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Abstract Certain scalar-tensor (ST) theories with non-
minimal coupling of the scalar field to curvature may admit
an Einstein frame representation, where gravity is described
by the Einstein–Hilbert action plus the scalar sector. Between
them, some theories exactly coincide in their respective Ein-
stein frames. If transformations between Jordan and Einstein
frames are invertible, these theories can be associated with
two Jordan frames of the unique theory. Such successive dual-
ities can connect theories with non-derivative coupling, like
Rφ2, with derivatively coupled theories, like Horndeski and
DHOST. In absence of matter, these are equivalent, though
looking very different. We show the existence of a successive
duality between the Rφ2 theory and a recently found Pala-
tini kinetically coupled theory, which both look in their Ein-
stein frames as Einstein theory minimally coupled to scalar.
Transforming singular exact solutions of the latter to Jor-
dan frames, we compare desingularization properties of the
above two theories which both violate the null energy condi-
tion. It is found that kinetically coupled theory has stronger
desingularization features, exhibiting possibility of Genesis-
type behavior of the homogeneous and isotropic cosmologi-
cal solutions.

1 Introduction

Scalar-tensor theories with non-minimal coupling of the
scalar field to curvature remain the theories of the first
choice in the search of modified gravity which could explain
inflation, dark energy and (possibly) dark matter, for recent
reviews see Refs. [1–6]. The unusual properties of such the-
ories are closely related to violation of the energy conditions
of General Relativity. Recall, that the strong energy condi-
tion within the Friedmann–Robertson–Walker (FRW) cos-
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mology means that the energy density and pressure satisfy
the inequality ε + 3p ≥ 0, implying that the universe is
non-accelerating. This condition can be violated already by
the minimally coupled scalar field with a potential. The null
energy condition (NEC), ε + p ≥ 0, is more robust; it is
violated only in non-minimal ST theories, such as the con-
formally coupled scalar-tensor theory [7,8] or derivatively
coupled theories: Horndeski, beyond Horndeski and degen-
erate higher order scalar-tensor theories (DHOST) [9]. Vio-
lation of NEC can drastically change behavior of the space-
time metrics near static or cosmological singularities both
for non-derivative and derivative couplings.

A notable example of a non-derivative ST theory violating
NEC is the ξ Rφ2 theory, which is conformal (in four dimen-
sions) for ξ = 1/6. Its Jordan frame (which will be called
conformal frame in what follows irrespectively to the value
of ξ ) is related to the Einstein frame by a conformal trans-
formation, which is invertible excluding singular points of
the conformal factor. Since the non-minimal term contains
second derivatives of the metric, its effective stress tensor
differs from that of the minimal theory. Recall that it was
first found by Chernikov and Tagirov [10], then rediscov-
ered in the QFT context as an “impoved energy momentum
tensor” by Callan: [11], and further by Parker [12] in curved
spacetime (for some later discusstion see, e.g., [13]. That this
tensor violates various energy conditions was noted long ago
by Beckenstein [14], demonstrating possibility of avoiding
the cosmological singularity. Later work in this directions
included, in particular, the Refs. [15–18].

This theory also attracted attention in connection with
inflation. For ξ �= 1/6, the ξ Rφ2 theory is no longer confor-
mal, but it turned out to be useful for inflation in the case of
large negative ξ . In fact, earlier attempts to associate inflation
with the only physically known scalar field, Higgs, were not
successful in the case of minimal coupling, since the mass
needed to accomodate the observed density perturbations had
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to be of the order 1013 GeV, and the self-coupling constant to
be very small, λ ∼ 10−13. This was improved by including
the non-minimal coupling of the type ξ Rφ2 [19] with large
negative ξ , in which case the tuning of the Higgs mass could
be diminished [20], but at the price of unnaturally large value
of |ξ |. Somewhat better the situation with perturbations of the
ξ -Higgs inflation was in the Palatini treatment of the same
theory [21]. Still, the problem persisted with unitarity for
quantized perturbations [22]. To cure this, the derivatively
coupled ST theory was suggested (new Higgs inflation) [23],
which was also studied in combination with the ξ Rφ2 term
[24]. Moreover, it was found that derivatively coupled STs
can provide inflationary attractors without scalar field poten-
tials at all [25–32].

Extremely popular became the derivatively coupled ST
theories after discovery of the ghost-free massive gravity and
the Galileon theories. This led to Horndeski [33] class, redis-
covered as generalized Galileons [34,35], beyond-Horndeski
[36,37] and DHOST theories encompassing finally the whole
set [4,38]. Initially they were proposed in the metric formal-
ism, but later also considered in Palatini [39–48] and hybrid
[45,49] versions. Generically, Palatini formulation of non-
minimal theories leads to equations of motion different from
their metric counterpart, however, the question may be sub-
tle in some cases (see discussion of the f (R) theory in Ref.
[50]).

Proliferation of derivatively coupled theories led to atte-
mpts to explore general properties of the ST landscape [4,51].
An important tool for this is provided by disformal dualities
which are typically present in this framework. Introduced by
Bekenstein [52] on the basis of Finsler geometry as gener-
alization of conformal transformations, they reappeared in
derivatively coupled ST theories as relations between dif-
ferent frames [53–57]. They can be used to obtain new
Lagrangians, or as the solution generation tools [44,57], they
also naturally arise in Palatini versions of STs [42,44,48] as
relating two canonical frames. Special class constitute invert-
ible disformal transformations: these do not change the num-
ber of degrees of freedom [58–65], so two ST theories related
by an invertible disformal transformation mathematically are
equivalent. This is true, of course, only for theories without
matter, since the matter makes the choice of the physical
frame where the matter enters in a canonical way.

Here we want to draw attention to the group property of
invertible transformations, either conformal, or disformal:
two successive transformations generate another invertivle
transformation up to subtleties with their respective domains
(here we will not discuss restrictions due to domain def-
initions which are certainly important in general). Conse-
quently, two different ST theories, admitting an Einstein
frame, in which the metric sector is described by the Einstein–
Hilbert action, and the scalar sector is the same, will be suc-
cessively dual to each other. If the scalar sector in the Ein-

stein frame is described by equations of the second order,
both such STs will be free from Ostrogradsky instabilities.
Of particular interest is the class of ST theories which are
invertibly reduced in their Einstein frames just to minimal
Einstein-scalar theory (MES). Then you can use frame trans-
formations as solution generating technique to explore new
theories in the situations which are considered as problematic
in the General Relativity, especially near singularities.

Recently, a new type of behavior attracted attention in
the cosmological solutions of STs with higher derivatives,
such as Galileon [66] and DHOST [67] theories. The univers
starts from (or passes through after previous evolution) the
Minkowsky space and demonstrates there a sharp violation
of NEC, implying that the Hubble parameter satisfies the
condition Ḣ � H2. In this case, the usual inflation sce-
nario can sometimes be replaced by an alternative scenario
called Genesis [66]. It woud be interesting to know whether
this behavior can occurs in more familiar ST theories includ-
ing the non-derivatively coupled ones. Here we address this
question using exact solutions which can be generated in
the class of MES-dual theories. Mention in passing that the
modification of Penrose-Hawking singularity theorems with
weakened energy conditions was recently discussed in [68–
70].

Consider two different STs which reduce to MES in their
respective Einstein frames and which, therefore, are succes-
sively dual. Both Brans-Dicke and ξ Rφ2 theories, as well
some other STs non-minimally coupled to scalar without
derivatives, share this property, and the transition to their
Einstein frame is done through invertible conformal trans-
formations. Using any exact solution of the MES theory, it
is possible to generate solutions of these two non-minimal
STs in their Jordan frames. Moreover, if the transformations
between frames are invertible, one can start with a known Jor-
dan frame solution of one ST, convert it to the Einstein frame,
and then convert again into the Jordan frame of another ST.
To find such dual pair of theories within the set of deriva-
tively coupled STs is a non-trivial task. Here we discuss one
such theory which belongs to kinetically coupled class and
which does not belong to the Horndeski class in the metric
formalism (neither to DHOST).

Desingularization in the ξ Rφ2-theory is well-known.
Transformation to the Einstein frame in STs was discussed
by Wagoner in 1970 [71] and Bronnikov in 1973 [72] (apart
from ealier discussion in the context of Brans-Dicke the-
ory). Bekentstein adressed the theory Rφ2/6 [73] and for-
mulated transformations in an elegant form using the hyper-
bolic functions. Having applied them to one of the Ficher-
Janis-Newman-Winicour (FJNW) static spherically symmet-
ric solution of MES with a singular “would be” horizon, he
obtained (with the Maxwell field added) an asymptotically
flat black hole [75] which coincided with the solutions found
in 1970 by Bocharova, Bronnikov and Melnikov [74]. Beken-
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stein’s duality was independently rediscovered and discussed
by many people [76–80]. Conversion to an Einstein frame
(but not to MES) was found for non-minimal models includ-
ing arbitrary functions F(φ)R and F(R, φ) [81], including
the cosmological constant [82] or potentials [83] in the MES
frame, in higher dimensions [84]. Later, the Palatini version
of this theory was also discussed, for relationship with the
metric approach and the references, see [21].

At the same time, physical (non)equivalence of the Jor-
dan frame and the Einstein frame was subject of long dis-
cussion, for a review of papers prior to 1994 see [83,85,86],
for more recent aspects and references see [87–93]. Invert-
ible conformal symmetries preserve Noether symmetries of
cosmological solutions in two frames [94]. Further interest-
ing aspects of the frame relationship in the cosmological
context is related to the concept of conformally connected
lagrangians [95]. But two dual forms of scalar-tensor the-
ory differ significantly when matter terms are added to them.
Another aspect of (non)equivalence is related to issues of
stability and the quantum-level properties, this also remain
the subject of discussion [96–99]. All these discussions are
relevant to conformally related Jordan and Einstein frames,
the case of disformally related frames for the moment is not
elaborated in detail.

Here we will explore the difference of two Jordan frames
of successively dual theories near the MES-frame singular-
ities, revealing that the derivative coupling ensures stronger
violation of NEC than the conformal coupling. Namely, the
static singular MES solution becomes a black hole horizon in
the Rφ2 Jordan frame, but exhibit globally regular behavior
in the new kinetic theory frame. The cosmological MES sin-
gularity, within the non-derivative ST, becomes just the start
of the universe from Minkowsky spacetime with the subse-
quent decelerating expansion, while in the kinetic frame it
exhibits sharp violation of NEC generating the Genesis-type
behavior.

The plan of the paper is as follows. In Sect. 2 we revisit
the non-derivative ξ Rφ2 theory discussing transformations
to the Einstein frame, NEC violation and other aspects. In
Sect. 3 we consider the two-coupling derivative theory, which
for some particular ratio of the couplings reduces to Horn-
deski class in the metric approach. We then adopt Palatini
formulation, showing that the theory is ghost-free for arbi-
trary couplings while for another ratio of two couplings the
theory it is disformally dual to MES and, therefeore, succes-
sively dual to the theory ξ Rφ2. In Sect 4 we use dualities
as generating technique to construct Jordan frame duals for
the static FJNW solution and the stiff-matter FRW cosmol-
ogy in the Jordan frames of both theories, comparing their
desingulariziation features. The results are summarized in
Sect. 5.

2 Non-derivative theory ξ Rφ2

For the reader’s convenience, we briefly review the main
features of this theory, which is one of the oldest ST with
non-minimal non-derivative coupling [73,76–80]:

S =
∫

d4x
√−g

(
R − gμν∂μφ∂νφ − ξ Rφ2 − 2V (φ)

)
,

(1)

where we set 8πGN = 1. Variation of this action with respect
to the metric and the scalar field gives the Euler-Lagrange
equations:

Gμν = T φ
μν, �φ − ξ Rφ = 0, (2)

where the stress energy tensor is

T φ
μν = ∂μφ∂νφ − 1

2
gμνg

αβ∂αφ∂βφ − gμνV+ (3)

+ ξ
[
gμν� − ∇μ∇ν + Gμν

]
φ2. (4)

The Weyl transformation φ → Ω−1φ, gμν → Ω2gμν ,

leaves the Eqs. (2) invariant if ξ = 1/6. In addtion, T φ
μν →

Ω−2T φ
μν , if V = 0. Then the trace of T φ

μν vanishes on shell
[10–12]:

gμνT φ
μν = φ

(
�φ − R

6
φ

)
= 0, (5)

and R = 0, as expected for a conformal field, and so �φ = 0
on shell.

Attributing the Einstein tensor term in (3) to the left hand
side of the Einstein equation, we obtain the effective stress
tensor:

Gμν = T eff
μν = (1 − ξφ2)−1

[
∂μφ∂νφ − 1

2
gμνg

αβ∂αφ∂βφ

− gμνV + ξ
(
gμν� − ∇μ∇ν

)
φ2

]
. (6)

2.1 Einstein frame

To pass to Einstein frame we recale the metric [73,77]

ĝμν = Ω2gμν, Ω2 = |1 − ξφ2|, (7)

arriving at the following action
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S =
∫

d4x
√

−ĝ
(
R̂ − F2(φ)ĝμν∂μφ∂νφ − V̂ (φ)

)
, (8)

where R̂ is the Ricci scalar of the new metric,

V̂ = V

(1 − ξφ2)2 , F2 = 1 − ξ(1 − 6ξ)φ2

(1 − ξφ2)2 , (9)

are the new potential and the kinetic prefactor.
To put the kinetic term into the standard form one has to

pass to a new scalar field ϕ̂, related to φ via

dϕ̂

dφ
= F(φ). (10)

This redifinition results in the Einstein frame action

SE =
∫

d4x
√

−ĝ
(
R̂ − ĝμν∂μϕ̂∂νϕ̂ − V̂ (ϕ̂)

)
, (11)

where the potential has to be expressed through the new scalar
field. The Eq. (10) can be integrated explicitly as follows [77]:

ϕ̂ =

⎧⎪⎪⎨
⎪⎪⎩

√
ν/ξ arcsin(

√
νξ φ) + √

3/2 ln
∣∣W+
W−

∣∣ ξ < 1/6,
√

3/2 ln
∣∣∣ 1+√

6ξφ

1−√
6ξφ

∣∣∣, ξ = 1/6,
√

ν/ξ arcsinh(
√

νξ φ) + √
3/2 ln

∣∣W+
W−

∣∣, ξ > 1/6,

ν = |1 − 6ξ |, W± = √
6ξφ ±

√
1 − νξφ2. (12)

For ξ = 1/6, V = 0 these transformations reduces to the
original form of conformal transformation found by Beken-
stein [73] and suggested as generating technique to construct
solutions Rφ2/6 theory from the solutions of MES: from any
solution ĝμν, ϕ̂ of the theory,

S =
∫

d4x
√

−ĝ
(
R̂ − ĝμν∂μϕ̂∂νϕ̂

)
, (13)

a solution gμν, φ to the theory Rφ/6 theory is obtained via
the transformation

gμν = (1 − φ2/6)−1ĝμν, φ = √
6 tanh(ϕ̂/

√
6). (14)

This transformation is invertible, provided the value φ2 = 6
is not reached, an inverse map being

ĝμν = cosh2(φ/
√

6) gμν, ϕ̂ = √
6(tanh)−1(φ/

√
6).

(15)

Maeda [81]) had shown that a more general theory with the
non-minimal functional coupling F(R, φ) can be reduced to
the Einstein–Hilbert term plus scalar fields (but not MES).

2.2 Generating Mexican hat potential

Now let’s start with the MES theory with the cosmological
constant:

SE =
∫

d4x
√

−ĝ
(
R̂ − 2Λ − ĝμν∂μϕ̂∂νϕ̂

)
, (16)

and apply the inverse duality transformations (15). The cos-
mological term then generats in the Jordan frame action a
potential term [82]:

S =
∫

d4x
√−g

(
R − gμν∂μφ∂νφ − 2V − 1

6
Rφ2

)
,

(17)

which has a Mexican hat shape

V = λ

4
(φ2 − v2)2, (18)

where in dimensionful units

λ = 8πGNΛ

9
, v2 = 3

4πGN
, (19)

and GN is the Newton constant. Note that the vacuum expec-
tation value v of Higgs is not a free parameter, but up to a
factor is equal to the Planck’s mass. In particular, one can not
set V = 0, so the resulting theory is not conformal. The case
of more general potentials in MES-frame was considered in
[83].

2.3 Violation of NEC

The null energy condition for the effective stress-tensor reads

T eff
μν l

μlν ≥ 0, lμlμ = 0, (20)

for any null vector lμ. Substituting (6), one obtains [8]:

(1 − ξφ2)−1
[
(φ′)2 − ξ(φ2)′′

]
≥ 0, (21)

where φμ = ∂μφ, and the prime operation is defined as
φ′ = lμ∇μφ. Therefore, for ξ < 0 , any local maximum of
φ2 violates NEC, similarly for ξ > 0 , any local minimum of
φ2 with ξφ2 < 1 and any local maximum of φ2 with ξφ2 > 1
violate NEC.

2.4 Palatini

In the Palatini (or metric-affine) version [21], connection is
treated as independent field which has to be fixed by varying
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the action SP (Γ̂ , g):

SP =
∫

d4x
√−g

(
R̂μν(Γ̂ )gμν(1 − ξφ2)

− gμν∂μφ∂νφ − 2V (φ)
)
. (22)

Generically, independent variation of the connection gener-
ates non-metricity and torsion. In this case the Ricci tensor is
not symmetric. However, the action (22) includes only sym-
metric part of it. As a result, it is invariant under projective
transformation of the connection (for a recent discussion see
[100]

Γ λ
μν → Γμν + Aμδλ

ν , (23)

in which case torsion can be consistently set to zero [101–
103]. Then the Ricci tensor R̂μν(Γ̂ ) should be varied as

δ R̂μν = ∇̂λδΓ̂
λ
μν − ∇̂νδΓ̂

λ
μλ, (24)

where the covariant derivative with respect to the Palatini
connection is understood. Variation of (22) with respect to
Γ̂ , after integration by parts, leads to the following equation

∇̂λ

[
gμν(1 − ξφ2)

√−g
]

= 0. (25)

With the field redefinition (7), one can rewrite this as

∇̂λ(ĝ
μν

√
−ĝ) = 0, (26)

showing that the Palatini connection is nothing but the Levi-
Civita connection of the Einstein frame metric.

Variation of (22) with respect to metric gμν gives the Ein-
stein equation which can be written in terms of the Einstein
frame metric as follows

R̂αβ

(
δα
μδβ

ν − 1

2
ĝμν ĝ

αβ

)
= φμφν

1 − ξφ2

− 1

2
ĝμν

(
φαφβ ĝ

αβ + 2V
)
.

(27)

3 Derivative coupling

3.1 The metric theory

Consider the action with non-minimal coupling of the scalar
filed to Ricci tensor and Ricci scalar defined by the Levi-
Civita connection

S =
∫

d4x
√−g[R − (

gμν + κ1gμνR + κ2Rμν

)
φμφν−

− 2V (φ)], (28)

whereφμ = φnugμν and two coupling constants have dimen-
sion of inverse mass squared. The Ricci scalar is defined
though the Levi-Civita connection of the metric gμν , its vari-
ation is given by

δRμν = ∇λ∇(μδgν)λ − 1

2
�δgμν − 1

2
gλρ∇μ∇νδgλρ. (29)

Applying this to (28) and commuting some covariant deriva-
tives one obtains the equation

Gμν = Tμν + κ1Θ
1
μν + κ2Θ

2
μν, (30)

where the first terms is the minimal energy-momentum
tensor, Tμν = φμφν − gμν

(
φλφ

λ/2 − V (φ)
)
, while the

other terms correspond to separate contributions of two non-
mininmal couplings

Θ1
μν = φμφνR − φλφ

λGμν + (
gμν� − ∇μ∇ν

)
(φλφ

λ),

(31)

Θ2
μν = 2φαφ(μRν)α − φα∇αφμν

+ gμν

(
φαβφαβ/2 + (�φ)2/2 + φα∇α�φ

)
, (32)

where φαβ = ∇αφβ and Gμν is the Einstein tensor. Variation
over φ gives the scalar equation

�φ + ∇μ

[∇νφ(κ1g
μνR + κ2R

μν)
] = 0. (33)

Obviously, for generic values of the coupling constants κ1

and κ2 both the Einstein and the scalar equations contain
higher derivatives of φ. Collecting the third derivative terms,
we find:

Θ3
μν = (κ2 + 2κ1)

(
gμνφ

α∇α�φ − φαφαμν

)
. (34)

These terms vanish in the case

κ2 + 2κ1 = 0, (35)

corresponding to the Einstein tensor in the Lagrangian (28).
The Ricci-terms in the scalar equation combine into the
Einstein tensor as well, so, in view of the Bianchi identity
∇μGμν = 0, which holds in the metric theory, the Eq. (33)
becomes the second order eqiation

[
gμν + κGμν

]∇μ∇νφ = 0. (36)

This case belongs to the Horndesky class.
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3.2 Palatini

In the Palatini version, the action will read

S =
∫

d4x
√−g

[
(R̂μν − φμφν)g

μν

− R̂αβφμφν(κ1g
αβgμν + κ2g

αμgβν)
]
. (37)

Similarly to the conformally coupled theory, this action
includes only the symmetric part of the Ricci tensor, and
it is projective invariant under (23). We therefore set torsion
to zero and make variation with respect to connection accord-
ing to (24). This gives the following equation for an unknown
connection:

∇̂λ

(√−gZμν
) = 0,

Zμν = λgμν − κ2φ
μφν, φμ = φαg

αμ (38)

where we have denoted

λ = (1 − κ1X), X = φαφβg
αβ. (39)

To solve the Eq. (38) with respect to Γ̂ we would like to
cast it into the form ∇̂λĝμν = 0 for some second metric, or
to some equivalent equation. Indeed, since Zμν√−g is the
tensor density we will try to introduce such a metric via an
identification

Zμν√−g = ĝμν
√

−ĝ, (40)

so that the determinant would be of the same metric. To pro-
ceed, we first construct the matrix Wμν , an inverse of the
matrix Zμν :

WμλZ
λν = δν

μ.

It can be obtained as linear combination of gμν and φμφν as
follows

Wμν = λ−1
(
gμν + κ2μ

−1φμφν

)
, (41)

where μ = 1 − (κ1 + κ2)X . To find the ratio of the determi-
nants, we rewrite this in the form

Wμν = λ−1gμλ

(
δλ
ν + Mλ

ν

)
, Mλ

ν = κ2λ
−1φλφν, (42)

where the matrix M has the property M2 ∼ M . For such
matrices the determinant is given by

det(1 + M) = 1 + trM. (43)

Then from (42) we obtain

det W = λ−4 det g (1 + κ2X/μ) = λ−3μ−1 det g. (44)

Since the determinant of Zμν is inverse to det W , we finally
find from (40) :

ĝ = gμλ3, (45)

and, using this, we obtain the second metric explicitely as

ĝμν = √
μλ

(
gμν + κ2μ

−1φμφν

)
. (46)

Now the Eq. (38) becomes

∇̂(ĝμν
√

−ĝ) = 0, (47)

so the Palatini connection will be the Levi-Civita connection
of the new metric:

Γ̂ λ
μν = ĝλτ

(
∂μĝλν + ∂μĝμλ − ∂λĝμν

)
/2. (48)

Now we turn to other equations of motion. Variation of the
action (60) with respect to the metric leads to the Einstein-
Palatini equation

λR̂μν−φμφν(1+κ1 R̂)−2κ2 R̂α(μφν)φ
α−gμνL/2 = 0, (49)

where the Lagrangian can be concisely presented as

L = R̂μν Z
μν − φμφνg

μν (50)

Finally, a variation over φ gives rise to a scalar equation

∂μ

[√−g
(
φμ + κ1 R̂φμ + κ2 R̂αβg

βμφα
)]

= 0, (51)

which, in principle, could contain higher-derivative terms.

3.3 Einstein frame

So far we have obtained the second metric ĝμν as an aux-
iliary one, needed to generate the Palatini connection. Note
that it is related to the physical metric gμν by a disformal
transformation (46). The inverse of ĝμν can be read off from
the Eq.(40) with account for the ratio of determiants (45):

ĝμν = μ−1/2λ−1/2 (
gμν − κ2φ

μφν/λ
)
. (52)

The functions λ and μ depend on the initial metric through
the norm of the gradient of the scalar field X = φμφνgμν ,
so to invert the transformation one has to express X through
the norm with respect to the second metric X̂ = ĝμνφμφν .
Contracting the Eq. (52) with φμφν we obtain the equation

X̂ = Xμ1/2λ−3/2. (53)
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Clearly, we have to restrict physical domain by the conditions
μ > 0, λ > 0. One must also avoid the critical point of the
function X̂(X) where the derivative

∂ X̂

∂X
= 2 − X (2κ1 + 3κ2)

2μ1/2λ5/2
(54)

is zero. This occurs at

X = Xcr = 2

2κ1 + 3κ2
, (55)

where the inverse derivative will diverge. But in the regions
of monotonicity of X̂(X) the Eq. (53) is a cubuc equation
obtained by squaring (53)

X̂2(1 − κ1X)3 − X2 [1 − (κ1 + κ2)X ] = 0, (56)

whose roots can be found explicitly (for more details see
[44]), so with such precautions, we can say that the transfor-
mation between two metrics is reversible.

In view of the relation

X
√−g = X̂μ−1

√
−ĝ, (57)

and the representation (50) of the Lagrangian, it is now an
easy task to express it entirely in terms of the second metric:

√−gL = √−g
(
R̂μν Z

μν − X
)

=
√

−ĝ
(
R̂μν − μ−1φμφν

)
ĝμν. (58)

We have obtained the Einstein–Hilbert term plus a modi-
fied scalar kinetic term without higher derivatives. In view
of invertibility of the transformation to the Einstein frame,
this means that the initial Palatini theory (60) is free of Ostro-
gradsky ghosts for general generic coupling constants κ1, κ2.
Recall that in the metric formalism it belongs to Horndeski
class only for κ2 = −2κ1.

3.4 New Palatini kinetic coupling

Now we see that, in the Palatini formalism, another particular
relation, namely,

κ2 = −κ1 = κ (59)

defines an exceptionally simple derivetively coupled ST the-
ory,

S =
∫

d4x
√−g

[
(R̂μν − φμφν)g

μν

− κ R̂αβφμφν(g
αμgβν − gαβgμν)

]
, (60)

in which case μ = 1, so our theory is disformally dual to
MES is in the Einstein frame [44]:

SE =
∫ √

−ĝ
[
Rμν(ĝ) − φμφν

]
ĝμνd4x . (61)

In this dual theory the Einstein equation reads

Rμν = φμφν, (62)

and the scalar obeys the covariant d’Alembert equation

�̂φ = 0. (63)

Note, that for the Einstein–Hilbert lagrangian both the metric
and the Palatini variations lead to the same equations, there-
fore, one can replace the Palatini Ricci scalar built with the
Levi-Civita connection of the Einstein frame metric, by the
usual metric scalar curvature

ĝμν R̂μν(Γ̂ ) = R(ĝ). (64)

One can verify that Eqs. (49) and (51) are satisfied by
virtue of Eqs. (62) and (63). First, we obtain that Eq. (62)
implies L = 0, R̂ = ψ , hence Eq. (49) holds. Using then
Eq. (62) in Eq. (51), we reduce the latter to (63). For this
one-parametric family of Lagrangians (note that both signs
of κ are relevant, depending on whether the φμ is timelike or
spacelike in the Einstein frame [44]).

We will be interested in the inverse disformal transforma-
tion from Einstein metric ĝμν to Jordan metric gμν . For this,
one has to express the factor λ through the Einstein-metric
norm X̂ = φμφν ĝμν . From the Eq. (56) with account for
(59) one obtains the following cubic equation for

√
λ:

2z
(√

λ/3
)3 + λ − 1 = 0, z = 3

√
3

2
κ1φμφν ĝ

μν, (65)

which has a real solution

λ1/2 =
√

3

2z

{
2 cos

( 1
3 arccos(2z2 − 1)

) − 1, z < 1,

A1/3 + A−1/3 − 1, z > 1,
(66)

where A = 2z
√
z2 − 1 + 2z2 − 1. Then the Jordan metric

will read:

gμν = ĝμνλ
−1/2 + κ1φμφν. (67)
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4 Resolution of static singularities

4.1 FJNW in the Einstein frame

The minimal scalar gravity (11) has a satic spherically sym-
metric solution, which was first found Fisher [104] and later
rediscovered by many people including Janis, Newman and
Winicour [105], nowadays commonly abbreviated as FJNW:

dŝ2 = −
(

1 − b

r

)γ

dt2 +
(

1 − b

r

)−γ

dr2

+ r2
(

1 − b

r

)1−γ

(dθ2 + sin2 θdϕ2),

ϕ̂ = q

b
ln

(
1 − b

r

)
, (68)

where q is the scalar charge and

γ =
(

1 − 2q2

b2

)1/2

, 0 < γ < 1.

It is asymptotically flat and has a curvature singularity at
r = b, unless γ = 1.

4.2 Conformal theory

Consider the case γ = 1/2, when all irrational powers are
square roots. Then q = b

√
3/8, and the Bekenstein’s trans-

formation reads:

φ =√
6 tanh(ϕ̂/

√
6) =

√
1 − b/r − 1√
1 − b/r + 1

, (69)

ds2 =(1 − φ2/6)−1dŝ2. (70)

Now perform the coordinate transformation:

1 − b

r
=

(
1 − b

2ρ

)2

. (71)

In terms of the new coordinates, the solution takes the BBMB
form [73]:

φ =
√

6m

ρ − m
, m = b

4
(72)

ds2 = −
(

1 − m

ρ

)2

dt2 +
(

1 − m

ρ

)−2

dρ2 + ρ2dΩ.

(73)

The metric conincides with the Reissner-Nordstrom extremal
solution, while the scalar field diverges on the horizion. As
was shown by Bekenstein [75], the singularity is unseen by
a particle interacting with this scalar, so the solution as a

whole can be regarded as a legitimate black hole. Thus, a
naked singularity solution of MES was converted into a black
hole solution in the Jordan frame of the Rφ2 theory. But the
singularity inside the horizon still remained. As was noted in
[106], the FJNW singularity r = b is mapped onto a regular
surface ρ = 2m, while the horizon is at ρ = m; this was be
interpreted in [106] as conformal continuation of the MES
solution through the singularity. More recently there was a
renewed interest to construct ST solutions starting with new
MES solutions including time-dependent ones [107–109].

4.3 New kinetic theory

Now transform FJNW to the Jordan frame of the new kineti-
cally coupled theory (60). In the static case, interesting solu-
tions arise for κ1 = −κ2 > 0, so here we denote κ = κ1

(or invert the sign of κ in (60) taking κ positive again). The
disformal transformation (67) generates now the new metric
according to the rules

gtt = ĝt t
λ1/2 , grr = ĝrr

λ3/2,
gθθ = ĝrθ,θ

λ1/2 , (74)

where the factor λ is obtained using the Eq. (67):

λ−3/2
(

1 − b

r

)−γ

= 2x

3
√

3
+ 1√

3

{
2w cos[ 1

3 arccos(x/w)], x < w,

w2/3B + w4/3B−1, x > w,
(75)

with

B =
(
x +

√
x2 − w2

)1/3
, x = 3

√
3κq2

2r2(r − b)2 . (76)

For large r the variable x ∼ 1/r4, so λ = 1 + O(r−4) and
the solution remains asymptotically flat:

gtt ∼ −1 + γ b

r
, grr ∼ 1 − γ b

r
, gθθ ∼ r2. (77)

Near the MES singularity r = b one can expand in terms of
ξ = (r − b)/b, denoting κq2/b4 = ν3:

ν−1ds2 = −ξ2(2γ−1)/3dt2 + (νb/ξ)2dξ2

+ b2ξ (1−2γ )/3(dθ2 + sin2 θdϕ2). (78)

In the case γ = 1/2, passing to a new variable z =
νb ln ξ, −∞ < z < ∞, one obtains

ν−1ds2 = −dt2 + dz2 + b2(dθ2 + sin2 θdϕ2). (79)

This metric represent the product of a two-dimensional
Minkowsky space and a two-sphere. Note that the scalar field
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is not transformed and remains singular at r = b. But the
disformal transformation appropriately subtracts the diver-
gence from the metric. Desingularization is stronger in this
case, since the resulting metric is geodesically complete and
non-singular.

5 Cosmology

5.1 MES cosmology with Λ

Consider homogeneous and isotropic cosmologies in Ein-
stein’s theory minimally coupled to scalar in presence of the
cosmological constant. We assume the metric parametriza-
tion:

dŝ2 = −N̂ 2dt2 + â2dl2k , dl2k = dχ2 + fkdΩ2, (80)

where k = 0, ±1, with f1 = sin2 χ, f0 = χ2, f−1 =
cosh2 χ for spatially closed, flat and open universes respec-
tively, and the functions N̂ , â depend only on t . Note that
our time t and the three-space coordinates are dimensionless,
while the functions N̂ , â have the dimension of length. We
obtain the following relevant components of the Ricci tensor:

R̂tt = 3 ˙̂N ˙̂a
N̂ â

− 3 ¨̂a
â

, (81)

R̂χχ = â ¨̂a
N̂ 2

− â ˙̂N ˙̂a
N̂ 3

+ 2 ˙̂a2

N̂ 2
+ 2k. (82)

The Einstein equations read:

R̂μν = Λĝμν + ∂μϕ̂∂νϕ̂. (83)

The equation for R̂χχ does not contain the scalar field and
admits the first integral:

â4 ˙̂a2

N̂ 2
+ kâ4 + 1

3
Λâ6 = (2a0)

4, (84)

using which we find:

N̂ 2 = â4 ˙̂a2

(2a0)4 − kâ4 + Λâ6/3
, (85)

˙̂ϕ2 =
˙̂a2

â2
(
(2a0)4 − 3kâ4 + Λâ6/3

) . (86)

We still have freedom to fix the gauge, the convenient one
being â = 2a0t . Then

N̂ 2 = (2a0)
2t4

1 − kt4 + 4(a0)2Λt6/3
, (87)

˙̂ϕ2 = 6

t2
(
1 − 3kt4 + 4(a0)2Λt6/3

) . (88)

Note that near the cosmological singularity, both the spatial
curvature terms and the Λ-terms are negligible.

5.2 Minkowsky start of the universe in Rφ2

Performing the Bekenstein’s transformations in the case
Λ = 0, k = 0, one obtains the following exact cosmological
solution of the theory (17):

φ/
√

6 = tanh(ϕ̂/
√

6) = t2 − 1

t2 + 1
, (89)

ds2 = (1 − φ2/6)−1dŝ2 = (t2 + 1)2

4t2 dŝ2

= (t2 + 1)2
[
−(4a0t)

2dt2 + a2
0dl

2
0

]
. (90)

In terms of the synchronous time,

τ = a0t
2(t2 + 2), or t2 = √

1 + τ/a0 − 1, (91)

we obtain:

ds2 = −dτ 2 + a2dl20 , a = a0(t
2 + 1) = a0

√
1 + τ/a0.

(92)

Thus the univers starts from the Minkowsky stage. The Hub-
ble parameter and its derivative are:

H = 1

a

da

dτ
= 1

2(a0 + τ)
, Ḣ = dH

dτ
= −2H2. (93)

The universe is always decelerating.
When k = ±1,Λ �= 0, the very beginning of the expan-

sion obeys the same law.

5.3 New kinetic theory: Genesis

Now transform the MES cosmological solution into the Jor-
dan frame of the new Palatini kinetically coupled theory (60).
In this case, the relevant sign of the coupling constant κ is
positive. We will be interested in the behavior of the scale
factor near the singularity of the MES solution. Since in this
case both the cosmological constant and the curvature term
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are negligible, we start with k = 0, Λ = 0, choosing the
synchronous gauge:

dŝ2 = −dt2 + â2dl20 , (94)

where

â = a0t
1/3, φ = √

2 ln t/
√

3, (95)

as was found by Zel’dovich in 1972 for the stiff-matter [110,
111]. Obviously, this metric is singular at t = 0 and describes
a decelerating expansion.

Now we transform the metric to the Jordan frame of the
new kinetic theory. From (67) we obtain an algebraic equa-
tion for N :

(
N − 2z/(3

√
3)

)3 = N 2, z = κ
√

3/t2. (96)

Its real solution is smooth, though in the form below it looks
piecewise:

N 2 = 2z

3
√

3
+ 1√

3

{
2 cos

( 1
3 arccos(x)

)
, z < 1,

A1/3 + A−1/3, z > 1,
(97)

where A =
(
z + √

z2 − 1
)1/3

. For large z (small t) one has:

N 2 = 2z/3
√

3 + (2z)
1
3 /

√
3 + (4/z)

1
3 /(2

√
3) + ... , (98)

or, in terms of time,

N 2 = (αt)−2
(

1 + (αt)4/3
)

, α =
(

3

2κ

)1/2

. (99)

For the scale factor we obtain a2 = â2N 2/3, so keeping the
first next to leading terms, the metric will read:

ds2 = −(αt)−2
(

1 + (αt)4/3
)
dt2

+ a2
1

(
1 + (αt)4/3/3

)
dl20 , a1 = a0α

−1/3. (100)

We need to go to the synchronous time t → τ(t) solving the
equation Ndt = dτ. For small t , keeping the leading term in
(99), one finds:

dt/dτ = α t �⇒ t = eατ , (101)

so that t → 0 corresponds τ → −∞.
Now compute the Hubble parameter differentiating with

respect to the synchronous time in the vicinity of t = 0:

H = 1

a

da

dt

dt

dτ
= 2α

9
(αt)4/3. (102)

Its derivative in the leading order reads

Ḣ = dH

dτ
= 8α2

27
(αt)4/3, (103)

and satifies the strong NEC violation contidion: the ratio

Ḣ

H2 = 6

(αt)4/3 = 6

α4/3 e−4ατ/3 (104)

diverges exponentially as τ → −∞. Such a behavior is typi-
cal for the Genesis scenario [66,67]. The universe starts from
the Minkowsky stage with positive acceleration. Thus, the
NEC violation is more pronounced in the new kinetic theory
than in the conformal theory. Similar behavior near the sin-
gularity was observed in [112] in a different setting. Desin-
gularization by field redefinition was recently discussed in
[113].

6 Conclusions

Our goal was to draw attention to successive duaities in the
non-minimal scalar-tensor theories without matter that arise
when two or more theories coincide in their respective Ein-
stein frames, into which they can be transformed by means
of invertible mappings. By the group property of reversible
mappings, these theories are directly related by an overall
invertible transformation, thus they are dual to each other.
If one of them is free from Ostrogradski ghosts, the part-
ner theory will also share this property. As we have seen,
successive dualities may relate theories looking quite differ-
ently, such as Rφ2 theory without derivatives and kinetically
coupled theories. Combining them into one class can be use-
ful for understanding the landscape of a complete set of ST
theories.

Such successive dualities are especially useful if the Ein-
stein frame theory is simply the minimally coupled Einstein-
scalar theory. In this case using the known exact solutions of
the latter as seeds, one can construct exact solutions of the
non-minimal ST theories which are quite rare. According to
this construction, they can be regarded as two Jordan frames
of the unique underlying theory. Although the addition of
matter can destroy this symmetry, some properties, such as
behavior near the singularities of the Einstein theoiry, are
often not affected by matter, therefore successive dualities
can be useful for comparing desingularization features due
to NEC violation in these theories. We have found that desin-
gularization of the Fisher static solution of the MES theory
is stronger in the kinetic frame where it looks as globally
regular solution, while in the conformal frame it is globally a
black hole. The singularity of the homogeneous and isotropic
cosmoilogical solution of MES is absent in both conformal
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and kinetic frames, but in the latter case violating of NEC is
more pronounced, leading to Genesis-type behavior.

It would be interesting to look for other derivatively cou-
pled theories admitting the MES representaion. Also, class
of successive dualities can be extended taking MES with
potentials, which also allow for exact solutions. These will
generate non-minimal STs which will be ghost-free as well,
though generically they will not have such a simple form in
their Jordan frames as in our examples here.
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