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Abstract We consider dark matter particles as singlet
fermionic particles carrying magnetic dipole moment to
explore its contribution on the polarization of the cosmic
microwave background (CMB) photons. We show that Dirac
fermionic dark matter particles have no contribution on the
CMB polarization. However, in the case of Majorana dark
matter, this type of interaction leads to the B-mode polariza-
tion in the presence of primordial scalar perturbations which
is in contrast with the standard scenario for the CMB polar-
ization. We numerically calculate the B-mode power spectra
and plot CBB

l for different dark matter masses and the r -
parameter. We show that dark matter particles with masses
less than 100 MeV have a valuable contribution on CBB

l .
Meanwhile, dark matter particles with mass mDM ≤ 50 MeV
for r = 0.07 ( mDM ≤ 80 MeV for r = 0.09) can be excluded
experimentally. Furthermore, our results put a bound on the
magnetic dipole moment about M ≤ 10−16e cm in agree-
ment with the other reported constraints.

1 Introduction

The nature of dark matter (DM) and its interactions is
one of the most important questions in cosmology and
particle physics. Although there is some wealth of cos-
mological evidence for existing DM, from galactic clus-
ters and velocity curves of spinning galaxies to gravita-
tional lensing [1–8], its particle properties have remained
elusive. To explore the nature of DM, different experi-
ments have been proposed such as DAMA/LIBRA collab-
oration at Gran Sasso [9], CoGeNT collaboration at the
Soudan Laboratory underground [10] and CDMS collab-
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oration [11] which are introduced to detect DM directly.
In these experiments, the scattering of DM from nucleons
can be described by multiple interactions. In fact, DM par-
ticle has zero electric charge and therefore in the simplest
extension of the standard model, it can be coupled to pho-
ton through an intrinsic electric and /or magnetic dipole
moments which is well-known as dipolar DM (DDM) model
[12–16]. However, the DDM model can successfully explain
some claims of DAMA/LIBRA and COGENT collaborations
[17,18].

The CMB photons are expected to be linearly polarized
due to the anisotropic Compton scattering around the epoch
of recombination. Meanwhile, according to the standard sce-
nario of cosmology, there is no physical mechanism to gen-
erate circularly polarized radiation at the last scattering sur-
face. However, studies conducted in recent years show that
the interaction between photons and matter can convert or
generate the polarization states of photons in different sit-
uations. For instance, the linear polarization of the CMB
photons can be converted to the circular one in the pres-
ence of background fields or due to the effects of particle
scattering which has been widely discussed in the literature
[19–30]. In this paper, we consider the DDM model with a
singlet spin 1

2 fermion as DM particles to examine the effects
of magnetic dipole moments on the CMB photon polariza-
tion.

Generally, the CMB polarization pattern has two geomet-
rical components, E-mode and B-mode. These modes based
on the Stokes parameters U and Q can form an indepen-
dent local coordinate system [31–35]. According to the stan-
dard model of cosmology, while E-mode polarization of the
CMB can be produced by Compton scattering at the last
scattering surface in the presence of scalar and tensor per-
turbations, its B-mode polarization pattern can only be pro-
duced at the presence of tensor perturbations. Nevertheless,
it has been shown that it is also possible to produce B-mode
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polarization in the presence of scalar perturbations. Since the
detection of the B-mode polarization can provide a unique
tool to investigate the CMB perturbations, it is important
to identify all potential sources of the B-mode polarization.
As the new sources, for instance, in [36] the effect of the
Faraday rotation due to the uniform magnetic field on the
CMB is investigated and it is shown that a nonvanishing B-
mode polarization can be produced through Faraday rotation.
In [37,38], the authors have discussed that photon-neutrino
interaction in the presence of scalar perturbations could be
considered as one of the sources of the CMB B-mode polar-
ization. It is also shown that the Compton scattering in the
non-commutative space-time can generate the B-mode polar-
ization of the CMB [39] and the possibility of the produc-
ing B-mode polarization pattern due to polarized Compton
scattering in the presence of scalar perturbations has been
discussed in [40].

However, the parameter which characterizes the ampli-
tude of the metric tensor perturbation is r = PT/PS

where PT = AT (k/k◦)nT −1 and PS = AS(k/k◦)nS−1

are, respectively, the power spectra of tensor and scalar
metric perturbations and nT,S and AT,S are their spec-
tral indices and amplitudes. The r parameter is usually
calculated by comparing the B-mode and E-mode power
spectra. Recent measurements of BICEP2 + Keck Array
+ Planck (BKP) report an upper bound r0.002 < 0.09
[41].

In this work, we will show that the magnetic like com-
ponent of the CMB polarization (B-mode polarization) can
be produced by the photon-DM interaction in the presence
of scalar perturbations. The paper is organized as follows:
we introduce the effective Lagrangian for the interaction of
DDM with photons in Sect. 2. Then we give a brief introduc-
tion to the Stokes parameters and drive the time evolution
of these parameters in terms of the photon-DM scattering
in Sect. 3. The power spectrum is evaluated numerically in
Sect. 4. We compare our results with the experimental data
and give some discussion in Sect. 5.

2 Dipolar dark matter model

A particle as a candidate for DM is generally known as a
stable or relatively stable particle that does not interact elec-
tromagnetically. However, in recent years, there are some
interests in the study of the electromagnetic interactions of
DM. Such a particle has not probably the electric charge
otherwise it has significant interaction with the photons and
could be easily detected. But this particle can weakly couple
with the electromagnetic field through loop corrections. The
most general form for the electromagnetic current between
fermions consistent with the Lorentz covariance and the Ward
identity can be written as follows [42]:

J emμ = ψ̄(p
′
)

[
γμF1(q

2) − γλγ5
(
gλ
μq

2 − qλqμ

)
G1(q

2)

+ σμνq
ν
[
F2(q

2) + γ5G2(q
2)

]]
ψ(p), (1)

where F1, G1, F2 and G2 are the electric charge, anapole,
magnetic and electric dipole form factors, respectively. The
current J emμ can couple with photons through dipolar part as
follows

LDDM = − i

2
ψ̄σμν(M + γ 5D)ψFμν, (2)

where Fμν is the electromagnetic field, M and D are perma-
nent magnetic and electric dipole moment, respectively and
σμν = i

2 [γ μ, γ ν]. It is necessary to mention that the perma-
nent dipole moment can be defined just for Dirac particle and
Majorana particle can not have a permanent dipole moment.
However, in the case of Majorana fermions, it is possible
to define transition moments between different mass eigen-
states which their interactions with photons are described by
[13,43]

LDDM = − i

2
ψ̄2σμν(M12 + γ 5D12)ψ1F

μν + H.C., (3)

where M12 and D12 stand for the transition magnetic moment
and electric moment, respectively. The Lagrangian (2) and
(3) form the basis of the DDM model [12]. Therefore, the
fermionic DM-particle can interact with photons via electric
and magnetic dipole moments [44–46].

3 Time evolution of stokes parameters due to
DDM-photon scattering

CMB temperature anisotropy via Compton scattering in the
epoch of recombination can cause the polarization of pho-
tons. One of the usual methods to characterize the polar-
ization state of the radiation field is throughout the Stokes
parameters I, Q, U and V. To introduce these parameters in
the context of quantum mechanics, one can consider a pho-
ton ensemble. The polarization density matrix of photons is
defined as

ρ = 1

2

[
I + Q U − iV

U + iV I − Q

]
, (4)

where I is the total intensity of radiation,U , Q andV describe
the polarization of photons and for unpolarized photons Q =
U = V = 0. The circularly polarized radiation is defined by
a non-zero value for V and the linear polarization is described
by the Stokes parameters Q and U . The parameters I and V
are independent of the reference frame whereas Q and U are
frame-dependent. Therefore, in the context of cosmology by
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introducing a set of linear combinations of Q andU , one can
find reference frame independent parameters that are known
as E and B modes.

Meanwhile, the time evolution of the Stokes parameters
can be examined through the Boltzmann equation. This equa-
tion provides a systematic way to account for different cou-
plings in a system and is generally expressed as follows

d f

dt
= C[ f ], (5)

where C[ f ] in the right-hand side of (5) contains all possi-
ble collision terms while the left-hand side is known as the
Liouville term and involves the effects of gravitational per-
turbations about the homogeneous cosmology. In the case of
photon, the distribution function f is the density matrix ρi j
as is given in (4). Thus the density operator corresponding to
the density matrix ρi j can be given as [31]

ρ̂ = 1

tr(ρ̂)

∫
d3k

(2π)3 ρi j (k)a†
i (k)a j (k), (6)

and the number operator D0
i j (k) = a†

i (k)a j (k), has an
expectation value as follows

〈D0
i j (k)〉 ≡ tr

[
ρ̂ D̂0

i j (k)
]

= (2π)3δ3(0)(2k0)ρi j (k). (7)

However, to examine the time evolution of the photons polar-
ization in the CMB, we need the time evolution of the density
matrix. To this end, we substitute (7) in

d

dt
D0
i j (k) = i

[
H, D0

i j (k)
]
, (8)

where H is the full Hamiltonian, to find the time evolution
of ρi j as

(2π)3δ3(0)(2k0)
d

dt
ρi j (k)

= i
〈
[H0

I (t), D
0
i j (k)]

〉

−1

2

∫
dt

〈[
H0
I (t),

[
H0
I (0), D0

i j (k)
]]〉

. (9)

In (9) H0
I is the interacting Hamiltonian at the lowest order

[31]. The first and the second term on the right-handed side
of (9) are called forward scattering term and higher order
collision term, respectively.

3.1 Dirac fermionic dark matter

We consider a Dirac fermionic DM which interacts with
photon via its magnetic dipole moment with the following
Lagrangian [12,17,47]

Fig. 1 The typical diagrams for photon-DM scattering

LDDM = − i

2
Mψ̄σμνψFμν. (10)

The Feynman diagram corresponding to DDM-photon scat-
tering at the lowest order is very similar to the Compton
scattering as is shown in Fig. 1. Therefore, the interacting
Hamiltonian at the lowest order can be obtained as follows

HI (t) = −M2
∫

d4x ′
∫

d3x ψ̄−(x)σμν

×SF (x − x ′)σαβ(∂μA
−
ν (x)∂αA

+
β (x ′)

+∂αA
−
β (x ′)∂μA

+
ν (x))ψ+(x ′), (11)

with the Fourier transformations of the fields and propa-
gator as follows

Aμ(x) =
∫

d3p
(2π)32p0

∑
s

[as(p)εsμ(p)e−i p.x

+a†
s (p)ε

∗
sμ(p)eip.x ], (12)

ψ(x) =
∫

d3q
(2π)3

m

q0

∑
r

[
br (q) ur (q)e−iq.x

+d†
r (q) vr (q)eiq.x ], (13)

and

SF (x) =
∫

d4k

(2π)4

/k + m

k2 − m2 + iθ
e−ik.x , (14)

where εsμ(p)’s are the photon polarization 4-vectors with
s = 1, 2 for two physical transverse polarization of a free
photon and as(p)(a

†
s (p)) is the annihilation (creation) oper-

ator which satisfies the canonical commutation relation as

[as(p), a†
s′(p

′)] = (2π)32p0δss′δ
(3)(p − p′). (15)

In (13) ur and vr are the Dirac spinors, br (dr ) and b†
r (d†

r )

are, respectively, the annihilation and creation operators for
fermion (antifermion) satisfying

{br (q), b†
r ′ (q ′)} = {dr (q), d†

r ′ (q ′)} = (2π)3 q
0

m
δrr ′δ(3)(q − q′).

(16)
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Therefore, the interaction Hamiltonian (11) by using (12),
(13) and (14) cast into

HI (t) =
∫

dqdq′dpdp′(2π)3δ(3)(q

+p − q′ − p′)ei(q0+p0−q ′0−p′0)t

×
[
b†
r ′(q ′)a†

s′(p
′)Mas(p)br (q)

]
, (17)

where dq ≡ d3q
(2π)3

m
q0 and dp ≡ d3p

(2π)3
1

2p0 and

M ≡ M1 + M2, (18)

with

M1 = M2 ūr ′(q ′)/εs′(p′) /p′(/q + /p + m)/εs(p)/p ur (q)

2q.p
,

(19)

and

M2 = −M2 ūr ′(q ′)/εs(p)/p(/q − /p′ + m)/εs′(p
′) /p′ ur (q)

2q.p′ .

(20)

Now, we are ready to evaluate the forward scattering term,
the first term on the right hand side of (9). To this end, one
needs the expectation value of operators such as [31]

〈a1a2...b1b2...〉 = 〈a1a2...〉〈b1b2...〉, (21)

〈a†
s′(p

′)as(p)〉 = 2p0(2π)3δ(3)(p − p′)ρss′(x,p), (22)

and

〈b†
r ′(q ′)br (q)〉 = (2π)3δ(3)(q − q′)δrr ′nDM(x,q). (23)

By using the above relations, 〈[H0
I (0), Di j (k)]〉 can be

obtained as follows

i〈[H0
I (0), Di j (k)]〉

= i
∫

dq nDM(x, q)(δisρs′ j (k) − δ js′ρis(k))(2π)3δ(3)(0)M,

(24)

where

M = M2 ūr (q)(/εs′(k)/εs(k) − /εs(k)/εs′(k))/k ur (q), (25)

or

M = 2M2εα
s′(k) εβ

s (k) kσ εαβσλūr (q)γ λγ 5 ur (q). (26)

Meanwhile, in the nonrelativistic limit one has [48]

ūr (q)γ 0γ 5 us(q) 	 ξ†
r
q · 
σ
m

ξs, (27)

and

ūr (q)γ iγ 5 us(q) 	 ξ†
r σ iξs, (28)

where ξr indicates the two component spinor normalized to
unity and σ i (i = 1, 2, 3) are the Pauli matrices. Therefore,
after some manipulations, the amplitude can be rewritten as

M 	 2M2
(
k · (
εs′ × 
εs) ξ

†
r
q · 
σ
m

ξr − k0(
εs′ × 
εs) · ξ
†
r 
σξr

)
.

(29)

Using the following relations

ξ†
r q · 
σ ξr = (−1)r+1 |q|, (30)

ξ†
r 
σ ξr = (−1)r+1q̂, (31)

we find that, unfortunately, (29) after averaging on both helic-
ities of the Dirac fermions, leads to a vanishing average as

1

2

∑
r

(
2M2{k · (
εs′ × 
εs ) ξ

†
r
q · 
σ
m

ξr − k0(
εs′ × 
εs ) · ξ
†
r 
σξr }

)
= 0,

(32)

where r stands for the helicity. Therefore, the photon-DM
forward scattering for Dirac fermions with both chiralities
has not any contribution on the CMB polarization.

3.2 Majorana dark matter: transition magnetic dipole
moment

In this section, we are going to investigate the effect of DDM-
photon interaction on the CMB polarization through Majo-
rana magnetic moment.

Two singlet Majorana fermions χ1 and χ2, with mass
splitting δ, can interact with photons via transition mag-
netic moment based on the following Lagrangian [49]

LDDM = − i

2
M12 χ̄1σμνχ2F

μν + H.C. (33)

In (33) the χi ’s can be considered as (χ = ψR + ψc
R)

or (χ = ψL + ψc
L) or even both together. However,

in the latter case the contribution of the forward scatter-
ing on the CMB polarization, as the largest term, is zero
when the coupling M12 for both chiralities is considered to
be equal, see appendix A. In fact, existing asymmetry in
the distribution function of particles which interact with an
ensemble of photons can make a net polarized state. Since
in the case of Majorana particles with the same coupling
for both chiralities as well as Dirac fermions there is no
such asymmetry in the distribution function, these types

123



Eur. Phys. J. C (2020) 80 :402 Page 5 of 13 402

of interaction can not affect the CMB polarization. Mean-
while, in the case of Majorana particles, which can cou-
ple to photon through just one kind of chiralities one can
expect to get a net polarization. Nevertheless, we will con-
sider the Majorana fermions to be the right handed neu-
trinos (χ = ψR + ψc

R) which cast the Lagrangian (33)
into

LDDM = − i

2
M12

(
ψ̄c

1σμν PRψ2 Fμν

+ ψ̄1σμν PLψc
2 Fμν

) + H.C., (34)

where PR = 1
2 (1 + γ 5), PL = 1

2 (1 − γ 5) and ψc =
−iγ2ψ

�.
In the following, first, we will assume that the two singlet

fermions are both stable DM particles. Next, we will suppose
that the heavier Majorana particle is not stable and decays
into the lighter one which is stable and acts as a Majorana
DM.

•Stablemajorana particle :
First, we consider two singlet Majorana particles with

masses mDM1 and mDM2 act as DM. Based on (34) and by
using (12), (13), (14) and the fact that ScF(k) = SF (−k)
[50], the total Feynman amplitude corresponding to DDM-
photon scattering at the lowest order is obtained from
the sum of all Feynman diagrams in Fig. 1 as follows

M′ = M′
1 + M′

2, (35)

where

M′
1 = −1

2
M2

12

(
ūr ′ (q ′)/εs′ (p′) /p′ PL (/q + /p − mDM2 )/εs(p)/p PR ur (q)

(p + q)2 − m2
DM2

+ ūr ′ (q ′)/εs(p)/p PL (/q − /p′ − mDM2 )/εs′ (p
′) /p′ PR ur (q)

(−q + p′)2 − m2
DM2

+ v̄r (q)/εs(p)/p PR(−/q + /p + mDM2 )/εs′ (p
′) /p′ PL vr ′ (q ′)

(p − q)2 − m2
DM2

+ v̄r (q)/εs′ (p
′) /p′ PR(− /q ′ − /p + mDM2 )/εs(p)/p PL vr ′ (q ′)

(−q ′ − p)2 − m2
DM2

)
,

(36)

andM′
2 is the same asM′

1 except that the indices 1 and 2 are
replaced. To evaluate the forward scattering term, one needs
to calculate 〈[H0

I (0), Di j (k)]〉 as follows

i〈[H0
I (0), Di j (k)]〉 = i

∫
dq nDM (x,q)(δisρs′ j (k)

−δ js′ρis(k))(2π)3δ(3)(0)M′
, (37)

where

M′ = M′ |q ′=q, p′=p=k,r=r ′ . (38)

By imposing the conditions q ′ = q and p′ = p = k, (35)
cast into the following relation

M′ = −1

2

M2
12

(2k · q)2 − (m2
DM2

− m2
DM1

)2

×
( (

2k · q + (
m2

DM2
− m2

DM1

))
(2k · q)

×ūr (q)/εs′ (k)/εs(k)/k PR ur (q)

− (
2k · q − (

m2
DM2

− m2
DM1

))
(2k · q)

×ūr (q)/εs(k)/εs′ (k)/k PR ur (q)

+ (
2k · q + (

m2
DM2

− m2
DM1

))
(2k · q)

×v̄r (q)/εs(k)/εs′ (k)/k PL vr (q)

− (
2k · q − (

m2
DM2

− m2
DM1

))
(2k · q) v̄r (q)/εs′ (k)/εs(k)/k

×PL vr (q)
)

+ (1 ↔ 2). (39)

In the above relation, terms proportional to the mass differ-
ence lead to the product of polarization vectors, εs · εs′ =
− δss′ , and therefore their contributions will be zero. For the
remaining terms, we use the identity

ūr (q)γ λ us(q) = v̄r (q)γ λ vs(q) = qλ

mDM
δrs, (40)

and arrive at the following relation

M′ = −M2
12

(2k.q)2

(2k.q)2 − (m2
DM2

− m2
DM1

)2
εαβσλ εα

s′(k)

×εβ
s (k) kσ qλ

mDM1

+ (1 ↔ 2), (41)

and hence, in the non-relativistic limit, the total Feynman
amplitude is given by

M′ = −M2
12

(2k.q)2

(2k.q)2 −
(
m2

DM2
− m2

DM1

)2

(
k · (
εs′ × 
εs)

−k0 v(
εs′ × 
εs) · v̂
)

+ (1 ↔ 2), (42)

where v = |
q|/mDM.

3.2.1 Case δ = mDM2 − mDM1 � k0

Here, we consider the case that δ = mDM2 − mDM1 � k0

and therefore (42) can be estimated as follows

M′ 	 −M2
12 k · (
εs′ × 
εs) + (1 ↔ 2). (43)

Although the second term in (42) is similar to the first one,
a straightforward calculation leads to a negligible value for
this term. In fact, the order of the second term is smaller than
the first one due to the presence of v and therefore we ignore
the terms propotional to the DM velocity of (42). Now by
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substituting (43) in (37) and using (9), the time evolution of
density matrix element can be written as

dρi j
dt

= −iM2 (
nDM1(x) + nDM2(x)

)
(δisρs′ j (k)

−δ js′ρis(k))(
εs′ × 
εs) · k̂, (44)

where M2
12 = M2

21 = M2, k̂ = k/k0 and the DM number
density nDMi (i = 1, 2) is

nDMi(x) =
∫

d3q
(2π)3 nDMi(x,q). (45)

Since nDM1(x) + nDM2(x) = nDM(x), (44) cast into

dρi j
dt

= −iM2 nDM(x) (δisρs′ j (k)−δ js′ρis(k))(
εs′ ×
εs)·k̂,

(46)

and consequently, the Stokes parameters evolve as

d I

dt
= C I

eγ , (47)

d

dt
(Q ± iU ) = C±

eγ ∓ i τ̇DM(Q ± iU ), (48)

dV

dt
= CV

eγ , (49)

where C I
eγ ,CV

eγ and C±
eγ show the contribution of Thomson

scattering [31] and τ̇DM is defined as follows

τ̇DM = 3

8π

(me

α

)2
σT M2 nDM, (50)

where σT is the Thomson cross section. The second term in
the right handed side of (48) shows that the photon-DDM
forward scattering affects the time evolution of the Stokes
parameters Q and U . In the approximation that δ is small,
(mDM1 ≈ mDM2 ≈ mDM), and by using the relation between
magnetic dipole moment M and DM-photon scattering cross
section 〈σv〉 [12,13]

〈σv〉 ≈ 1

2π
M4m2

DM, (51)

(50) cast into

τ̇DM = 3

8π

(
me

mDM

)2
σT

α2

√
2π〈σv〉 ρDM, (52)

where ρDM is the DM mass density. To compare the con-
tribution of the CMB-DDM interaction with respect to the
Compton scattering, we need to have the ratio τ̇DM

τ̇e
where τ̇e

is the differential optical depth for Compton scattering which
is denoted by

τ̇e = a(η) σT ne, (53)

where η is the conformal time and a(η) is the expansion
factor which is normalized to unity for present time (η = η0).
Hence, the ratio of τ̇DM with respect to the τ̇e, at the present
time, can be found as

τ̇DM

τ̇e
= 3

8π

(
me

mDM

)2
�DM

�BM

mp

α2

√
2π〈σv〉, (54)

where �DM and �BM are the DM density parameter and the
baryonic matter density parameter, respectively. To arrive the
above relation we have used the fact that the number density
of electron is equal to the number density of proton and it is
approximately equal to the baryonic matter number density

ne = np ≈ nBM. (55)

However, the value of the ratio given in (54) can be estimated
as

τ̇DM

τ̇e
	 5.2 × 10−11

( mDM

10GeV

)−2
(

〈σv〉
(10−30) cm3

s

)1/2

×
(

�DM

0.26

) (
�BM

0.04

)−1 ( mp

1GeV

)
, (56)

where for DM particles with masses 10GeV --- 10 MeV
varies as 5.2 × 10−11 --- 5.2 × 10−5.

3.2.2 Case δ = mDM2 − mDM1 � k0

In this case, (42) can be estimated as follows

M′ 	 M2
12

(2k · q)2

(
m2

DM2
− m2

DM1

)2 k · (
εs′ × 
εs) + (1 ↔ 2).

(57)

In the nonrelativistic limit and if we assume mDM1 is the
same order of mDM2 we will have

M′ 	 M2
12

(
k0

δ

)2

k · (
εs′ × 
εs) + (1 ↔ 2). (58)

For the cases in which k0 � δ � mDM, (mDM1 ≈ mDM2 ≈
mDM), and after some calculation, one can find the evolution
of the Stokes parameters similar to (47–49) except that τ̇DM

is defined as follows

τ̇DM =
(
k0

δ

)2
3

8π

(
me

mDM

)2
σT

α2

√
2π〈σv〉 ρDM, (59)

which leads to

τ̇DM

τ̇e
= 3

8π

(
k0

δ

)2 (
me

mDM

)2
�DM

�BM

mp

α2

√
2π〈σv〉.

(60)
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The above relation clearly shows that the contribution of the
photon-DDM scattering on the CMB polarization in the case
in which δ � k0 will be negligible and therefore we will not
consider this case for the rest of the paper.
•Unstablemajorana particles :
Now we investigate the possibility that the heavier Majorana
particle (with mass mDM2 ) can decay into the lighter one
(with mass mDM1 ) which is stable. In this case, the Feynman
amplitude corresponding to DDM-photon scattering will be
the same as (36) which after imposing the conditions q ′ = q
and p′ = p = k due to (37) and (38) cast into

M′ = −M2
12

(2k.q)2

(2k.q)2 −
(
m2

DM2
− m2

DM1

)2

×εαβσλ εα
s′(k) εβ

s (k) kσ qλ

mDM1

. (61)

The same as the previous part, we work in two approx-
imation: First, we consider δ = mDM2 − mDM1 � k0. In
the nonrelativistic limit, the time evolution of density matrix
element will be obtained as (46)

dρi j
dt

= −iM2 nDM(x) (δisρs′ j (k)−δ js′ρis(k))(
εs′ ×
εs)·k̂,

(62)

where M12 = M and nDM1 = nDM. Therefore the results
will be the same as the previous part and the contribution
of this interaction on the polarization of the CMB will be
determined through (52). However, in the case of decaying
heavier Majorana particle into the lighter one, we have more
constraints on δ due to the life time of the heavier particle
which depends on the mass splitting as follows

τ(χ2 → χ1 γ ) = π

M2

1

δ3 . (63)

Based on this relation, for a small value of the mass splitting,
the value of the magnetic moment must be large enough to
occur the decay process within the cosmological timescale
and for a small value of the magnetic moment, the decay can
not occur. Meanwhile, for a large value of the mass splitting
(δ � k0) the heavier particle can decay but the contribution
on the CMB polarization will be suppressed as ( k

0

δ
)2.

4 Generalized Boltzmann equation for the CMB

The CMB polarization pattern includes two types of polariza-
tion, E and B-modes. While the E-mode polarization can be
produced in the presence of scalar perturbations, the B-mode
polarization is only generated by tensor perturbations. How-
ever, in the previous section, we showed that photon-DDM

interaction can act as a source for generating the B mode
polarization pattern in the presence of scalar perturbations.
In fact, in the case that the mass spilitting of Majorana DM is
smaller than the energy of the CMB photon, this interaction
can modify the power spectrum of the B-mode polarization.

The CMB radiation transfer is described by the multipole
moments of temperature (I) and polarization (P) [34,35]

�S
I,P(η, K , μ) =

∞∑
l=0

(2l + 1)(−i)l�S
I,Pl (η, K )Pl(μ), (64)

where Pl(μ) is the Legendre polynomial of rank l, μ =
n̂.K̂ = cos θ and θ is the angle between the CMB photon
direction n̂ = k

|k| and the wave vectors K of the Fourier
modes of scalar perturbations (S). Since for a given Fourier
mode, one can choose a coordinate system in which K ‖ ẑ
then the Boltzmann equation in the presence of Thomson
scattering and DDM-photon interaction can be written as

d

dη
�S

I + i Kμ�S
I + 4[Ψ̇ − i Kμ�]

= τ̇e

[
−�S

I + �
S◦
I + iμvb + 1

2
P2(μ)�

]
, (65)

d

dη
�±S

P + i Kμ�±S
P = τ̇e

[
−�±S

P − 1

2
[1 − P2(μ)]�

]

∓ia(η)τ̇DM�±S
P , (66)

where � and � are the metric perturbations, η is the confor-
mal time, a(η) is the expansion factor which is normalized
to unity for present time (η = η0) and vb is the baryon
bulk velocity, � ≡ �

S2
I + �

S2
P − �

S◦
P and the polarization

anisotropy is given by

�±S
P = QS ± iUS, (67)

which can cast the equation of polarization anisotropy into
[37,38]

d

dη

[
�±S

P eiKμη±i τ̃DM+τ̃e
]

= −1

2
eiKμη±i τ̃DM+τ̃e τ̇e[1 − P2(μ)]�,

(68)

where

τ̃DM(η, μ) ≡
∫ η

0
dηa(η)τ̇DM, τ̃e(η) ≡

∫ η

0
dη a(η) τ̇e.

(69)

Now by integrating (68) along the line of sight up to the
present time η0, with the initial condition �±S

P (0, K , μ) = 0,
yields

123



402 Page 8 of 13 Eur. Phys. J. C (2020) 80 :402

�±S
P (η0, K , μ) = 3

4
(1 − μ2)

∫ η◦

◦
dη eixμ±iτDM(η)−τe τ̇e �(η, K ),

(70)

where x = K (η0 − η) and

τDM(η) =
∫ η0

η
dηa(η)τ̇DM(η) =

∫ η0

η
dηa(η)

√
2π〈σv〉 ρDM

m2
DM

,

(71)

or in terms of the redshift z

τDM(z) =
√

2π〈σv〉
m2

DM

∫ z

0
dz

′
ρ0

DM
(1 + z

′
)2

H(z′
)

. (72)

To obtain (72) from (71), we have used

ρDM = ρ0
DM(1 + z)3, (73)

where ρ0
DM is mass density of DM in present time and a dη =

− dz
H(z)(1+z) where H(z) can be obtained from Friedmann

equation in the matter dominated era as follows

H2

H2
0

= �0
M (1 + z)3 + �0

�, (74)

where H0 ≈ 67 kms−1Mpc−1, �0
M ≈ 0.31, �0

� ≈ 0.69
[51].

Meanwhile E-mode and B-mode polarizations can be
defined in terms of �±S

P (η0, K , μ) as follows [31,33–35]

�
(S)
E (η0, K , μ) ≡ − 1

2

[
ð̄

2 �
+(S)
P (η0, K , μ) + ð

2�
−(S)
P (η0, K , μ)

]
,

(75)

�S
B(η0, K , μ) ≡ i

2

[
ð̄

2 �+S
P (η0, K , μ) − ð

2�−S
P (η◦, K , μ)

]
, (76)

whereð and ð̄ are spin raising and lowering operators, respec-
tively. Thus by assuming the scalar perturbation to be axially
symmetric around K one has

ð̄
2�+S

P (η0, K , μ) = ∂2
μ

[
(1 − μ2)�+S

P (η0, K , μ)
]
, (77)

ð
2�−S

P (η0, K , μ) = ∂2
μ

[
(1 − μ2)�−S

P (η0, K , μ)
]
, (78)

which can cast (75) and (76) into

�S
E(η0, K , μ) = − 3

4

∫ η0

0
dη ge(η)�(η, K )∂2

μ[(1 − μ2)eixμ cos τDM],
(79)

�S
B(η0, K , μ) = 3

4

∫ η0

0
dη ge(η)�(η, K )∂2

μ[(1 − μ2)eixμ sin τDM],
(80)

where ge(η) = τ̇ee−τe is the visibility function of electron.
As one can easily see for τDM �= 0 the equations (79) and

(80) show that the DDM-photon interaction produces the
nontrivial B-mode polarization and modify of the ordinary
E-mode polarization. However, the power spectrum for the E
and B-modes can be obtained by integrating over the initial
power spectrum of the metric perturbation as [31,33–35]

CEE,S
l = 1

2l + 1

(l − 2)!
(l + 2)!

×
∫

d3K PS(K )

∣∣∣∣∣
∑
m

∫
d� Y ∗

lm(n)�S
E(η0, K , μ)

∣∣∣∣∣
2

,

(81)

CBB,S
l = 1

2l + 1

(l − 2)!
(l + 2)!

×
∫

d3K PS(K )

∣∣∣∣∣
∑
m

∫
d� Y ∗

lm(n)�S
B(η0, K , μ)

∣∣∣∣∣
2

,

(82)

where PS(K ) is the initial power spectrum of the scalar mode
perturbation. By using identities

∂2
μ(1 − μ2)eixμ ≡

(
1 + ∂2

x

)
x2eixμ, (83)

and

∫
d�Y ∗

lme
ixμ = (i)l

√
4π(2l + 1) jl(x)δm0, (84)

the equations (81) and (82) can be rewritten as

CEE,S
l = (4π)2 (l + 2)!

(l − 2)!

×
∫

d3K PS(K )

∣∣∣∣ 3

4

∫ η0

0
dη ge(η) �(η, K )

jl
x2 cos τDM

∣∣∣∣
2
,

(85)

CBB,S
l = (4π)2 (l + 2)!

(l − 2)!

×
∫

d3K PS(K )

∣∣∣∣ 3

4

∫ η0

0
dη ge(η) �(η, K )

jl
x2 sin τDM

∣∣∣∣
2
.

(86)

We have numerically calculated the B-mode power spectra
using CMBquick code for different values of 〈σv〉, mDM and
r -parameter as are shown in Figs. 2 and 3. However, to see
how the curves depend on DM-photon interaction one can
approximate (85) and (86) as follows

CEE,S
l = C̄EE,S

l

(
cos2 τ̄DM

)
, (87)

and

CBB,S
l = C̄EE,S

l

(
sin2 τ̄DM

)
, (88)
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(a) To plot above curves, < σ v > 10−30cm3s−1 and

r = 0.07 are considered.

(b) To plot above curves, < σ v > 10−30cm3s−1 and

r = 0.05 are considered.

Fig. 2 The magnetic like linear polarization angular power spectrum
l(l + 1)/(2π)CBB

l in units of (μK )2 is plotted for different values
of the tensor to scalar ratio r ; thick black, thick gray, dashed-dotted
red, dashed blue, dashed pink, dotted green and dashed-dotted brown
lines indicate CBB

l due to: the gravitation lensing effects, the standard
contribution due to Compton scattering in the presence of tensor per-

turbations with r mentioned in sub-caption, the DM magnetic moment
contribution in the presence of scalar metric perturbations with different
masses mD ≡ {1 MeV; 5 MeV; 100 MeV; 500 MeV; 1 GeV}, respec-
tively. The points with error bars show the BICEP2/Keck Array data.
We have chosen the Planck best fit values for the cosmological param-
eters

where C̄EE,S
l is the value of the power spectrum for E mode

polarization associated with the Compton scattering in the
contex of scalar perturbations [34,35]

C̄EE,S
l = (4π)2 (l + 2)!

(l − 2)!
∫

d3K PS(K )

∣∣∣∣ 3

4

∫ η0

0
dη ge(η) �(η, K )

jl
x2

∣∣∣∣
2
,

(89)

and τ̄DM is the time average of τDM

τ̄DM(z) = 1

zl

∫ zl

0
dz τDM(z) ≈ 1.4 × 10−1 MeV2

m2
DM

×
(

〈σv〉
10−30 cm3

s

)1/2 (
ρ0

DM

2.5 × 10−30 g
cm3

)
, (90)

with zl ≈ 1100 represents redshift at the last scattering sur-
face. Therefore, one can expect a valuable contribution on
the CBB,S

l from DM particles with masses about a few MeV.

5 Conclusion and discussion

We have considered the scattering of the CMB-photons
from DDM. Consequently, producing the magnetic-like lin-
ear polarization power spectrum of the CMB photons has
been estimated by using quantum Boltzmann equation. To
this end, the CMB radiation has been considered as an ensem-
ble of photons which is described by the Stokes parameters.
Meanwhile, the Compton scattering and the photon-DDM
interaction have been considered as the collision terms in

(a) To plot above curves, < σ v > 10−30cm3s−1 and

r = 0.09 are considered.

Fig. 3 The magnetic like linear polarization angular power spec-
trum l(l + 1)/(2π)CBB

l in units of (μK )2 is plotted; thick red,
thick black, dashed black, dotted green, dashed pink, dashed blue
lines indicate CBB

l due to: the gravitation lensing effects, the stan-
dard contribution due to Compton scattering in the presence of ten-
sor perturbations, the DM magnetic moment contribution in the pres-
ence of scalar metric perturbations with different masses mD ≡
{70 MeV, 80 MeV, 90 MeV, 100 MeV}, respectively. The points with
error bars show the BICEP2/Keck Array data. We have chosen the
Planck best fit values for the cosmological parameters

the quantum Boltzmann equation. For the DM we have con-
sidered both Dirac and Majorana particles as candidates for
the DDM. We have shown that only the Majorana parti-
cles through a transition magnetic moment with one chiral-
ity or two chiralities with different couplings can produce
the CMB polarization. Nevertheless, we have considered the

123



402 Page 10 of 13 Eur. Phys. J. C (2020) 80 :402

(a) To plot above curves, < σ v > 10−30cm3s−1 and

r = 0.07 are considered.

(b) To plot above curves, < σ v > 10−30cm3s−1 and

r = 0.05 are considered.

Fig. 4 The magnetic like linear polarization angular power spectrum
l(l + 1)/(2π)CBB

l in units of (μK )2 is plotted for different values
of the tensor to scalar ratio r and 〈σ v〉; the diagrams show: Compton
scattering in the presence of tensor perturbations and gravitation lens-
ing effect without considering DDM interactions (thick-dashed black
line), Compton scattering in the presence of tensor perturbations and
gravitation lensing plus DDM interactions in the presence of scalar

perturbations by considering different masses for DM mD = 1 MeV
(red line), mD = 5 MeV (blue line), mD = 100 MeV (dashed Pink
line), mD = 500 MeV (dotted geen line) and mD = 1 GeV (dashed-
dotted brown line) respectively. The points with error bars show the
BICEP2/Keck Array data. We have chosen the Planck best fit values for
the cosmological parameters

right handed Majorana DM to explore the power spectrum
of the B-mode polarization of the CMB photons. The most
important point is that the B-mode polarization pattern has
been generated by the CMB–DDM interaction in the pres-
ence of the scalar perturbation. This is while the standard
scenario for the generation of the CMB B-mode polarization
assumes that this type of polarization pattern can only be pro-
duced due to the Compton scattering in the presence of tensor
perturbations. However, to obtain the numerical results and to
find some bounds on the magnetic dipole moment two cases
have been taken into account. In the first case, the Majorana
particle mass splitting is smaller than the energy of the CMB
photons that leads to suppression for decaying of the heav-
ier DM for the magnetic moment as large as 10−16e cm, see
(63). In contrast, in the second case where the mass splitting
of the two Majorana particles is larger than the energy of
the CMB photons, the decay process can occur but the CMB
polarization is suppressed as ( k

0

δ
)2 as is shown in (59). In

fact, only for the case one where the DM particles are stable
a valuable polarization can be produced.

To compare the contribution of the CMB-DDM interac-
tion in the case one where mDM1 ∼ mDM2 = mDM with
respect to the Compton scattering, the numerical value of the
B-mode power spectrum of the CMB has been plotted for
different values of mDM and r and for 〈σ v〉 ≈ 10−30cm3s−1

together with BICEP2/Keck Array data (see Figs. 2, 3, 4
and 5). Figures 2 and 3 show the behavior of the B-mode
power spectrum due to the Compton scattering in the pres-
ence of tensor perturbations, the gravitational lensing effects
and photon-DDM interaction in the case of scalar perturba-

(a) To plot above curves, < σ v > 10−30cm3s−1 and

r = 0.09 are considered.

Fig. 5 The magnetic like linear polarization angular power spectrum
l(l+1)/(2π)CBB

l in units of (μK )2 is plotted; The plot shows: Comp-
ton scattering in the presence of tensor perturbations with r = 0.09
and gravitation lensing effect without considering DDM interactions
(red line), Compton scattering in the presence of tensor perturbations
and gravitation lensing plus DDM interactions in the presence of scalar
perturbations by considering different masses for DM mD = 70 MeV
(black line), mD = 80 MeV (green line),mD = 90 MeV (dashed pink
line),mD = 100 MeV (dashed blue line), respectively. The points with
error bars show the BICEP2/Keck Array data. We have chosen the
Planck best fit values for the cosmological parameters

tion. On the other hand, Figs. 4 and 5 indicate the contribution
of the lensing effects and the Compton scattering in the pres-
ence of tensor perturbation plus photon-DDM interaction. As
the figures show for different values of the r parameter one
can obtain different mass regions for DDM. For example,
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the contribution of the B-mode due to CMB-DDM interac-
tion in the presence of scalar perturbations for r = 0.07
and mDM ≤ 50 MeV (r = 0.09 and mDM ≤ 80 MeV )
is larger than the total reported B-mode power spectrum
and therefore can be excluded experimentally. In fact, the
B-mode polarization power spectrum can put a bound on
the magnetic dipole moment about M ≤ 10−16e cm which
is in agreement with other reported constraints [12,52–
54].

It should be emphasized that the r ratio is usually intro-
duced by comparing B- and E-modes linear polarization
power spectrum while it is assumed that the observed B-mode
Cob

Bl is totally attributed to the Compton scattering in the pres-
ence of tensor perturbationsCob

Bl = CT
Bl. However, our results

show that other interactions such as CMB-DDM interaction
can generate magnetic like power spectrum in the presence
of scalar perturbations C (S)

Bl and therefore Cob
Bl = CT

Bl +C (S)
Bl .

So, the r -parameter is modified as follows

r ∝ CT
Bl/C(S)

El ∝
(

Cob
Bl − C(S)

Bl

)
/C(S)

El . (91)

As (91) shows, the value of the r -parameter, as a scale of
the amplitude of gravitational wave, is suppressed. By using
(81–90) in (91), one can approximately find

r 	 r0 − sin2 τ̄DM, (92)

where r0 is the standard tensor to scalar perturbation ratio
without considering any new source for the B-mode polar-
ization such as the CMB-DDM interaction.

As a final point, what we did not calculate in this paper
are the resonance mode δ ∼ k0 and the contribution of elec-
tric dipole moment for the Majorana particles which is under
investigation as a future work [55]. However, we should men-
tion that the future observed data for the B-mode polarization
power spectrum can be used as an indirect probe of the nature
of photon-DM interaction.
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Appendix A: Forward scattering of photon-majorana
DM with both chiralities

In this Appendix, we are going to calculate the contribution
of the photon-Majorana DDM forward scattering in detail.

Based on the Lagrangian which has been introduced in
(33), two Majorana fermions χ1 and χ2, with mass split-
ting δ, can interact with photons through transition magnetic
moment. The Feynman diagram corresponding to the low-
est order interaction has been shown in Fig. 1. By using
Lagrangian (33) and Fig. 1, the total Feynman amplitude
is given by

M = M2
12

(
ūr ′ (q ′)/εs′ (p′) /p′ (/q + /p + mDM2 )/εs(p)/p ur (q)

(p + q)2 − m2
DM2

+ ūr ′ (q ′)/εs(p)/p (/q − /p′ + mDM2 )/εs′ (p
′) /p′ ur (q)

(−q + p′)2 − m2
DM2

+ v̄r (q)/εs(p)/p (−/q − /p + mDM2 )/εs′ (p
′) /p′ vr ′ (q ′)

(p − q)2 − m2
DM2

+ v̄r (q)/εs′ (p
′) /p′ (−/q + /p′+mDM2 )/εs(p)/p vr ′ (q ′)

(−q+p′)2−m2
DM2

)
+ (1 ↔ 2).

(A1)

According to (37), to calculate the forward scattering term,
we should impose the conditions q ′ = q and p′ = p = k to
the Feynman amplitude which leads to

M = M2
12

(2k · q)2 −
(
m2

DM2
− m2

DM1

)2

×
( (

2k · q +
(
m2

DM2
− m2

DM1

))
(2k · q)

×ūr (q)/εs′(k)/εs(k)/k ur (q)

−(2k · q − (m2
DM2

− m2
DM1

))(2k · q)

×ūr (q)/εs(k)/εs′(k)/k ur (q)

+
(

2k · q +
(
m2

DM2
− m2

DM1

))
(2k · q)

×v̄r (q)/εs(k)/εs′(k)/k vr (q)

−
(

2k · q −
(
m2

DM2
− m2

DM1

))

(2k · q) v̄r (q)/εs′(k)/εs(k)/k vr (q)
)

+ (1 ↔ 2),

(A2)

or

M = M2
12

(2k · q)2 −
(
m2

DM2
− m2

DM1

)2

×(2k · q)2
(
ūr (q)

(
/εs′(k)/εs(k) − /εs(k)/εs′ (k)

)
/k ur (q)

+ v̄r (q)
(
/εs(k)/εs′ (k) − /εs′ (k)/εs(k)

)
/k vr (q)

)
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+ 2k · q
(
m2

DM2
− m2

DM1

)

×
(
ūr (q)

(
/εs′ (k)/εs(k) + /εs(k)/εs′ (k)

)
/k ur (q)

+ v̄r (q)
(
/εs(k)/εs′(k) + /εs′ (k)/εs(k)

)
/k vr (q)

)
+ (1 ↔ 2).

(A3)

Since the terms proportional to the mass difference lead to
the product of polarization vectors, εs · εs′ = − δss′ , their
contributions will be zero. Using the relations (30) and (31)
one can find that the contributions of the remaining terms
lead to zero and therefore this interaction can not affect the
CMB polarization.
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