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Abstract In this work an analytic fluid sphere built on
the well-known Tolman IV space–time is obtained. This toy
model is sourced by an imperfect fluid distribution with a
dark matter component. The anisotropic behavior is intro-
duced into the system via gravitational decoupling by means
of minimal geometric deformation. In this regard, the tem-
poral component of the θ -sector has been interpreted as the
dark side of the matter distribution. To validate the feasi-
bility of the salient model a detailed graphical analysis is
performed, supported by real observational data correspond-
ing to some strange star candidates. Besides, the impacts of
minimal geometric deformation approach on the main macro
physical observables ı.e, the total mass M , compactness fac-
tor u and surface gravitational red-shift zs are discussed.

1 Introduction

Intriguing and exciting at the same time. The dark side of the
Universe, today constitutes one of the greatest challenges to
be clarified for both theoretical and experimental physics.
Undetectable by existing astronomical instruments, it is esti-
mated within the background of the cosmological ΛCDM
model, that the so-called dark matter (DM) represents the
27% of the total mass of our Universe [1,2]. The first hint
about the existence of this mysterious component comes from
the rotational curve of spiral galaxies [3–5]. Among the pos-
sible alternatives to explain the main constituent and origin of
dark matter, Neutralino has been proposed as the main can-
didate. This particle belongs to the lightest supersymmetric
particles group [6–8]. Regarding the study of compact struc-
tures, such neutron stars and white dwarfs, in [9] was pro-
posed a model consisting of DM, represented by standard
model (SM) fermion gauge singlets based on a background
composed by dark energy (DE), as predicted by pseudo com-
plex general relativity. On the other hand, the mass–radius
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ratio for different DM profiles was investigated in [10] and the
influences by spin polarized self-interacting DM have been
explored by using a polytropic equation of state to build the
structure of neutron stars [11,12]. In further studies [13,14],
the gravitational effects of condensed DM on compact con-
figurations were analyzed, as well as the existence of DM
core inside neutron star [15].

In a more widely context, since the pioneering work by
Bowers and Liang [16], the understanding of how this type
of structure1 works has been extensively explored. Further-
more, the usage of matter distributions with anisotropic con-
tent, has been strongly incorporated in the study of relativistic
objects [17–37]. Besides, since the work carried out by Lake
and Delgaty [38] proved, that only 9 of the 127 solutions
known until 1998 (in spherical and isotropic coordinates and
described by a perfect fluid pr = pt ) were admissible from
the physical point of view, there was a growing interest that
lasts until today to further elucidate new aspects that local
anisotropies introduce into a stellar interior [39–49] (and ref-
erences contained therein). The inclusion of an anisotropic
behaviour into the matter distribution driven collapsed struc-
tures such as neutron or quark stars, entails an intriguing
and interesting features, for example: i) allows to build more
compact structures, ii) the hydrostatic balance is enhanced
by the introduction of a new term, that helps to counteract
the gravitational collapse onto a point singularity (only if the
anisotropy factor Δ ≡ pt − pr is positive defined every-
where), iii) the stability is also improved and iv) the grav-
itational surface red-shift zs reaches greater values than its
isotropic counterpart. Nevertheless, some questions arise, for
example: how is the process to include local anisotropies into
the stellar matter distribution? The physical admissibility of
the resulting toy model depends on this mechanism? The
resulting numerical data matches the experimental data? In
principle the simplest way to introduce anisotropies into the

1 It is remarkable to point out that the mentioned studies in this part
considered compact objects made of baryonic matter distributions.
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stellar matter, is by the imposition of an energy–momentum
tensor with different stresses in the principal directions of the
fluid sphere ı.e, pr �= pt , or include an electromagnetic field,
to name a few possibilities.

Incidentally, the gravitational decoupling (GD) by means
of minimal geometric deformation (MGD), introduced in
[50,51] in the framework of general relativity (GR), results to
be a natural manner to induce such modifications. In principle
this methodology was employed in the context of Randall–
Sundrum brane-world [52–65] and then spread to investigate
new classes of black holes solutions, by deforming the well-
known Schwarzschild space–time [54,55]. The earlier appli-
cations of this approach were mainly developed on the stage
of the brane-world [56–65], black hole acoustic [66] and
GUP Hawking fermions [67]. After that, this scheme was
translated into the GR arena to extent isotropic fluid distri-
butions satisfying Einstein field equations, to an anisotropic
domains [50,51]. As we shall review in the next section, this
methodology contains two main ingredients: i) two sources
T̄μν and θμν , which only interact gravitationally and ii) a
minimal geometric deformation introduced in the grr com-
ponent of the metric, which allows to decouple the system
into two set of equations, one for each source. It is worth
mentioning that in many applications of the GD, T̄μν is the
source of a well known isotropic interior solution, so the
effect of θμν is to introduce a local anisotropy behaviour in
the system and consequently, it is said that GD leads to an
extension of isotropic solutions to anisotropic scenarios. In
this case, either the geometric deformation and the compo-
nents of θμν field remain unknown and the main goal is to
provide suitable extra constraints which allow to find them. In
this regard, a wide range of possibilities have been proposed,
among which are: i) the so-called mimic constraint proce-
dure [51,66–72], ii) the imposition of an adequate decou-
pling function f (r) meeting all the physical and mathemati-
cal requirements [73,74] or iii) some anisotropy mechanism
[75,76].

Depending on the mechanism considered to close the θ -
sector the magnitude and sign of the dimensionless coupling
constant α is determined in order to preserve a well defined
anisotropy factor Δ throughout the stellar medium.

Given the versatility of GD by MGD, its application to deal
with a variety of situations has grown considerably during
the last 2 years [77–102], what is more the inverse problem
and the extended case were developed in [103,104], respec-
tively. Despite the great versatility that GD through MGD
has, there are some open question about the origin of the
θμν source. In this respect was argued in [77,104] the possi-
bility of interpreting the new field θμν as dark matter, what
is more in [96] were explored the contributions of this new
sector in the well-known CDM and ΛCDM cosmological
models. Based on this good antecedents, the main motiva-
tion of the present work, is to investigate the existence of

dark stars within the framework of GR by using GD tech-
nology. In this concern, we have considered that the tempo-
ral component of the θ -sector is mimicking the isothermal
dark matter profile. Then the decoupler function f (r) car-
ries the dark matter contribution into the deformed space–
time and also into the remaining components of the energy–
momentum tensor. Since, the isothermal dark matter profile
is a monotonous decreasing function of the radial coordinate
r , by choosing suitable parameters matching the observa-
tional data, the resulting toy model is admissible from the
physical and mathematical point of view. To support all the
analysis we have performed an exhaustive graphical study by
using real observational data. Specifically, we have taken the
mass and radius corresponding to the strange star candidates
Her X-1 [105], SMC X-1 and LMC X-4 [106], where the
seed space–time supporting this analysis is described by the
well-known Tolman IV solution [107]. Besides, to provide a
more realistic scenario, we have studied the impact of MGD
on the total mass and compactness factor of the mentioned
compact structures.

The article is organized as follows: Sect. 2 introduces
the gravitational decoupling by means of minimal geometric
deformation approach. Section 3 presents the model and all
its properties. Section 4 deals with the junction conditions
and Sect. 5 provides a detailed physical and mathematical
analysis of the salient toy model. In Sect. 6 the hydrostatic
balance and stability of the system are studied throughout
the relativistic adiabatic index and pressure waves velocities
criteria. Sections 7 and 8 studied the incident of MGD on
some astrophysical properties of the structure and the gener-
ating function of the present model is obtained, respectively.
Finally, Sect. 9 concludes the work.

Throughout the work, relativistic geometrized units c =
G = 1 and the mostly negative signature {+,−,−,−} are
employed.

2 Gravitational decoupling: a MGD approach

In this section we revisited the gravitational decoupling
method by means of minimal geometric deformation (MGD).
As was explained in Sect. 1, gravitational decoupling is sepa-
rating one source from another by means of some mechanism
that preserves geometrical properties of the original problem,
where once the sources are separated, the respective conser-
vation law for each committed entity is also satisfied. The
fact that both sources are separately conserved, means that
the interaction between them is of gravitational nature. The
question is how to decouple the sources fulfilling the previous
premises. To understand in detail the problem under study,
consider a matter distribution, which represents a perfect or
isotropic fluid described by the following energy–momentum
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tensor

T̄μν = (ρ̄ + p̄) χμχν − p̄gμν, (1)

where ρ̄ and p̄ denote the isotropic density and pressure,
respectively (throughout the text we shall employ barred
quantities to refer the isotropic material content). Now, we
extend the source given by Eq. (1) by adding the following
source θμν coupled via a dimensionless constant parameter
α. Therefore one gets

T̄μν → Tμν = T̄μν + αθμν. (2)

This extra piece, introduces new ingredients which in prin-
ciple are beyond GR. As it is well known GR covers a wide
range of studies, including cosmological problems, solar sys-
tem, black holes, neutron stars, or exotic structures such as
wormholes. Regarding the study of neutron stars (includ-
ing quark stars), it is common to assume that these compact
objects possess spherical symmetry and are static. In mathe-
matical language this means that they are represented by the
next line element

ds2 = eνdt2 − eλdr2 − r2dΩ2, (3)

where in order to ensure the staticity of the above space–time
one requires ν = ν(r) and λ = λ(r). Besides, in considering
these ingredients the time-like 4-velocity has the following
form χμ = e−ν/2δ

μ
t . Now, suppose that a compact structure

representing a neutron or quark star is described by Eqs.
(1) and (3). Then, due to the isotropy of the matter content
and the spherical symmetry of the space–time: p̄r = p̄φ =
p̄ϕ = p̄. On the other hand, if one considers (2) instead of
(1), the new sector could introduce a different behaviour ı.e,
pr �= pφ = pϕ . So, an anisotropic behaviour arises into the
system. The nature of this anisotropic conduct of the fluid
distribution, strongly depends on the nature of the θμν field.
In this regard, θμν could be a scalar, vector or tensor field,
even more this could be seen as a dark field ı.e, dark matter
o dark energy [77,96,104].

To decouple T̄μν and θμν , it is convenient to see how these
sources are linked with the geometry of the space–time. So,
this relation is obtained by taking variation of the action

S = SE−H + Smatter (4)

with respect to gμν . The Einstein–Hilbert (E–H) action is
given by

SE−H = 1

16π

∫ √−gRd4x, (5)

where g ≡ det (gμν) is the determinant of the metric ten-
sor gμν , R the Ricci’s scalar. The matter sector Smatter is
described by

Smatter =
∫ √−gLmatterd

4x, (6)

beingLmatter the Lagrangian-density matter. In principle, this
Lagrangian-density could contain different fields describing
different kind of matter distributions. So, let us write Lmatter

as

Lmatter = LM̄ + αLX . (7)

The information on the isotropic fluid is encoded in the
Lagrangian-density LM̄ , while LX encipher the new mat-
ter fields. These new contributions can be seen as correc-
tions to GR [104]. From the variational principle one gets the
following field equations describing the gravitational–matter
interaction

δS

δgμν
= 0 ⇒ Gμν ≡ Rμν − R

2
gμν = −8πTμν, (8)

where Gμν is the Einstein’s tensor and as before

Tμν = −2
δLM̄

δgμν
+ gμνLM̄︸ ︷︷ ︸

T̄μν

+α

(
−2

δLX

δgμν
+ gμνLX

)
︸ ︷︷ ︸

θμν

. (9)

An important consequence derived from contracted Bianchi’s
identities together with Eq. (8) is

∇μG
μν = 0 ⇒ ∇μT

μν = 0. (10)

So, covariant conservation of the stress–energy tensor is
ensured. Taking into account Eq. (2) one has

∇μT
μν = 0 → ∇μT̄

μν + α∇μθμν = 0. (11)

Then, the equality is satisfied if both ∇μT̄μν and ∇μθμν are
zero on the equations of motion, once the geometry and the
material content have been specified. Next, Eqs. (1), (2), (3)
and (8) reproduce the following set of equations

− e−λ

(
λ′

r
− 1

r2

)
− 1

r2 = − (
ρ̄ + αθ tt

)
, (12)

e−λ

(
ν′

r
+ 1

r2

)
− 1

r2 = − (− p̄ + αθrr
)
, (13)

e−λ

4

(
2ν′′ + ν′2 + 2

ν′ − λ′

r
− ν′λ′

)
= − (− p̄ + αθϕ

ϕ

)
,

(14)

along with the following conservation equation

− d p̄

dr
− α

[
ν′

2

(
θ tt − θrr

) − dθrr

dr
+ 2

r
(θϕ

ϕ − θrr )

]

− ν′

2
(ρ̄ + p̄) = 0.

(15)

At this point one can identify the effective amounts as follows

T t
t = ρ̄ + αθ tt ≡ ρ, (16)

T r
r = p̄ − αθrr ≡ pr , (17)

T ϕ
ϕ = p̄ − αθϕ

ϕ ≡ pt . (18)
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At this stage it is clear how the matter and geometry are
involved. A simple and versatile mechanism to separate the
sources is to deform the radial metric potential (or equiva-
lently the mass function) as follows

e−λ(r) 	→ e−λ(r) = μ(r) + α f (r). (19)

This linear map known as minimal geometric deformation
(MGD) entails intriguing consequences. The MGD process
means that only one metric potential is disturbed leaving the
other one unaltered (in this case the temporal one). So, we
summarize the main features of this minimal deformation
process as follows

– From Eq. (12) it is clear that the density depends only
on the radial metric potential. So, the map (19) is the
only possibility (as we will see soon) to separate T̄μν and
θμν . In this regard, performing only deformations on the
temporal component is not feasible, unless the extended
case be employed [104].

– To preserve the spherical symmetry, the deformation or
decoupler function f (r) is a purely radial function.

– From the mathematical point of view, the behaviour of the
decoupler function f (r) is controlled by the seed metric
potential μ(r), since μ(r) is a monotonously increasing
function in the interval [0, R] it does not matter if f (r) is
positive (negative) or increasing (decreasing) function,
what is really important is that its behaviour must be
overcome by μ(r), in order to preserve a well behaved
stellar interior. Besides, f (r) must be null at r = 0 (the
center of the object).

– As μ(r) is intimately related with mass the functionm(r),
the map (19) modifies the usual gravitational mass defi-
nition by introducing an extra piece. Hence,

m(r) = r

2
[1 − μ(r) − α f (r)] , (20)

this can be accommodated as

m(r) = m0(r) − α
r

2
f (r). (21)

Moreover, other associated quantities such as the com-
pactness factor (mass–radius ratio) and gravitational sur-
face red-shift zs are disturbed by MGD. For example the
mass–radius ratio takes the following form

2u(R) = 2u0(R) − α f (R), (22)

where u0 = M0/R is the seed compactness factor. It is
clear that if α < 0 and f (R) > 0 (or vice-versa) the mass
of the system grows up, then gravitational decoupling by
MGD allows an extra packing of mass [108].

Next, using (19) into the set of Eqs. (12)–(14) we arrive
to

8πρ̄ = 1

r2 − μ

r2 − μ′

r
(23)

8π p̄ = − 1

r2 + μ

(
1

r2 + ν′

r

)
(24)

8π p̄ = μ

4

(
2ν′′ + ν′2 + 2

ν′

r

)
+ μ′

4

(
ν′ + 2

r

)
, (25)

along with the conservation equation

p̄′ + ν′

2
(ρ̄ + p̄) = 0, (26)

for the isotropic sector. Similarly, we have the following
equations for the θ -sector

8πθ tt = − f

r2 − f ′

r
(27)

8πθrr = − f

(
1

r2 + ν′

r

)
(28)

8πθϕ
ϕ = − f

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− f ′

4

(
ν′ + 2

r

)
. (29)

The corresponding conservation equation ∇νθμν = 0 yields
to

(
θrr

)′ − ν′

2

(
θ tt − θrr

) − 2

r

(
θϕ
ϕ − θrr

) = 0. (30)

The above expression (30) is a linear combination of the
Eqs. (27)–(29). At this point some comments are in order.
First, Eqs. (27)–(29) correspond to the so-called quasi Ein-
stein field equations, in the sense that there is a missing factor
1
r2 . Second, it is clear that the interaction between the two
sources is completely gravitational, since both are indepen-
dently conserved as shown Eqs. (26) and (30). At this stage it
is clear that the isotropic seed solution becomes anisotropic
if and only if θrr �= θ

ϕ
ϕ , being the measure of this anisotropic

behavior

Δ(r;α) ≡ α
(
θrr − θϕ

ϕ

)
. (31)

It must be taken into account that a physically admissible
model must meet Δ(r) > 0 for all r ∈ [0, R].

On the other hand, it should be noted that the seed sys-
tem of equations (23)–(25) is already determined by the seed
space–time. However, the set (27)–(29) is not closed. This
new sector contains four unknown, namely {θ tt , θrr , θ

ϕ
ϕ , f }

and three equations. Therefore, it is inevitable to prescribe
information by hand. Nevertheless, this information must be
physically consistent and relevant. In this regard, several pro-
cedures have been employed to close the θ -sector, yielding
in most cases to a well behaved interior solution. Among all
the proposals the usual ones are: i) the so-called mimic con-
straint scheme [51,68–72], ii) the imposition of a suitable
decoupler function f (r) [73,74,90,97] and iii) by using a
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regularity condition on the decoupler sector induced by the
well-known Consenza–Herrera–Esculpi–Witten anisotropy
condition [75,76]. In this opportunity, the θ -sector is closed
in a different way. As pointed out in [104] and explored in
the cosmological scenario [96], the unknown origin of the
θμν source, can be justified by assuming that this field is one
of the dark components present in our Universe. Specifically,
the θ -source can be seen as dark matter. So, taking advantage
of this situation, we have assumed that the temporal compo-
nent of the θμν field corresponds to a dark matter density
profile. Concretely, we have placed θ tt = ρP I (for further
details see next section), where ρP I means Pseudo Isother-
mal (PI) density profile, commonly used to model galactic
dark matter halos in the context of modified gravity, such as
Modified Newtonian Dynamics (MOND).

3 The model

In this section the model representing compact structures
with dark matter component is presented. We start by revis-
iting the seed space–time used in this work, then in the next
subsections, the dark matter sector and its thermodynamic
and geometric description are provided as well as the salient
modified space–time solution.

3.1 Revisiting in short: Tolman IV solution

As was pointed out above, the main point here is to extent
spherically symmetric and static isotropic fluid spheres satis-
fying Einstein’s field equations, to an anisotropic domains by
including some elements beyond GR. In this opportunity we
have selected as a seed space–time, the well-known Tolman
IV solution [107]. This toy model has been used to represent
real astrophysical objects such as neutron and quark stars,
driven by a perfect fluid matter distribution. This model is
described by the following metric potentials

eν(r) = B2
(

1 + r2

A2

)
and μ(r) =

(
1 − r2

C2

) (
1 + r2

A2

)

1 + 2 r2

A2

,

(32)

and thermodynamic variables

ρ̄(r) = 3A4 + 3A2C2 + 7A2r2 + 2C2r2 + 6r4

8π
(
A2 + 2r2

)2
C2

, (33)

p̄(r) = C2 − A2 − 3r2

8π
(
A2 + 2r2

)
C2

. (34)

This solution satisfies Eqs. (20)–(22) ı.e, pure Einstein’s field
equations (α = 0). It is worth mentioning that this model
has been extended previously within the framework of MGD

grasp [51], although by using a different approach to obtain
the new sector. Specifically, the mimic constrain procedure.

3.2 Pseudo isothermal density profile

To close the θ -sector, we have employed the PI dark matter
density profile given by

ρP I = a

1 + ( r
b

)2 , (35)

where in studies related with dark matter halos and galax-
ies rotation curves [109,110] the parameter a with units of
length−2 denotes the finite central density and b with units
of length represents the core radius. In our case these param-
eters will be taken as free parameters. The main motivation
to use (35) concerns in the fact that ρP I is completely reg-
ular and monotonously decreasing function with increasing
r within the interval [0, R] (see below for further details).
So, equating Eqs. (27) and (35) one arrives at the following
decoupler function

f (r) = 8πab2

r

[
bArctan

( r
b

)
− r

]
+ D

r
. (36)

In considering the map (19), the deformation function f (r)
is conditioned by the seed metric potential μ(r). So, in order
to describe a well posed stellar interior from (36) we have
the following restrictions: i) D = 0 to avoid singularities at
the center of the structure and ii) since arc-tangent is smooth
within the interval [0, R] we can expand in a series around
to r = 0 to eliminate the singular behaviour. So, one gets

Arctan
( r
b

)
≈ r

b
− r3

3b3 + r5

5b5
+ O(r7). (37)

Then (36) becomes

f (r) = −8

3
πar2 + 8

5

πa

b2 r4. (38)

Therefore, taking into account (35) and inserting (38) into
Eqs. (28)–(29) the full θ -sector is given by

θ tt = a

1 + ( r
b

)2 , (39)

θrr = a
(
A2 + 3r2

) (
5b2 − 3r2

)
15b2

(
A2 + r2

) , (40)

θϕ
ϕ = a

(−15r6 − 24A2r4 − 6A4r2 + 15b2r4 + 25A2b2r2 + 5A4b2
)

15b2
(
A2 + r2

)2 ,

(41)

and from (31) the anisotropy factor reads

Δ(r;α) = α

[
3A4 + 6r4 + A2

(
12r2 − 5b2

)]
15b2

(
A2 + r2

)2 ar2. (42)
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Now, the minimally deformed Tolman IV space–time is
expressed by

ds2 = B2
(

1 + r2

A2

)
dt2 −

[(
1 − r2

C2

) (
1 + r2

A2

)

1 + 2 r2

A2

+8απar2
(

r2

5b2 − 1

3

) ]−1

dr2 − r2dΩ2,

(43)

and its full thermodynamic description can be obtaining by
putting together the expressions (16)–(18) along with (33)–
(34) and (39)–(41). The principal physical and mathematical
properties of the salient model will be analysed in the next
sections.

4 Israel–Darmois matching conditions

To be consistent, the toy model given by Eq. (43) must be join-
ing in a smoothly way with the outer space–time. As this toy
model is representing finite compact structures with a defined
and confined matter distribution, it is necessary to imposed
a limit at the boundary Σ : r = R of the object. In this con-
cern, as our model does not contain neither electric charge
and cosmological constant contributions, the exterior man-
ifold M+ is well described by the vacuum Schwarzschild
solution

ds2 =
(

1 − 2
MSch

r

)
dt2 −

(
1 − 2

MSch

r

)−1

dr2 − r2dΩ2.

(44)

The junction condition process allows to determine in a con-
sistent way the full set of arbitrary parameters that character-
ize the model, in this case {A, B,C}. To perform the match-
ing conditions we shall employ the so-called Israel–Darmois
(ID) [111,112] grasp. So, the ID matching conditions invoke
the continuity of the temporal gtt and radial grr metric poten-
tials (first fundamental form), across the boundary Σ of the
structure between the inner manifold M− (43) and the outer
space–time M+ (44). Explicitly it reads

g−
t t

∣∣∣∣
r=R

= g+
t t

∣∣∣∣
r=R

and g−
rr

∣∣∣∣
r=R

= g+
rr

∣∣∣∣
r=R

. (45)

For the present situation we have

B2
(

1 + R2

A2

)
= 1 − 2

M

R
, (46)

(
1 − R2

C2

) (
1 + R2

A2

)

1 + 2 R2

A2

+8απaR2
(

R2

5b2 − 1

3

)
= 1 − 2

M

R
, (47)

where the Schwarzschild mass MSch coincides at Σ with the
total mass M contained by the fluid sphere. On the other
hand, the inner g−

μν and outer g+
μν metric tensors induce on

Σ an intrinsic geometry described by a symmetric tensor Ki j

(the extrinsic curvature tensor). The continuity of the radial
component Krr across r = R (second fundamental form),
assures a vanishing radial pressure

pr (R) = p̄(R) − αθrr (R) = 0. (48)

This condition determines the size of the compact structure
and confines the matter distribution within a finite region:
0 ≤ r ≤ R. The continuity of the angular components Kφφ

and Kϕϕ fix the total mass inside the star

[
K−

φφ − K+
φφ

] ∣∣∣∣
Σ

= [
K−

ϕϕ − K+
ϕϕ

] ∣∣∣∣
Σ

= 0

⇒ m(R) = M. (49)

It should be noted that, in principle the outer manifold could
be altered by the θ -source. In that case the exterior space–
time is no longer vacuum, then Schwarzschild solution is
not valid to join the inner geometry at the surface with the
outer manifold. Nevertheless, in the simplest case, the θμν

contributions to the exterior space–time can be suppressed
[51]. Therefore, one ends with a stellar interior embedded
into a vacuum space–time which geometry is given by the
Schwarzschild solution. In table 1 are exhibited the numer-
ical values by the space parameter {A, B,C}. These values
were obtained by fixing α = 0.25, a = 0.0004[km−2] and
different choices of b.

5 Physical and mathematical study

In this section we analyze in details the physical and mathe-
matical properties of the main salient variables that charac-
terize the model. To do this, we shall follow the usual anal-
ysis presented in [29,33]. So, the first point is to analyze the
inner geometry. In the present case the stellar interior is well
described by the following metric potentials

eν(r) = B2
(

1 + r2

A2

)
, (50)

eλ(r) =
⎡
⎣

(
1 − r2

C2

) (
1 + r2

A2

)

1 + 2 r2

A2

+ 8απar2
(

r2

5b2 − 1

3

)⎤
⎦

−1

.

(51)

From the space–time represented by Eqs. (50) and (51), can
be highlighted the following characteristics

– Both, eν and eλ are completely regular at all points within
the stellar interior. Specifically, for all r ∈ [0, R].
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Table 1 The numerical values
of constant parameters A, B and
C for a fixed a and different
values of b and α = 0.25

Strange Stars candidates a (km−2) b (km) A (km) C [km] B (dimensionless)

Her X − 1 [105] 0.0004 8.5 13.99287 21.97975 0.70618

SMC X − 1 [106] 0.0004 8.8 11.88479 20.60522 0.63712

LMC X − 4 [106] 0.0004 8.2 10.60380 19.88999 0.56973

 Her X-1  (Red)

SMC X-1 (Green)

LMC X-4 (Blue)

e  (Solid)  e Dashed

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

r R

M
et

ri
c

Po
te

nt
ia

ls

 Her X-1  (Red)

SMC X-1 (Green)

LMC X-4 (Blue)

0.0 0.2 0.4 0.6 0.8 1.0

0.0006

0.0008

0.0010

0.0012

0.0014

r R

D
en

si
ty

 Her X-1  (Red)

SMC X-1 (Green)

LMC X-4 (Blue)

pr (Solid)  pt Dashed

0.0 0.2 0.4 0.6 0.8 1.0
0.00000

0.00005

0.00010

0.00015

0.00020

r R

R
ad

ia
l&

T
an

ge
nt

ia
lP

re
ss

ur
es  Her X-1  (Red)

SMC X-1 (Green)

LMC X-4 (Blue)

0.0 0.2 0.4 0.6 0.8 1.0
0

5. 10 6

0.00001

0.000015

0.00002

0.000025

0.00003

r R

A
ni

so
tr

op
y

Fa
ct

or

Fig. 1 Upper row: the metric potentials trend (left panel) and the den-
sity (right panel) versus the dimensionless radial coordinate r/R. Lower
row: the path of the radial and tangential pressures (left panel) and
anisotropy factor (right panel) against the dimensionless radial variable
r/R. These plots were constructed for different values mentioned in

Tables 1 and 3 with α = 2.5. It should be noted that, as we are working
in relativistic geometrized units, the vertical axis has units of [km−2]
for density, pressures and anisotropy factor plots, while in the metric
potential plot the vertical axis is dimensionless

– At r = 0 (the center of the star), (50) leads to eν(0) =
B2 and (51) to eλ(0) = 1. These conditions say that the
minimum value for each metric potential, is attained at
center of the structure. Besides, this minimum is positive,
then from r = 0 to r = R the metric potentials are
strictly and monotonous increasing functions from the
center towards the boundary.

– Regarding the previous comment, this is exactly the
appropriate behavior that eλ must have, since it is con-
nected with the mass function m(r) and density ρ(r) of
the fluid distribution.

As can be seen from the upper left panel in Fig. 1, the men-
tioned information about the behaviour of the metric poten-
tials eν and eλ is corroborated. This plot was built by using
the numerical data listed in Tables 1 and 3 . It is remarkable
to note that the metric potential eλ corresponding to most
massive star (blue curve), takes greater values in compari-

son with the other compact structures. This is so because as
was mentioned the radial metric potential is involved with
the mass of the configuration.

Connected with the geometry of the space–time, we
have the thermodynamic variables {ρ, pr , pt } defining the
energy–momentum tensor associated with the anisotropic
matter distribution. To represent an anisotropic content, fill-
ing the interior of a compact object, these variables must sat-
isfy some requirements. First, they must have their maximum
values attained at the center of the structure. This implies
that all these physical quantities, are monotonous decreas-
ing functions with increasing radial coordinate r throughout
the stellar interior. Second, they must be positive defined
for all r ∈ [0, R], in order to avert non-physical behaviour
of the material content. Additionally, it is required for the
radial and tangential pressures: pt > pr ⇒ Δ > 0. This
condition assures a healthy stellar interior, what is more a
positive anisotropy factor in principle enhances the stability

123



413 Page 8 of 15 Eur. Phys. J. C (2020) 80 :413

and hydrostatic equilibrium of the structure (see below for
further details). Furthermore, a peremptory condition to be
satisfied by the radial pressure is pr (R) = 0, determining
the size of the object. However, the above constraint does
not need to be satisfied by tangential pressure.

Therefore, to satisfy the above criteria, it is important to
analyze the restrictions that the parameters {A, B,C, a, b, α}
should obey. So, evaluating the density ρ and the radial pres-
sure pr (due to the spherical symmetry one has pt (0) =
pr (0)) at the center, one obtains the following conditions

pr (0) > 0 ⇒ a <
3

8πα

(
1

A2 − 1

C2

)
, (52)

pr (0)

ρ(0)
≤ 1 ⇒ a ≥ −3

(
2A2 + C2

)
16π A2C2α

, (53)

ρ(0) > 0 ⇒ a > −3
(
A2 + C2

)
8π A2C2α

. (54)

Moreover, as ρ must be a monotonous decreasing function
for all r ∈ [0, R], then we have

dρ

dr
= dρ̄

dr
+ α

dθ tt

dr
< 0, (55)

but the seed density ρ̄ is already decreasing within the interval
0 ≤ r ≤ R. Therefore, to ensure (55) we need to analyze the
behaviour of the θ tt component and the sign of α parameter.
In this concern, we mention the following possibilities (some
of them)

– α > 0 & θ tt positive and decreasing: in this case the left
hand side of (55) is satisfied.

– α < 0 & θ tt positive and increasing: in this case the term
αθ tt in (55) becomes negative and decreasing, then, it
must be less than ρ̄ in magnitude, to preserve a positive
defined and decreasing density ρ.

– α > 0 & θ tt positive and increasing: this case is similar
to the previous one.

The same criteria applies for θrr and θ
ϕ
ϕ . So, in this particular

case θ tt given by (39), will be decreasing and positive defined
iff a > 0. This yields from (52) to C > A, what is more
the equality in (53) is discarded. Furthermore, α should be
strictly positive, hence (55) is satisfied. Despite α could take
negative values, this situation is ruled out by Eq. (42). This is
so because α is an overall factor and 3A4 + 6r4 + 12A2r2 >

5A2b2 in order to guarantee Δ(r) > 0 everywhere.
As it is depicted in Fig. 1, the density ρ (upper right

panel), radial pr and tangential pt pressures (lower left panel)
are in complete agreement with the mentioned requirements.
Besides, the most massive object (LMC X-4) has a denser
core and reaches high central pressure with respect to the
other compact structures ı.e, Her X-1 and SMC X-1. In con-
sidering the anisotropy factor Δ, from the expression (42) and
the lower right panel in Fig. 1 one can see that this quantity is

null at r = 0 and reaches its maximum value at r = R. This
fact allows to build more compact structures [26]. Table 2
collects the central density ρ(0), surface density ρ(R) and
central pressure pr (0). As can be seen, the order of magnitude
of these quantities are within the range of previous studies
that suggest that a central density beyond the nuclear density
saturation (∼ 2.4 × 1014[g/cm3]) corresponds to compact
configurations made of strange quark matter [113].

However, the matter distribution must meet some addi-
tional restrictions that confirm its viability to describe a stel-
lar interior. Those are: i) positive and well behaved energy–
momentum tensor and ii) preservation of causality condition.
Of course, both requirements are related. Regarding the first
one, a well defined energy–momentum tensor should meet
the following inequalities [114]:

1. (NEC): ρ ≥ 0,
2. (WEC): ρ + pt ≥ 0, ρ + pr ≥ 0,
3. (SEC): ρ + 2pt + pr ≥ 0,
4. (DEC): ρ − |pr | ≥ 0, ρ − |pt | ≥ 0.

These conditions are known as energy conditions. The null
energy condition (NEC) says that the observed density must
be positive defined everywhere, the weak energy condition
(WEC) means that the matter distribution can not travel
faster than the speed of light neither in the radial or tan-
gential directions (for further details see below). The strong
(SEC) and dominant (DEC) energy conditions imply the
NEC and WEC. So, if SEC an DEC are satisfied, the energy–
momentum tensor describing the matter distribution driven
the stellar interior is well defined. From Fig. 2 (left and mid-
dle panels) it is clear that SEC and DEC are satisfied at all
points, thus the stellar interior is threading by a well defined
and positive energy–momentum tensor. On the other hand,
the pressure waves of the matter distribution must respect
the so-called causality condition. When the fluid distribution
contains anisotropies, causality condition dictates

0 ≤ v2
r = dpr

dρ
≤ 1 and 0 ≤ v2

t = dpt
dρ

≤ 1. (56)

The above inequalities tell to us that any signal cannot exceed
the speed of light c = 1. From the right panel in Fig. 2,
causality condition is preserved along the principal directions
of the fluid sphere.

6 Hydrostatic balance and stability

In the simplest scenario ı.e, a perfect fluid matter distribu-
tion. The hydrostatic balance of the system is subject to the
gravitational and hydrostatic gradients. Nevertheless, when
new ingredients are added to the material content, they con-
tribute to the equilibrium mechanism. In this opportunity the
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Table 2 The numerical values for central and surface density, central pressure, critical adiabatic index and central adiabatic index for different
values listed in Table 1 and α = 0.25

Strange Stars candidates ρ(0)×1015 (g/cm3) ρ(R)×1014 (g/cm3) pr (0)×1035 (dyne/cm2) �crit �

Her X − 1 [105] 1.29091 1.66696 1.06281 1.48452 2.20291

SMC X − 1 [106] 1.65457 1.89677 1.87801 1.51250 1.76965

LMC X − 4 [106] 1.97449 2.03563 2.67113 1.53703 1.53015

 Her X-1  (Red)

SMC X-1 (Green)

LMC X-4 (Blue)

0.0 0.2 0.4 0.6 0.8 1.0

0.0010

0.0015

0.0020

r R

St
ro

ng
E

ne
rg

y
C

on
di

tio
n

 - pr Dashed

 - pt Solid

 Her X-1  (Red)

SMC X-1 (Green)

LMC X-4 (Blue)

0.0 0.2 0.4 0.6 0.8 1.0
0.0005

0.0006

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

r R

D
om

in
an

tE
ne

rg
y

C
on

di
tio

n
 Her X-1  (Red)

SMC X-1 (Green)

LMC X-4 (Blue)

v2
r (Solid)  v2

t (Dashed)

0.0 0.2 0.4 0.6 0.8 1.0
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

r R

Pr
es

su
re

W
av

es
V

el
oc

iti
es

ρ
ρ

Fig. 2 Left panel: the path of the strong energy condition versus the
dimensionless quantity r/R. Middle panel: the behaviour of the domi-
nant energy condition against the dimensionless coordinate r/R. Right
panel: the sound speed velocities of the pressure waves versus r/R.
These plots were built for different values mentioned in Tables 1 and 3

with α = 2.5. It should be noted that, as we are working in relativistic
geometrized units, the vertical axis has units of [km−2] for SEC and
DEC, while for the sound speeds plot the vertical axis is dimensionless

configuration is under the action of gravitational Fg , hydro-
static Fh and anisotropy Fa gradients. If the structure is in
equilibrium, the mentioned gradients must satisfy

Fh + Fa + Fg = 0, (57)

or in terms of the main physical variables

− d p̄

dr
− α

[
ν′

2

(
θ tt − θrr

) − dθrr

dr
+ 2

r
(θϕ

ϕ − θrr )

]

− ν′

2
(ρ̄ + p̄) = 0.

(58)

Equation (58) is just the conservation equation (15). As
this point some comments are in order. First, if α = 0
one recovers the usual Tolman–Oppenheimer–Volkoff equa-
tion [107,118] driven the hydrostatic balance of compact
isotropic fluid spheres. Second, despite that in the θ -system
(27)–(29) there is a missing term 1/r2, the θμν contribution
to Eq. (58) coincides with relativistic hydrostatic balance
equation when the matter distribution contains anisotropies.
In this respect, one can identify inside the bracket, that the
first term is just the gravitational gradient, the second one
the hydrostatic gradient and the third one the anisotropic
gradient. In general, one can combine the first term in (58)
with the second term within the bracket and form an effec-
tive hydrostatic gradient, the same with the last term and the
first one in the bracket, constitute the gravitational gradient.
Finally, the third term in the bracket constitutes the main
ingredient of gravitational decoupling by MGD ı.e, extent an
isotropic fluid to anisotropic domains. In this case, this new

piece incorporates a positive anisotropy factor Δ, then the
associated anisotropy gradient Fa is repulsive in nature. This
repulsive gradient helps to counteract the gravitational one.
Besides, the presence of this anisotropic repulsive gradient,
avoids the gravitational collapse of the structure onto a point
singularity. In Fig. 3 is shown the balance of the system for
all cases. As it is appreciated, the system is in hydrostatic
equilibrium under the mentioned gradients.

On the other hand, it remains to be determined whether the
hydrostatic equilibrium is stable or unstable. Among all the
possibilities at hand to check stability against the presence
of local anisotropies (at least from the theoretical point of
view), we shall employ two of the most common. Those are:
i) the relativistic adiabatic index � and ii) the criterion based
on the velocities of the fluid pressure waves (also known as
Abreu et al. criterion [34]).

To understand how the relativistic adiabatic index works,
it is necessary to compare with its Newtonian counterpart.
In this concern, in the Newtonian scenario and consider-
ing an isotropic fluid distribution, the stability condition is
� > 4/3 [17,23]. Nevertheless, in the relativistic scenario
with local anisotropies, the situation is quite different. Local
anisotropies within the matter distribution introduce drastic
changes on the stability condition [24,25]. Under this situa-
tion the stability condition shifts

� >
4

3
+

[
1

3
κ

ρ0 pr0

|p′
r0|

r + 4

3

(pt0 − pr0)

|p′
r0|r

]
max

(59)
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Fa gradients for each strange star candidate. These plots were built for
different values mentioned in Tables 1 and 3 with α = 2.5. It should

be noted that, as we are working in relativistic geometrized units, the
vertical axis has units of [km−3] for all panels
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Fig. 4 Left panel: the relativistic adiabatic index path against the
dimensionless radial coordinate r/R. Middle panel: the different of
the squared sound velocities versus the dimensionless radial coordinate
r/R. Right panel: Abreu’s stability factor versus r/R. These plots were

built for different values mentioned in Tables 1 and 3 with α = 2.5.
It should be noted that, as we are working in relativistic geometrized
units, the vertical axis is dimensionless for all panels

representing ρ0, pr0 and pt0 the initial density, radial and
tangential pressure when the matter distribution is in static
equilibrium. The terms enclosed in the bracket, are repre-
senting the relativistic corrections and the contributions com-
ing from the local anisotropies. Although in principle local
anisotropies into the stellar interior can be seen as a stabilizer
mechanism, Chandrasekhar pointed out [115,116] that rela-
tivistic corrections to the adiabatic index � could introduce
some instabilities within the matter distribution. To over-
come this issue in [117] was proposed a new condition on
the relativistic adiabatic index �. In general, the restriction
is based on the critical relativistic adiabatic index �crit. The
value of this critical quantity, depends on the amplitude of
the Lagrangian displacement from equilibrium and the com-
pactness factor u ≡ M/R. The amplitude of the Lagrangian
displacement is controlled by the parameter ξ , so taking a
particular form of this parameter, the critical relativistic adi-
abatic index is given by

�crit = 4

3
+ 19

21
u, (60)

being the stability condition � ≥ �crit, where � is computed
from [22]

� = ρ + pr
pr

dpr
dρ

. (61)

From the left panel of Fig. 4 it is appreciated that in all cases
the relativistic adiabatic index � is greater than 4/3. Com-
monly, it is assumed that when � > 4/3 at r = 0 the system
is stable under this criterion. Nevertheless, as was discussed
earlier, an accurate analysis dictates � ≥ �crit at r = 0. In
Table 2 on the fifth and sixth columns are displayed the corre-
sponding values for � and �crit for each considered compact
structure. As can be seen, for LMC X-4 the above constraint
is not satisfied, then under this criterion this compact star
representing by the space–time (43) is not stable.

On the other hand, we have also checked the stability of the
compact object by using the sound speed criteria. Abreu and
his collaborators [34] determined a way to check the presence
of stable/unstable regions within the stellar interior, when
local anisotropies are there. Varying the anisotropy factor Δ

with respect to the density ρ, one gets

δΔ

δρ
∼ δ (pt − pr )

δρ
∼ δpt

δρ
− δpr

δρ
∼ v2

t − v2
r . (62)

As both v2
r and v2

t are constrained by causality condition
0 ≤ v2

r ≤ 1 and 0 ≤ v2
t ≤ 1, this implies 0 ≤ |v2

t − v2
r | ≤ 1.

This can be re-expressed as follows
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−1 ≤ v2
t − v2

r ≤ 1

=
{−1 ≤ v2

t − v2
r ≤ 0 Potentially stable

0 < v2
t − v2

r ≤ 1 Potentially unstable

}
.

(63)

Therefore, the compact structure will be stable under radial
perturbations induced by local anisotropies, if the subliminal
radial v2

r sound speed of the pressure waves dominates every-
where the subliminal sound velocity of the pressure waves
in the transverse direction v2

t . For the present model it is
corroborated from the right panel in Fig. 2, where v2

r > v2
t ,

what is more from Fig. 4 (middle and right panels), the dif-
ference of the square pressure waves velocities lies between
− 1 and 0 and the absolute value of this quantity between 0
and 1. Then all the regions inside the compact configuration
are stable under this criteria.

7 Macro physical parameters: some implications
induced by MGD

As was discussed in Sect. 2, GD by MGD translates the mat-
ter distribution beyond to the perfect fluid behaviour. Further-
more, this mechanism modifies the geometry and the gravita-
tional mass function, in such a way that the original symmetry
of the seed space–time is preserved. Remembering that for
any spherically symmetric configuration the mass function
is obtained by

m(r) = 4π

∫ r

0
ρ(x)x2dx = 4π

∫ r

0

[
ρ̄(x) + αθ tt (x)

]
x2dx,

(64)

or equivalently

m(r) = r

2

[
1 − e−λ(r)

]
= r

2
[1 − μ(r) − α f (r)] . (65)

Then, the total mass is refereed at r = R and given by

m(R) = M = R

2
[1 − μ(R)] − α

R

2
f (R), (66)

where the first term in the r.h.s of (66) is just the total gravi-
tational mass definition within the context of GR. Then (66)
can written as

M = M0 − α
R

2
f (R), (67)

being M0 the GR mass. Now from (67) the compactness
factor u reads

2u = 2u0 − α f (R). (68)

At this stage some comments are pertinent

– It is clear that the total original mass M0 increases if the
second term in the right member of (67) is positive. The
same occurs with the compactness parameter u0 in (68).
So, an extra packing of mass is possible within the context

of GD by MGD [108]. In this regard, the extra packing
of mass has been already studied by considering that the
matter field is affected by the Kalb–Ramond field [119].
However, the main different between this approach and
the present one is that the outer space–time is affected
by Kalb–Ramond field, indistinct with what happens in
GD by MGD, where the θμν contributions can be sup-
pressed [51]. Then the outer manifold still is described
by a vacuum space–time.

– In considering the modified compactness factor u. It
can be appreciated that GR+MGD allows more com-
pact structures than in the pure GR picture. As it is
well-known, in the case of isotropic fluid distributions
u respects the Buchdahl limit [120] ı.e, u ≤ 4

9 . How-
ever, in this situation this upper limit could be overcome,
being the new upper bound the black hole one u = 1/2.
Moreover, the compactness factor acquires a lower bound
[108]. Of course all these things depend on the choice
made on α and u0.

– The fact that the compactness is shifted by an amount
α f (R), implies that the surface gravitational red-shift zs
is modified. Indeed, zs now reads

zs = [1 − 2u0 + α f (R)]−1/2 − 1. (69)

Of course, from the astrophysical point of view this is a
very interesting consequence.

On the other hand, we want to clarify how junction con-
ditions work after (67). So, in previous studies [51,68–
74,90,95,97] concerning stellar interiors, to close the match-
ing condition set of equation, the mass M and R radius of
the object were set taking some real observational data, like
in this work. Mathematically this is correct, but in that way
the MGD contributions are hidden. Then it is not clear at all,
how this technology incises on the total mass and compact-
ness factor. What is more, the masses of these real objects
were obtained within the framework of GR without consid-
ering any extra field or modification, neither on the material
sector or gravitational sector. The right step is to assume that
this real data correspond only to M0. Respect to the radius R,
it can be considered as the original one, if one wants to study
the extra packing of mass, otherwise it should be obtained
for example, from the second fundamental form (48), where
are present the θ -sector contributions. Nevertheless, unless
the problem be solved numerically, it is unavoidable to fix
by hand some constant parameters to match the observational
reports. In the present case the total mass is obtained by using
Eqs. (38) and (67) as follows

M = M0 + 4παaR3
[

1

3
− R2

5b2

]
, (70)
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Table 3 The numerical values
for the total mass and
compactness factor considering
the MGD contribution for
parameters mentioned in table 1
and α = 0.25

Strange stars candidates M0/M� R (km) u0 = M0/R M/M� u = M/R

Her X − 1 [105] 0.85 8.1 0.15459 0.91878 0.16710

SMC X − 1 [106] 1.04 8.301 0.18457 1.11581 0.19803

LMC X − 4 [106] 1.29 8.831 0.21519 1.34955 0.22513

Table 4 The numerical data of surface gravitational red-shift

Strange stars candidates zs zs(MGD)

Her X − 1 [105] 0.20314 0.22554

SMC X − 1 [106] 0.25902 0.28678

LMC X − 4 [106] 0.32497 0.34872

where b should satisfy the following constraint

b >

√
3

5
R. (71)

As can be seen from (70) α and a should have the same
sign to preserve in conjunction with (71) M > M0 > 0.
Remembering the previous discussion both α and a must be
positive defined quantities. In Tables 3 and 4 are presented
the numerical values of the total mass, compactness factor
and surface gravitational red-shift for each strange star can-
didate in both scenarios: pure GR and GR+MGD. Moreover,
the trend of these observables is illustrated in the Fig. 5.
All this information fits the GR results, however the GD by
means of MGD offers interesting modifications on the main
salient features of the model when the matter distribution
goes beyond the perfect fluid situation.

8 The generating function

It has been demonstrated that all spherically symmetric and
static isotropic solutions of the Einstein’s field equations, can
be generated by choosing a single monotone function subject
to the boundary conditions [121]. In a broader context Her-
rera et al. [122] extended the previous work to include a more
realistic and complete component ı.e, local anisotropies into
the matter distribution. They concluded that all spherically
symmetric static anisotropic solutions of the Einstein’s field
equations can be generated from two generating functions
ζ(r) and Π(r). The generator ζ(r) linked with the metric
potential eν and other with the negative of pressure anisotropy
Δ(r). These generators are defined via

e2ν(r) = Exp

[∫ (
2ζ(r) − 2

r

)
dr

]
, (72)

Π(r) = pr (r) − pt (r) = −Δ(r). (73)

So, from (72) solving for the generator ζ(r) one gets

ζ(r) = ν′(r) + 1

r
, (74)

where by virtue of (50) one gets

ζ(r) = 2r

A2 + r2 + 1

r
, (75)

and the second generator expressed by (73) is given by

Π(r) = α

[
3A4 + 6r4 + A2

(
12r2 − 5b2

)]
15b2

(
A2 + r2

)2 ar2, (76)

where Eq. (42) was employed. As can be seen, the second
generator (73) is naturally induced by MGD. Besides, if α =
0, then the results reporting in [121] are recovered.

9 Conclusions and remarks

In this work, it is provided an analytic anisotropic fluid
sphere, whose space–time is represented by the minimally
deformed Tolman IV isotropic solution. To introduce the
anisotropic behaviour into the matter distribution, we have
employed gravitational decoupling via minimal geometric
deformation approach. Where the temporal component of
the extra source θμν is mimicking the isothermal dark matter
density profile. This allows to close the θ -system of equa-
tions, to obtain the decoupler function f (r). To check the
feasibility of the resulting thermodynamic variables (33)–
(34) and (39)–(41) along with the minimally deformed inner
geometry (43) describing the stellar interior, we have per-
formed an exhaustive physical, mathematical and graphical
analysis. The trend of the most important physical quantities
is depicted in Figs. 1, 2, 3 and 4. As it is observed, these
plots corroborate the physical viability of this toy model to
describe realistic collapsed configurations such as neutron or
quark stars. This first conclusion, is supported by Tables 1, 2
and 3, where the obtained numerical data for the central den-
sity, surface density, central pressure, mass and compactness
factor matches the reported experimental data for this kind of
structures. It is worth mentioning that real observational data
corresponding to the strange star candidates Her X-1, SMC
X-1 and LCM X-4 was employed to determine the arbitrary
constant parameters {A, B,C} that characterize the model.

As gravitational decoupling by means of minimal geomet-
ric deformation scheme translates isotropic fluid distributions
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Fig. 5 Left panel: the mass function trend against the dimensionless
radial coordinate r/R. Middle panel: the compactness factor versus the
dimensionless radial coordinate r/R. Right panel: the gravitational sur-
face red-shift versus r/R. These plots were built for different values

mentioned in Table 1 with α = 2.5. It should be noted that, as we are
working in relativistic geometrized units, the vertical axis is dimension-
less for all panels

to anisotropic domains, we have analyzed the impact that
these local anisotropies introduce on the hydrostatic balance
and stability of the system. Furthermore, we have studied the
influences on the total mass, compactness factor and surface
gravitational red-shift. In considering the hydrostatic equilib-
rium and stability mechanism, the MGD grasp introduces a
new gradient that helps to counteract the gravitational action.
Specifically, this corresponds to the anisotropic gradient. To
check the reliability of the hydrostatic balance, that is, to
verify if it is stable or unstable, stability mechanisms are an
indispensable tool in this task. In this occasion, the criteria
of the relativistic adiabatic index and the subliminal sound
speeds of the pressure waves have been used. It is found that
the system is completely stable under the analysis of these
criteria, except in one case corresponding to the strange star
candidate LMC X-4 where the central adiabatic index is less
(in a small amount) than the critical value.

To close the work, it is important to highlight the influ-
ence that MGD has on the total mass M and compactness
factor u = M/R of the salient model. In this regard, both
quantities are increased, modifying related quantities such as
the surface gravitational red-shift zs . These modifications are
important from the physical and astrophysical point of view.
This is so because when an isotropic matter distribution is
extended to an anisotropic scenario by MGD grasp, it is pos-
sible the extra packing of mass. Then, objects become more
massive and dense. The affection on the mentioned quantities
alter the surface gravitational red-shift. This observable plays
a relevant role from the astrophysical point of view, since by
measuring it many properties can be elucidated when celes-
tial bodies are observed.
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