field and may result in the
superluminal phenomenon in some cases [26,27]. It is also
found that the quantum fluctuation of electromagnetic field
caused by the coupling of electromagnetic field and space-
time curvature can cause inflation in the early evolution of the
universe [28–32]; the fluctuation of the electromagnetic field
coupled with the gravitational field can also provide a possi-
ble physical mechanism for generating large-scale magnetic
fields in the center of the Milky Way [33–36].

Since Weyl tensor is actually related to the curvature ten-
sors Rμνρσ , the Ricci tensor Rμν and the Ricci scalar R, the
theory of electromagnetic field with Weyl corrections can
be treated as a special kind of generalized Einstein-Maxwell
theory with the coupling between the gravitational and elec-
tromagnetic fields. It is shown that the couplings with Weyl
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tensor change the universal relation with the U (1) central
charge in the holographic conductivity in the background of
anti-de Sitter spacetime [37] and modify the properties of the
holographic superconductor including the critical tempera-
ture and the order of the phase transition [38–44]. Moreover,
Chen et al. find that with these couplings the dynamical evo-
lution and Hawking radiation of electromagnetic field in the
black hole spacetime depend on the coupling parameter and
the parity of the field [45–47].

Due to the strong gravity and high mass density, the cou-
pling between electromagnetic field and curvature tensor
should be emerged reasonably in the region near the classical
supermassive compact objects at the center of galaxies. Ni’s
model has been investigated widely in astrophysics [48–51]
and black hole physics [52–54]. These investigations show
that the coupling term modifies the equations of motion both
for electromagnetic and for gravitational fields, which could
yield time delays in the arrival of gravitational and electro-
magnetic waves.

Recently, Chen studied the strong gravitational lensing
for the photons coupled to Weyl tensor in Schwarzschild and
Kerr black hole spacetimes [55,56]. And Huang discussed
the double shadow of a regular phantom black hole as pho-
tons couple to the Weyl tensor [57]. Abbas studied the strong
gravitational lensing for photons coupled to Weyl tensor in
Kiselev black hole [58]. In this work, we consider a Brane-
World black hole spacetime described by Heydari-Fard and
Razmi for which the shadow has not yet been calculated.
We obtain the effective metric of the coupled photons by
the geometric optics approximation, and then discuss the
black hole shadow. We also calculate the deflection angle
of light with finite-distance corrections in the Brane-World
black hole spacetime as the photons coupled to Weyl tensor.

The plan of the paper is as follows. In the next section
is the derivation of the equations of motion for the photons
coupled to the Weyl tensor in the Brane-World black hole.
In Sect. 3, we discuss the Weyl corrections to photon sphere
radius and angular radius of the shadow. Section 4 is the
deflection angle of light with finite-distance corrections in
the Brane-World black hole. Conclusions and discussions
are presented in Sect. 5.

2 Equations of motion for the photons coupled to the
Weyl tensor in the Brane-World black hole

In this paper, we begin with the action of the electromagnetic
field coupled to Weyl tensor in the curved spacetime, which
can be expressed as [37]

S =
∫

d4x
√−g

[
R

16πG
− 1

4

(
FμνF

μν − 4λCμνρσ FμνFρσ

)]
, (1)

where the electromagnetic tensor Fμν is equal to Fμν =
Aμ;ν − Aν;μ and λ is the coupling constant with dimension
of length-squared. Note that Cμνρσ is the Weyl tensor, which
is defined as

Cμνρσ = Rμνρσ − (
gμ[ρRσ ]ν − gν[ρRσ ]μ

)

+1

3
Rgμ[ρgσ ]ν, (2)

here the brackets around indices refer to the antisymmetric
part. Varying the action Eq. (1) with respect to Aμ, one can
obtain the following Maxwell equations with Weyl correction

∇μ

(
Fμν − 4λCμνρσ F

ρσ
) = 0. (3)

In order to derive the equations of motion of the photons
from the above corrected Maxwell equations, one can adopt
to the geometric optics approximation. Under this approx-
imation, the wavelength of photon λ̂ is much smaller than
a typical curvature scale L̂ , but is larger than the electron
Compton wavelength λ̂e, which ensures that the change of
the background gravitational and electromagnetic fields with
the typical curvature scale can be neglected for the photon
propagation [25–27,59–64]. In the geometric optics approx-
imation, we write the electromagnetic field strength as the
product of a slowly varying amplitude and a rapidly varying
phase, i.e.

Fμν = fμνe
iθ , (4)

where the wave vector is kμ = ∇μθ . In the quantum particle
interpretation, we identify it as the photon momentum. The
amplitude is constrained by the Bianchi identity to be of the
form

fμν = kμaν − kνaμ, (5)

where aμ is the polarization vector satisfying the condition
that kμaμ = 0. Light rays (photon trajectories) are defined as
the integral curves of the wave vector (photon momentum).
Substituting Eqs. (4) and (5) into Eq. (3) and using the rela-
tionship above, we can get the equation of motion of photon
coupling to the Weyl tensor

kμk
μaν + 8λCμνρσ kσ kμaρ = 0. (6)

Obviously, the coupling term with Weyl tensor changes the
propagation of the coupled photon in the background space-
time. It is convenient to introduce the orthonormal frame by
using the vierbeins defined as gμν = ηabeaμe

b
ν , where ηab

is the Minkowski metric. In the orthonormal frames, Eq. (6)
can be rewritten as

k2ab + 8λCabcdkdkaac = 0. (7)
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As mentioned above, Heydari-Fard and Razmi have gotten
a black hole solution with X-cold dark matter in Brane-World
theory described by the spacetime metric [22]

ds2 = − f (r) dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2θdφ2

)
, (8)

with

f (r) = 1 − 2M

r
− α2r2 − 2αβr − β2. (9)

Here, α is a metric parameter which is related to the cosmo-
logical constant and β is a parameter of X-cold dark matter.
It is the Schwarzchild-de Sitter-like solution as β = 0 and
the Schwarzschild-XCDM solution as α = 0.

We now introduce a local orthonormal frame. The appro-
priate basis l-forms are ea (a = 0, 1, 2, 3) with

e0 = √
f dt, e1 = 1√

f
dr, e2 = rdθ,

e3 = rsinθdφ. (10)

By a straightforward calculation, in the orthonormal frame
the independent nonvanishing components of the Riemann
curvature tensor are

R0101 = −2M

r3 − α2,

R0202 = R0303 = M

r3 − αβ

r
− α2,

R1212 = R1313 = −M

r3 + αβ

r
+ α2,

R2323 = 2M

r3 + β2

r2 + 2αβ

r
+ α2.

(11)

Introducing the notation U 01
ab ≡ δ0

aδ
1
b − δ1

aδ
0
b , etc., one can

rewrite the complete Weyl tensor compactly in the following
form

Cabcd = A
(

2U 01
abU

01
cd −U 02

abU
02
cd −U 03

abU
03
cd

+U 12
abU

12
cd +U 13

abU
13
cd − 2U 23

abU
23
cd

)
, (12)

with

A = −
(
M

r3 + β2

6r2

)
. (13)

In order to solve the equation of motion for the coupled pho-
ton propagation, one can introduce three linear combinations
of momentum components [27,60]

lb = kaU 01
ab , mb = kaU 02

ab , nb = kaU 03
ab , (14)

and some dependent combinations

pb = kaU 12
ab , qb = kaU 13

ab , rb = kaU 23
ab . (15)

Using lb, mb, and nb to contract Eq. (7), with the help of
Eq. (12), the photon equations of motion coupling with Weyl

tensor can easily be simplified as a set of equations for three
independent polarisation components a · l, a · m and a · r
⎛
⎝K11 0 0
K21 K22 K23

0 0 K33

⎞
⎠

⎛
⎝ a · l
a · m
a · r

⎞
⎠ = 0, (16)

with

K11 = (1 − 16λA)
(
−k0k0 + k1k1

)

+ (1 + 8λA)
(
k2k2 + k3k3

)
,

K21 = −24λAk1k2,

K22 = (1 + 8λA)
(
−k0k0 + k1k1 + k2k2 + k3k3

)
,

K23 = 24λAk0k3,

K33 = (1 + 8λA)
(
−k0k0 + k1k1

)

+ (1 − 16λA)
(
k2k2 + k3k3

)
.

(17)

The condition of Eq. (16) with non-zero solution is K11K22

K33 = 0. The first root K11 = 0 leads to the modified light
cone

(1 − 16λA)
(
−k0k0 + k1k1

)

+ (1 + 8λA)
(
k2k2 + k3k3

)
= 0, (18)

which corresponds to the case the polarisation vector aμ is
proportional to lν and the strength fμν ∝

(
kμlν − kνlμ

)
.

The second root K22 = 0 means that a · l = 0 and a ·
r = 0 in Eq. (16), which implies aμ = λkμ and then fμν

vanishes [25]. Thus, this root corresponds to an unphysical
polarisation and it should be neglected for general directions
of propagation of the coupled photon. The third root is K33 =
0, i.e.,

(1 + 8λA)
(
−k0k0 + k1k1

)

+ (1 − 16λA)
(
k2k2 + k3k3

)
= 0, (19)

which means that the vectoraμ = λrμ and the strength fμν ∝(
kμrν − kνrμ

)
.

It is easy to find that the light cone conditions Eqs. (18)
and (19) indicate that the motion of the coupled photons
in the equatorial plane is non-geodesic in the Kerr metric.
In fact, these photons follow null geodesics of the effective
metric γμν , i.e., γ μνkμkν = 0 [49]. Moreover, the effects of
Weyl tensor on the photon propagation are different for the
coupled photons with different polarizations, which yields a
phenomenon of birefringence in the spacetime [26,27,59–
61,65,65].

The effective metric for the coupled photon in the standard
Boyer-Lindquist coordinates can be expressed as
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ds2 = − f (r) dt2 + dr2

f (r)

+W (r)−1 r2
(
dθ2 + sin2θdφ2

)
. (20)

The quantity W (r) is

W (r) = 6r3 − 8λ
(
6M + β2r

)
6r3 + 16λ

(
6M + β2r

) , (21)

for photon with the polarization along lμ (PPL) and

W (r) = 6r3 + 16λ
(
6M + β2r

)
6r3 − 8λ

(
6M + β2r

) , (22)

for photon with the polarization along rμ (PPR), respectively.

3 Weyl corrections to photon sphere radius and angular
radius of the shadow

3.1 Photon sphere radius

In this subsection, we will discuss the Weyl correction to
photon sphere radius and angular radius of the shadow. For
simplicity, we here just consider that the whole trajectory of
the photon is limited on the equatorial plane θ = π

2 . Since the
existence of cyclic coordinates t and φ in spacetime Eq. (20),
we can obtain two constants of motion

E = f (r) ṫ, L = r2W (r)−1 φ̇, (23)

where a dot represents a derivative with respect to affine
parameter σ along the geodesics. E and L are, respectively,
the energy and angular momentum of the photon.

Using the the null geodesics of the effective metric con-
dition γ μνkμkν = 0, one can find that
(
dr

dσ

)2

= f (r)

[
E2

f (r)
− W (r)

L2

r2

]
. (24)

Combining Eq. (24) with dr
dσ

= 0 and d2r
dσ 2 = 0, we obtain

the photon sphere radius rph in the equatorial plane satisfying
the condition

W (r)
[
r f ′ (r) − 2 f (r)

] + rW ′ (r) f (r) = 0. (25)

First, as an example, we show the effect of parameter α

related to the cosmological constant on the photon sphere

Table 1 Dependence of rph and the angular radius of the shadow θsh
on the parameter α related to the cosmological constant for PPL. Here
we choose Sgr A* as an example and set 2M = 1, β = 0.1, and λ = 0.05

α 10−12 10−14 10−16 10−18 10−20

rph 1.639032 1.639032 1.639032 1.639032 1.639032

θsh(μas) 29.2310 29.2931 29.2937 29.2937 29.2937

radius rph and the angle radius θsh of the black hole shadow
(the approach is given in the next subsection) for PPL in
Table 1. According to Table 1, it is easy to find that the dif-
ference of θsh between α = 10−12 and α = 10−20 is of
order 10−3 ∼ 10−2 μas, which is far less than the angu-
lar resolution of the Event Horizon Telescope (EHT) and
the space-based very-long baseline interferometry (VLBI)
RadioAstron [66,67]. Therefore we only present the varia-
tion of rph with the coupling factor α and X-cold dark matter
parameter β for PPL and PPR in Figs. 1 and 2, respectively.

It is shown that, for different values of β, the photon sphere
radius rph increases with the coupling parameter λ for PPL
and decreases for PPR. Moreover, with the increase of β, rph
for a fixed value of the coupling parameter λ increases for
two different coupled photons. In general, the photon sphere
radius rph depends on the coupling parameter λ, β, and the
polarization, which is quite different from that in the case
without the coupling. In other words, the presence of the
coupling leads to the diversity of the photon sphere radius
rph .

3.2 Angular radius of the shadow

For the simplest case of a non-rotating black hole, the shadow
is a circular disk in the sky. If the black hole is uncharged,
it is to be modeled by the Schwarzschild metric. For a static
observer in the spacetime of a Schwarzschild black hole, the
angular radius of the shadow was calculated in a seminal
paper by Synge [68]. Making use of this method, one can
obtain the corrected angular radius of the shadow θsh in the
Brane-World black hole spacetime (2)

sin2 θsh = f (rO) r2
phW (rO)

f
(
rph

)
r2
OW

(
rph

) . (26)

Here, we assume that the observer is located at radius coor-
dinate rO with angular coordinate θO = π

2 .
As an example, we consider the supermassive black hole

Sgr A* located at the Galactic center. The mass is estimated
to be M = 4.4 × 106 M� and its distance from the earth is
around 8.5 kpc [69]. Substituting these data into the Eq. (26),
the angular radius of the shadow yielded by the photons cou-
pling with the Weyl tensor in the Brane-World spacetime are
obtained and shown in Figs. 3 and 4.

From Fig. 3, we find that for different β, the angular radius
of the shadow θsh monotonically increases with the coupling
parameter λ for PPL and decreases for PPR. In Fig. 4, with the
increase of β, the angular radius of the shadow αsh increases
for two different coupled photons. Considering that due to
the coupling photons with different polarization directions
propagate along different paths in the spacetime, it is natu-
rally expected that there exists a double shadow for a black
hole as photons couple to the Weyl tensor. The overlap region
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Fig. 1 Variation of the photon
sphere radius rph with the
coupling constant λ in a
Brane-World black hole
spacetime. The left and the right
are for PPL and PPR,
respectively

Fig. 2 Variation of the photon
sphere radius rph with the
X-cold dark matter parameter β

in a Brane-World black hole
spacetime. The left and the right
are for PPL and PPR,
respectively

Fig. 3 Variation of the angular radius of the shadow with the coupling constant λ in a Brane-World black hole spacetime. The left and the right
are for PPL and PPR, respectively

of the double shadow is called an umbra. In Fig. 3, we see
that, for different parameter β, the size of umbra is always
determined by PPL when λ is negative and by PPR when
λ is positive. Moreover, one can find that the umbra of the
black hole increases with the X-cold dark matter parameter β

and decreases with the coupling strength. And they coincide
with the conclusions in Ref. [57]. In order to see more clearly

the effect of β and the coupling parameter λ on the angular
radius of penumbra of the black hole �θsh , we have made
Fig. 5. It is shown that the size of penumbra increases with
the coupling parameter λ and decreases with the X-cold dark
matter parameter β. We can find that �θsh = 0 without the
coupling, which means the double shadow of the black hole
is reduced to a single shadow.
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Fig. 4 Variation of the angular radius of the shadow with the X-cold dark matter parameter β in a Brane-World black hole spacetime. The left and
the right are for PPL and PPR, respectively

Fig. 5 Evolution of the penumbra of the black hole with the coupling constant λ and the X-cold dark matter parameter β in the Brane-World black
hole spacetime

4 Deflection angle of light with finite-distance
corrections in the Brane-World black hole

In this section, we proceed to study the deflection angle of
light using the methodology given by Ishihara et al. [70,71]
under the assumption that the distance from the source (S) to
the receiver (R) is finite.

Light rays satisfy the null condition as ds2 = 0, which is
rearranged as, via Eq. (20)

dt2 = γ̃i j dx
i dx j = dr2

f 2 (r)
+ r2

W (r) f (r)
, (27)

where i and j denote 1 and 2, γ̃i j is called the optical metric.
The optical metric defines a 3-dimensional Riemannian space
(denoted as Mopt ), in which the light ray is expressed as a
spatial curve. As usual, we define the impact parameter of
the light ray as

b ≡ L

E
= r2

W (r) f (r)

dφ

dt
. (28)

By using Eqs. (27) and (28) by introducing a new variable as
u = r−1, one can obtain the orbit equation as

(
du

dφ

)2

= 1

b2W 2 − f u2

W
≡ F (u) . (29)

Then, φRS is obtained as

φRS =
∫ R

S
dφ = [π − arcsin(buR) − arcsin(buS)]

+ M

b

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠

+ 8Mλ

b3

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠

+ φ∗
1 (α, β, λ)

+ O
(
bM2u3

R, bM2u3
S,

M2λu3
R

b
,
M2λu3

S

b
,

M2λ2u3
R

b3 ,
M2λ2u3

S

b3 , b3α2uR, b3α2uS

)
,

(30)
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Fig. 6 Triangle embedded in the curved space Mopt . Here, the point
L denotes the lens center

for PPL and

φRS =
∫ R

S
dφ = [π − arcsin(buR) − arcsin(buS)]

+ M

b

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠

− 8Mλ

b3

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠

+ φ∗
2 (α, β, λ)

+ O
(
bM2u3

R, bM2u3
S,

M2λu3
R

b
,
M2λu3

S

b
,

M2λ2u3
R

b3 ,
M2λ2u3

S

b3 , b3α2uR, b3α2uS

)
,

(31)

for PPR, respectively. Here, the detailed forms of φ∗
1 and φ∗

2
are shown in the appendix.

Let � denote the angle of the light ray measured from
the radial direction. Accordingly, the �R and �S denote the
angles that are measured at the receiver position (R) and the
source position (S), respectively. Please see Fig. 6.
Using the unit tangent vector ei along the light ray orbit in
the space Mopt which satisfies the relation γ̃i j ei e j = 1, we
can obtain � in terms of the following relation [70]

sin � = b
√
W f

r
. (32)

By Eq. (32), we find that �R − �S for both PPL and PPR
take this form under the low-order approximations:

�R − �S = �Sch
R − �Sch

S

− b√
1 − b2u2

R

[
αβ + α2

2uR
+ α2M

2
(
1 − b2u2

R

)
]

− b√
1 − b2u2

S

[
αβ + α2

2uS
+ α2M

2
(
1 − b2u2

S

)
]

+O
(
bM2u3

R, bM2u3
S, bM

2α2uR, bM2α2uS,

bMαβuR, bMαβuS, bβ
2uR, bβ2uS

)
,

(33)

where

�Sch
R − �Sch

S ≡ [arcsin (buR) + arcsin (buS) − π ]

−bM

⎛
⎝ u2

R√
1 − b2u2

R

+ u2
S√

1 − b2u2
S

⎞
⎠ .

(34)

Let φRS ≡ φR − φS denote the coordinate separation angle
between the receiver and source. Then the deflection angle
α̂ is expressed as [70]

α̂ ≡ �R − �S + φRS, (35)

where the closest approach r0 = u−1
0 . That is to say, basically,

one can find the deflection angle α̂ by just computing �R ,
�S , and φRS and applying Eq. (35).

Inserting Eqs. (30), (31) and (33) into Eq. (35), the deflec-
tion angle can be obtained as

α̂ =M

b

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠

+ 8Mλ

b3

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠

− M

⎛
⎝ bu2

R√
1 − b2u2

R

+ bu2
S√

1 − b2u2
S

⎞
⎠

− bα2

2

⎛
⎝ 1

uR

√
1 − b2u2

R

+ 1

uS
√

1 − b2u2
S

⎞
⎠ + α̂∗

1

+ O
(
bM2u3

R, bM2u3
S,

M2λu3
R

b
,

M2λu3
S

b
, · · · , bβ2uR, bβ2uS

)
,

(36)
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for PPL. Similarly, for PPR, we have

α̂ =M

b

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠

− 8Mλ

b3

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+ 2 − b2u2
S√

1 − b2u2
S

⎞
⎠

− M

⎛
⎝ bu2

R√
1 − b2u2

R

+ bu2
S√

1 − b2u2
S

⎞
⎠

− bα2

2

⎛
⎝ 1

uR

√
1 − b2u2

R

+ 1

uS
√

1 − b2u2
S

⎞
⎠ + α̂∗

2

+ O
(
bM2u3

R, bM2u3
S, bM

2α2uR, bM2α2uS,

bMαβuR, bMαβuS, bβ
2uR, bβ2uS

)
.

(37)

Here, the detailed forms of α̂∗
1 and α̂∗

2 are shown in the
appendix.

Note that some terms in these two expressions may appar-
ently diverge as buR → 0 and buS → 0. This is because
the spacetime is not asymptotically flat and hence it does
not allow the limit of buR → 0 and buS → 0. However,
from a physical point of view, we know that an observed star
or galaxy is located at a finite distance from us [70,72]. In
other words, we can consider only finitedistance corrections
in this case, one can include only a certain finite distance
which leads to the further simplified relations

α̂ ∼4M

b
− bα2

2

(
1

uR
+ 1

uS

)
+ bMα2

+ 32Mλ

b3 + 48M2αβ

b
+ 8Mβ2

b
+ 768M2αβλ

b3

+ 256Mβ2λ

3b3 + 6144M2αβλ2

b5
+ 1024Mβ2λ2

3b5
,

(38)

for PPL and

α̂ ∼4M

b
− bα2

2

(
1

uR
+ 1

uS

)
+ bMα2 − 32Mλ

b3

+ 48M2αβ

b
+ 8Mβ2

b
− 768M2αβλ

b3

− 256Mβ2λ

3b3 + 43008M2αβλ2

b5
+ 7168Mβ2λ2

15b5
,

(39)

for PPR, respectively. Finally, we see that, when β = 0,
λ = 0, and α2 = �

3 , the deflection angle will reduce to the
form in Kottler spacetime [70].

5 Conclusions and discussions

In this paper, we have studied the equation of motion of
the photon coupled to Weyl tensor by the geometric optics
approximation and the corresponding shadow and weak grav-
itational lensing in a Brane-World black hole spacetime.
Since the metric contains both dark energy parameter α and
X-cold dark matter parameter β, we choose it as the back-
ground black hole spacetime. We find that the shadow and
the gravitational lensing depend not only on the properties
of background black hole spacetime, but also on the polar-
ization of the coupled photon.

By calculating the shadow of the Brane-World black hole,
we find that the photon sphere radius rph increases with
the coupling parameter λ for PPL and decreases for PPR.
And with the increases of β, rph increases for two different
coupled photons. Moreover, we have investigated the double
shadow of the black hole as photons couple to the Weyl ten-
sor, which does not appear in the non-coupling case where
only a single shadow emerges. Combining with the super-
massive central object in our Galaxy, we find the umbra of
the black hole increases with the parameter β and decreases
with the coupling strength. The dependence of the penumbra
on the parameter β and the coupling strength is converse to
that of the umbra.

We also study the gravitational deflection angle of light
with finite-distance corrections in the weak deflection limit
by means of a recent geometric method. Since the Brane-
World black hole spacetime is nonasymptotically flat, the
limit buR → 0 and buS → 0 is not allowed. However, it is
not problematic because we can only observe a given star or
a galaxy in finite distance from us.

Very recently, first images of the black hole M87 at the
center of the Virgo A galaxy was obtained using the sub-
millimeter “EHT” based on the VLBI [73]. We anticipate that
future observations with highly improved techniques would
be able to test our results by the observation of black hole
shadow and the detection of light deflection angle.
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Appendix: Expressions of φ∗
1 , φ

∗
2 , α̂

∗
1 and α̂∗

2

By using Eq. (29), φRS is expanded in a power series as
Eq. (30) or Eq. (31), where

φ∗
1 =bMα2

2

⎡
⎢⎢⎣

2 − 3b2u2
R(

1 − b2u2
R

) 3
2

+ 2 − 3b2u2
S(
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S

) 3
2

⎤
⎥⎥⎦

+ bαβ
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1 − b2u2
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S

⎞
⎠

+ 3M2αβ

b

×

⎡
⎢⎢⎣

8 − 20b2u2
R + 15b4u4

R(
1 − b2u2

R

) 5
2
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S(
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S

) 5
2

⎤
⎥⎥⎦
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2b

⎡
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R(

1 − b2u2
R

) 3
2
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S(
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S

) 3
2

⎤
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b3

×

⎡
⎢⎢⎣

8 − 20b2u2
R + 15b4u4

R(
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R
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) 5
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⎤
⎥⎥⎦

+ 64Mβ2λ

3b3

⎡
⎢⎢⎣

2 − 3b2u2
R(

1 − b2u2
R

) 3
2

+ 2 − 3b2u2
S(

1 − b2u2
S

) 3
2

⎤
⎥⎥⎦

+ 384M2αβλ2

b5

×

⎡
⎢⎢⎣

8 − 20b2u2
R + 15b4u4

R(
1 − b2u2

R

) 5
2

+8−20b2u2
S + 15b4u4

S(
1−b2u2

S

) 5
2

⎤
⎥⎥⎦

+ 256Mβ2λ2

3b5

⎡
⎢⎢⎣

2 − 3b2u2
R(

1 − b2u2
R

) 3
2

+ 2 − 3b2u2
S(

1 − b2u2
S

) 3
2

⎤
⎥⎥⎦ ,
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Similarly, after some calculations, we have
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