
Eur. Phys. J. C (2020) 80:362
https://doi.org/10.1140/epjc/s10052-020-7967-x

Regular Article - Theoretical Physics

The heavy quarkonium inclusive decays using the principle of
maximum conformality

Qing Yua, Xing-Gang Wub , Jun Zengc, Xu-Dong Huangd, Huai-Min Yue

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China

Received: 20 January 2020 / Accepted: 24 April 2020 / Published online: 6 May 2020
© The Author(s) 2020

Abstract The next-to-next-to-leading order (NNLO) pQCD
correction to the inclusive decays of the heavy quarkonium
ηQ (Q being c or b) has been done in the literature within
the framework of nonrelativistic QCD. One may observe
that the NNLO decay width still has large conventional
renormalization scale dependence due to its weaker pQCD

convergence, e.g. about
(+4%

−34%

)
for ηc and

(+0.0
−9%

)
for ηb,

by varying the scale within the range of [mQ, 4mQ]. The
principle of maximum conformality (PMC) provides a sys-
tematic way to fix the αs-running behavior of the process,
which satisfies the requirements of renormalization group
invariance and eliminates the conventional renormalization
scheme and scale ambiguities. Using the PMC single-scale
method, we show that the resultant PMC conformal series
is renormalization scale independent, and the precision of
the ηQ inclusive decay width can be greatly improved.
Taking the relativistic correction O(αsv

2) into considera-
tion, the ratios of the ηQ decays to light hadrons or γ γ

are: RNNLO
ηc

|PMC = (3.93+0.26
−0.24) × 103 and RNNLO

ηb
|PMC =

(22.85+0.90
−0.87) × 103, respectively. Here the errors are for

�αs(MZ ) = ±0.0011. As a step forward, by applying the
Padé approximation approach (PAA) over the PMC confor-
mal series, we obtain approximate NNNLO predictions for
those two ratios, e.g. RNNNLO

ηc
|PAA+PMC = (5.66+0.65

−0.55) ×
103 and RNNNLO

ηb
|PAA+PMC = (26.02+1.24

−1.17) × 103. The
RNNNLO

ηc
|PAA+PMC ratio agrees with the latest PDG value

Rexp
ηc = (5.3+2.4

−1.4) × 103, indicating the necessity of a strict
calculation of NNNLO terms.
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1 Introduction

The heavy quarkonium, being a common bound state of
Quantum Chromodynamics (QCD) which consists of a pair
of heavy quark and antiquark, has been continuously stud-
ied either experimentally or theoretically. For example, the
ηc decays to light hadrons and γ γ have been measured by
the BES III detector [1], which also gives the evidence for
ηc → γ γ . In year 2018, the Partical Data Group (PDG) [2]
issued the most recent information for heavy quarkonium
from various measurements. The heavy quarkonium pro-
cesses involve both perturbative and non-perturbative effects,
and these processes are important tests of QCD factorization
theories.

The nonrelativistic QCD (NRQCD) factorization the-
ory provides us an effective framework to deal with heavy
quarkonium processes [3], which factorizes the pQCD
approximant into the non-perturbative but universal long-
distance matrix elements (LDMEs) and the perturbatively
calculable short-distance coefficients. More explicitly, the
short-distance coefficients can be expressed as a perturbative
series over the strong coupling constant (αs) and the relative
velocity of the heavy quarkonium (v); e.g. the decay width of
the heavy quarkonium ηQ can be factorized as the following
form [4]

�ηQ = F1(
1S0)

m2 〈ηQ |O1(
1S0)|ηQ〉

+G1(
1S0)

m4 〈ηQ |P1(
1S0)|ηQ〉 + · · · , (1)

where Q = c or b, respectively, F1(
1S0) and G1(

1S0)

are short-distance coefficients. The perturbative series is
arranged by the velocity scaling rule. The NRQCD matrix
elements 〈ηQ |O1(

1S0)|ηQ〉 and 〈ηQ |P1(
1S0)|ηQ〉 refer to

the possibility of observing the specific color and angular-
momentum state of the QQ pair, where the 4-fermion oper-
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ators P1 and O1 produce or annihilate a QQ pair in the Fock
state |ηQ〉.

It is convenient to compare the following ratio such that to
avoid/suppress the uncertainties from the bound state param-
eters, which is defined as

R = �ηQ→LH

�ηQ→γ γ

, (2)

where LH stands for light hadrons. The next-to-leading-
order (NLO) QCD corrections to the perturbative part of
ηc → LH and ηc → γ γ have been done in Refs. [5,6],
and the relativisticO(αsv

2)- corrections have also been done
in Refs. [7–9]. Recently, the next-to-next-to-leading order
(NNLO) QCD corrections, including the relativistic correc-
tions, have been finished by Feng et al. [10] and Brambilla et
al. [11], which also show that factorization scale dependence
of the R-ratio cancels at the NNLO level. Thus we are facing
the chance of achieving a more accurate pQCD prediction on
the R-ratio.

There is still large renormalization scale dependence for
the NNLO pQCD approximant of the R-ratio under conven-
tional scale-setting approach. That is, conventionally, people
adopts the “guessed” typical momentum flow of the pro-
cess such as mQ as the renormalization scale with the pur-
pose of eliminating the large logarithmic terms or minimizing
the contributions of the higher-order loop diagrams [12,13].
Such a naive treatment, though conventional, directly vio-
lates the renormalization group invariance [14] and does not
satisfy the self-consistency requirements of the renormaliza-
tion group [15], leading to a scheme-dependent and scale-
dependent less reliable pQCD prediction in lower orders.

To eliminate the unwanted scale and scheme ambiguities
caused by using the “guessed” scale, the principle of max-
imum conformality (PMC) scale-setting approach has been
suggested [16–20]. The purpose of PMC is not to find an opti-
mal renormalization scale but to find the effective coupling
constant (whose argument is called as the PMC scale) with
the help of renormalization group equation (RGE). By using
the PMC, the effective coupling constant is fixed by using
the β-terms of the pQCD series, which are arranged by the
general degeneracy relations in QCD [21] among different
perturbative orders. Since the effective coupling is indepen-
dent to the choice of the renormalization scale, thus solving
the conventional scale ambiguity. Furthermore, after using
the PMC to fix the αs behavior, the remaining coefficients
of the resultant series match the series of the conformal the-
ory, leading to a renormalization scheme independent predic-
tion. At the present, the PMC approach has been successfully
applied for various high-energy processes.

For the PMC multi-scale method [16,19], we need to
absorb different types of {βi }-terms into the coupling con-
stant via an order-by-order manner. Different types of {βi }-
terms as determined from the RGE lead to different running

behaviors of the coupling constant at different orders, and
hence, determine the distinct PMC scales at each perturbative
order. The precision of the PMC scale for higher-order terms
decreases at higher-and-higher orders due to the less known
{βi }-terms in those higher-order terms. The PMC multi-scale
method has thus two kinds of residual scale dependence due
to the unknown perturbative terms [22], which generally suf-
fer from both the αs-power suppression and the exponential
suppression, but could be large due to possibly poor pQCD
convergence for the perturbative series of either the PMC
scale or the pQCD approximant [13].1

Lately, in year 2017, the PMC single-scale method [24]
has been suggested to suppress those residual scale depen-
dence. The PMC single-scale method replaces the individual
PMC scales at each order by an overall scale, which effec-
tively replaces those individual PMC scales derived under
the PMC multi-scale method in the sense of a mean value
theorem. The PMC single scale can be regarded as the over-
all effective momentum flow of the process; it shows stabil-
ity and convergence with increasing order in pQCD via the
pQCD approximates. It has been demonstrated that the PMC
single-scale prediction is scheme independent up to any fixed
order [25], thus its value satisfies the renormalization group
invariance. Moreover, it has been found that the first kind
of residual scale dependence still suffers αs and exponential
suppression and the second kind of residual scale depen-
dence can be eliminated by applying the PMC single-scale
method; thus the residual scale dependence emerged in PMC
multi-scale method does greatly suppressed. In the follow-
ing, we shall adopt the PMC single-scale method to do our
discussions.

The remaining parts of the paper are organized as follows.
In Sect. 2, we give the calculation technology for the R-
ratio under the PMC single-scale method. In Sect. 3, we give
the NNLO numerical results for ηc and ηb R-ratios and the
approximate NNNLO predictions. Section 4 is reserved for
a summary.

2 Calculation technology

The pQCD approximant for the R-ratio has been calculated
up to NNLO level under the MS-scheme

R = F1(
1S0)/m2 + G1(

1S0)〈v2〉Q/m2

Fγ γ (1S0)/m2 + Gγ γ (1S0)〈v2〉Q/m2 , (3)

1 The so-called PMC ambiguity in the recent paper [23] is in fact the
second kind of residual scale dependence.
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where those short-distance coefficient F1(
1S0), G1(

1S0),
Fγ γ (1S0) and Gγ γ (1S0) can be expressed as

F1

(
1S0

)
= πCFα2

s

NC

(
1 + f1

αs

π
+ f2

α2
s

π2

)
, (4)

G1

(
1S0

)
= −4πCFα2

s

3NC

(
1 + g1

αs

π

)
, (5)

Fγ γ

(
1S0

)
= 2πα2e4

Q

(
1 + −20 + π2

3

αs

π
+ fγ

α2
s

π2

)
, (6)

Gγ γ

(
1S0

)
= 2πα2e4

Q

(
−4

3
+ gγ

αs

π

)
. (7)

All the coefficients f1, f2, g1, fγ , and gγ can be read from
Refs. [8,10,26],

f1 = 8

9
− 2

3
ln 2 +

(
199

18
− 13

24
π2

)
CA +

(
π2

4
− 5

)
CF

+11

2
L −

(
8

9
+ L

3

)
n f , (8)

f2 = f̂2 − π2

2
CACF ln

μ2
	

m2 − π2C2
F ln

μ2
	

m2

+
[

241

12
− 11

2
ln 2 +

(
6567

72
− 429

96
π2

)
CA

+
(

33

16
π2 − 165

4

)
CF

]
L + 363

16
L2

+
{[

−337

36
+ 1

3
ln 2

+
(

13

48
π2 − 199

36

)
CA +

(
5

2
− π2

8

)
CF

]
L

−11

4
L2

}
n f +

(
4

9
L + L2

12

)
n2
f , (9)

g1 = 41

36
− 2

3
ln 2 +

(
479

36
− 11

16
π2

)
CA

+
(

−49

12
+ 2 ln 2 + 5

16
π2 − ln

μ2
	

m2

)
CF

+11

2
L −

(
41

36
+ L

3

)
n f , (10)

fγ = −8.2196CF + 0.731285CF

nL∑
i=1

e2
i

e2
Q

−
(

9.58596 + 9.8696 ln
μ	

m

)
CACF

−
(

40.6123 + 19.7392 ln
μ	

m

)
C2
F − 6.96465CF L

+ (0.0203395CF + 0.4221CF L) n f , (11)

gγ = 196

27
− 5

9
π2 − 96

27
ln 2 + 16

9
ln

μ2
	

m2 , (12)

the logarithm L = ln μ2
r

4m2 and the non-logarithmic constant

f̂2 = −0.799(13)N 2
C − 7.4412(5)nL NC − 3.6482(2)NC

+0.37581(3)n2
L + 0.56165(5)nL + 32.131(5)

−0.8248(3)
nL
NC

− 0.67105(3)

NC
− 9.9475(2)

N 2
C

. (13)

For the SU (NC ) color group, CA = NC and CF =
(N 2

C − 1)/(2Nc) with NC = 3. The fine structure constant
α = 1/137. The average of the squared velocity 〈v2〉|Q of
the (QQ̄)-quarkonium is

〈v2〉Q = 〈P1(
1S0)〉

m2
Q〈O1(1S0)〉

, (14)

and we adopt 〈v2〉c � 0.430/m2
c and 〈v2〉b = −0.009 [27,

28]. The factorization scale μ	 = m and the active quark
flavor n f = nL + nH with nH = 1. Here nL = 3 for ηc
decay and nL = 4 for ηb decay, and

∑nL
i=1 e

2
i /e

2
Q sums up

the fractional charges of the light flavors involved in those
two decays. The fractional charge eQ equals to 2

3 for ηc and
−1
3 for ηb, respectively.

Before applying the PMC to the R-ratio, we first trans-
form the MS-scheme pQCD series (3) into the one under
the minimal momentum space subtraction scheme (mMOM)
[29,30]. This transformation avoids the confusion of dis-
tributing the n f -terms involving the three-gluon or four-
gluon vertexes into the β-terms [31–34]. This transformation
can be achieved by using the relation of the running coupling
under the mMOM-scheme and the MS-scheme, e.g.

aMS
s (μr ) = amMOM

s (μr )[1 + 4D1a
mMOM
s (μr )

+42D2a
mMOM,2
s (μr ) + 43D3(a

mMOM,3
s (μr ))],

where as(μr ) = αs(μr )/(4π), and under the Landau gauge
(ξ = 0), the first three coefficients D1, D2 and D3 are [35]

D1 = −169

48
+ 5

18
n f , (15)

D2 = −18941

2304
+ 351

128
ζ3 +

(
223

432
+ 1

12
ζ3

)
n f

+ 25

324
n2
f , (16)

D3 = −1935757

110592
+ 22485

2048
ζ3 + 70245

4096
ζ5

+
(

42539

20736
− 17263

6912
ζ3 − 145

36
ζ5

)
n f

+
(

13697

62208
+ 29

432
ζ3

)
n2
f + 125

5832
n3
f , (17)

where ζ3 and ζ5 are usual Riemann zeta functions.
Then, Eq. (3) can be rewritten as

R =
3∑

i≥1

ri a
mMOM,p+i−1
s (μr )
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=
3∑

i≥1

ri,0a
mMOM,p+i−1
s (μr ) +

i+ j≤3∑
i≥1, j≥1

(−1) j [(p + i − 1)

βmMOM(amMOM
s (μr ))a

mMOM,p+i−2
s (μr )]ri+ j, j

�( j−1)
i (amMOM

s (μr )), (18)

where p = 2, �( j−1)
i (amMOM

s (μr )) are short notations
whose explicit forms can be found in Ref. [13], and ri,0 are
conformal coefficients and ri, j 	=0 are non-conformal coeffi-
cients which can be related to the known ri coefficients by
using the standard PMC formulae and by using the degener-
ated relations among different orders [19,20], i.e.

r1 = r1,0,

r2 = r2,0 + pr2,1β0,

r3 = r3,0 + pr2,1β1 + (p + 1)r3,1β0 + p(p + 1)

2
r3,2β

2
0 ,

· · · .

The usual β-function is defined as

β(as(μr )) = −
∞∑
i=0

βi a
i+2
s (μr ), (19)

where the βi -functions under the MS-scheme up to five
loop level can be found in Refs. [36–44]. The β0- and β1-
functions are scheme independent, and the βi>1-functions for
the mMOM-scheme can be related to the MS-scheme ones
via the relation,

βmMOM(amMOM
s ) =

(
∂amMOM

s /∂aMS
s

)
βMS(aMS

s ).

The βi -functions under the mMOM-scheme up to four loop
level can be found in Ref. [35]. The coefficients ri, j are func-
tions of the logarithm ln(μ2

r /4m2
Q). By using the RGE, these

coefficients can be expressed as

ri, j =
j∑

k=0

Ck
j lnk(μ2

r /4m2
Q)r̂i−k, j−k, (20)

where the coefficients r̂i, j = ri, j |μr=2mQ and the combina-
tion coefficients Ck

j = j !/k!( j − k)!.
Substituting Eq. (20) into Eq. (18) and by requiring all the

RGE-involved non-conformal terms to zero, one can deter-
mine the effective running coupling of the process and hence
the optimal scale Q
 of the process, e.g.

i+ j≤3∑
i≥1, j≥1,0≤k≤ j

(−1) j lnk
Q2




4m2
Q

[(p + i − 1)βmMOM(amMOM
s (Q
))a

mMOM,p+i−2
s (Q
)]

Ck
j �( j−1)

i (amMOM
s (Q
))r̂i+ j, j = 0.

Thus we obtain

R|PMC =
3∑

i≥1

r̂i,0a
mMOM,p+i−1
s (Q
). (21)

If we have known the NNNLO pQCD series, the PMC
scale Q
 can be fixed up to next-next-to-leading-log (NNLL)
accuracy, e.g.

ln
Q2




Q2 = T0 + T1
αmMOM
s (Q)

4π
+ T2

α
mMOM,2
s (Q)

4π
, (22)

where

T0 = − r̂2,1

r̂1,0
, (23)

T1 = (p + 1)(r̂2,0r̂2,1 − r̂1,0r̂3,1)

pr̂2
1,0

+ (p + 1)(r̂2
2,1 − r̂1,0r̂3,2)

2r̂2
1,0

β0 (24)

T2 = (p + 1)2(r̂1,0r̂2,0r̂3,1 − r̂2
2,0r̂2,1) + p(p + 2)(r̂1,0r̂2,1r̂3,0 − r̂2

1,0r̂4,1)

p2r̂3
1,0

+ (p + 2)(r̂2
2,1 − r̂1,0r̂3,2)

2r̂2
1,0

β1

− p(p + 1)r̂2,0r̂2
2,1 + (p + 1)2(r̂2,0r̂2

2,1 − 2r̂1,0r̂2,1r̂3,1 − r̂1,0r̂2,0r̂3,2) + (p + 1)(p + 2)r̂2
1,0r̂4,2

2pr̂3
1,0

β0

+ (p + 1)(p + 2)(r̂1,0r̂2,1r̂3,2 − r̂2
1,0r̂4,3) + (p + 1)(1 + 2p)(r̂1,0r̂2,1r̂3,2 − r̂3

2,1)

6r̂3
1,0

β2
0 . (25)

Using the present known NNLO pQCD seriers, we can fix
the PMC scale Q
 only up to the NLL accuracy. One may
observe that the effective scale Q
 is explicitly independent
of the choice of the renormalization scale μr at any fixed
order, thus there is no renormalization scale ambiguity for
the PMC prediction R|PMC. Therefore, the precision of the
pQCD approximant can be greatly improved by using the
PMC.
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It is helpful to estimate how the uncalculated higher-order
terms contribute to the pQCD series. Many attempts have
been tried in the literature, all of which are based on the
known perturbative terms. The usual error estimate obtained
by varying the scale over a certain range is unreliable, since
it only partly estimates the non-conformal contribution but
not the conformal one. Moreover, we should point out that
predictions using the conventional renormalization scale-
dependent pQCD series (3) cannot be reliably used for the
purpose; it could have negligible net renormalization scale
dependence for the whole pQCD approximant by including
enough high-order terms due to the large cancellation among
the scale-dependent terms at various orders, but the large
scale dependence for each perturbative term cannot be elim-
inated. On the contrary, the PMC predictions are renormal-
ization scheme-and-scale independent, highly precise val-
ues at each order can thus be achieved. As has been pointed
out by Ref. [45], by using the renormalization scheme-and-
scale independent conformal series (21), one can reliably
predict how the uncalculated NNNLO-terms contribute to the
R pQCD series by using the Padé approximation approach
(PAA) [46–48].

The PAA was introduced for estimating the (n+1)th-order
coefficient in a given nth-order perturbative Talyor series and
feasible conjectures on the likely high-order behaviour of the
series. It has been previously demonstrated their applicabil-
ity to the QCD problems with the help of some resumma-
tion methods [49–52]. For the Padé approximation of a gen-
eral pQCD approximant ρn(Q), its [N/M]-type form can be
defined as

ρ
[N/M]
n (Q) = a p × b0 + b1a + · · · + bNaN

1 + c1a + · · · + cMaM
(26)

=
n∑

i=1

Cia
p+i−1 + Cn+1 a p+n + · · · , (27)

where p is the starting αs-order, and the parameter M ≥ 1,
N + M + 1 = n. For the present case of R-ratio, we have
n = 3. There is a one-to-one correspondence between coef-
ficients Ci in Eq. (27) and the conformal coefficients r̂i,0
in Eq. (21). The one-order higher coefficient Cn+1 can be
expressed by those coefficients bi∈[0,N ] and c j∈[1,M] which
can also be related to the known coefficientsCi . More explic-
itly, if [N/M] = [n − 2/1], we have

Cn+1 = C2
n

Cn−1
; (28)

if [N/M] = [n − 3/2], we have

Cn+1 = −C3
n−1 + 2Cn−2Cn−1Cn − Cn−3C2

n

C2
n−2 − Cn−3Cn−1

; (29)

if [N/M] = [n − 4/3], we have

Cn+1 = {C4
n−2 − (3Cn−3Cn−1 + 2Cn−4Cn)C

2
n−2

+2[Cn−4C
2
n−1 + (C2

n−3 + Cn−5Cn−1)Cn]Cn−2

−Cn−5C
3
n−1 + C2

n−3C
2
n−1 + C2

n−4C
2
n

−Cn−3Cn(2Cn−4Cn−1 + Cn−5Cn)}
/{C3

n−3 − (2Cn−4Cn−2 + Cn−5Cn−1)Cn−3

+Cn−5C
2
n−2 + C2

n−4Cn−1}; etc. (30)

In the following, we adopt the PMC series (21) together
with the PAA to estimate the NNNLO contribution to the R-
ratio. It has been found that for the divergent pQCD series,
such as the conventional pQCD series which has renormalon
divergence (the dominant factor for the nth-order coefficient
is proportional to n!βn

0 ), the diagonal PAA series is preferable
[53,54]; and if the pQCD series is much more convergent,
such as the PMC conformal series which is free of renormalon
divergence, the preferred PAA series should be consistent
with the GM-L method [45].

More explicitly, for the present considered R-ratio, the
predicted magnitude of the NNNLO-term, is

R|NNNLO
PMC =

∣∣∣∣∣
2r2,0r3,0

r1,0
− r3

2,0

r2
1,0

∣∣∣∣∣ a
mMOM,5
s (Q
) (31)

for the GM-L-like [0/2]-type Padé series; and

R|NNNLO
PMC =

∣∣∣∣∣
r2

3,0

r2,0

∣∣∣∣∣ a
mMOM,5
s (Q
). (32)

for the [1/1]-type diagonal Padé series. Different from previ-
ous PMC examples, even though the PMC series of R-ratio is
free of renormalon divergence, we have found that the diago-
nal [1/1]-type works much better because the conformal coef-
ficients of are rather large even up to the known NNLO level.
This indicates that the divergence property of the R-ratio is
its inner property, since the PMC series is already scheme-
and-scale independent. Then in our following numerical cal-
culation, we shall adopt [1/1]-type to estimate the magnitude
of the uncalculated NNNLO terms.

3 Numerical results

To do the numerical calculation, we take the quark pole mass
from PDG [2]: the c-quark pole mass mc = 1.67 GeV and
the b-quark pole mass mb = 4.78 GeV.

3.1 Basic properties up to NNLO level
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Table 1 The determined asymptotic scale 	
(n f )

QCD (in unit: GeV) for the
mMOM scheme

n f = 3 n f = 4 n f = 5

	
(n f )

QCD (GeV) 0.502+0.024
−0.023 0.474+0.026

−0.025 0.365+0.023
−0.022

Fig. 1 The Rηc -ratio as a function of μr under conventional and PMC
scale-setting approaches. The dotted and the dashed lines are for con-
ventional scale-setting up to NLO and NNLO levels, respectively. The
dash-dot and the solid lines are for the PMC scale-setting up to NLO
and NNLO levels, respectively

As mentioned above, we shall calculate the R-ratio under
the mMOM scheme, and the Landau gauge is adopted.2 The
asymptotic scale 	

n f
QCD for the mMOM scheme is fixed by

using theαs-value at the reference point,αs(MZ ) = 0.1181±
0.0011 [2] and by using the three-loop RGE. The results are
presented in Table 1.

We present the Rηc and Rηb ratios up to NNLO level as
a function of μr under conventional and PMC scale-setting
approaches in Figs. 1 and 2. Figures 1 and 2 show that under
the conventional scale-setting approach, there are convex
behaviors for Rηc and Rηb ratios within the scale range of
[mQ, 4mQ], whose peak are ∼ 1.6mc for Rηc and ∼ 1.7mb

for Rηc . Contributions from each loop term for Rηc and Rηb

up to NNLO level are presented separately in Tables 2 and 3,
where the errors are for μr ∈ [mQ, 4mQ]. Tables 2 and 3
show that under conventional scale-setting approach, the
renormalization scale dependence for the total NNLO predic-

tion becomes small, whose magnitude is ∼
(+4%

−34%

)
for Rηc ,

and ∼
(+0.0

−9%

)
for Rηb . Such a smaller scale dependence for a

NNLO level prediction is caused by the cancellation of scale
dependence among different terms, and the scale dependence
for each loop term is still very large for conventional series.

2 A detailed discussion on the gauge dependence of the mMOM scheme
before and after applying the PMC is in preparation [55].

Fig. 2 The Rηb -ratio as a function of μr under conventional and PMC
scale-setting approaches. The dotted and the dashed lines are for con-
ventional scale-setting up to NLO and NNLO levels, respectively. The
dash-dot and the solid lines are for the PMC scale-setting up to NLO
and NNLO levels, respectively

Table 2 Contributions from each loop term for Rηc -ratios up to
NNLO level (in unit: ×103) under conventional and PMC scale-setting
approaches. The central values are for μr = 2mc, and the errors are for
μr ∈ [mc, 4mc]
Rηc (×103) LO NLO NNLO Total

Conv. 1.87−0.75
+2.36 1.56−0.42

+0.28 0.36+0.33
−3.93 3.79+0.15

−1.29

PMC 3.54 2.45 −2.06 3.93

Table 3 Contributions from each loop term for Rηb -ratios up to
NNLO level (in unit: ×103) under conventional and PMC scale-setting
approaches. The central values are for μr = 2mb, and the errors are for
μr ∈ [mb, 4mb]
Rηb (×103) LO NLO NNLO Total

Conv. 14.56−4.27
+7.76 8.53−0.42

−2.05 0.46+2.90
−7.76 23.55+0.08

−2.04

PMC 20.05 7.77 −4.97 22.85

For example, for the case of Rηc , the scale errors are
(−40%

+126%

)

for the LO-term,
(−27%

+18%

)
for the NLO-term, and

(+92%
−1092%

)

for the NNLO-term, respectively. On the other hand, by fix-
ing the effective coupling αs(Q
) of the process with the help
of PMC, the renormalization scale dependence for each loop
term and hence the total NNLO prediction can be eliminated
simultaneously. Thus by applying the PMC, a more accurate
pQCD prediction without renormalization scale dependence
can be achieved; Basing on the scale-invariant PMC series,
it is helpful to predict the unknown NNNLO contribution, as
shall be done in next subsection.
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Tables 2 and 3 indicate that under conventional series, even
though the NNLO-terms are highly scale dependent, their
magnitudes sound more convergent than the PMC series,
which are due to accidentally cancellation between the large
conformal terms and the divergent non-conformal terms at
the NNLO level. This is different from previous PMC exam-
ples whose pQCD series converges much more quickly than
conventional pQCD series due to the elimination of divergent
renormalon terms (and also due to the reason of the magni-
tude of the conformal terms are usually moderate). By using
the PMC, the RGE-involved non-conformal terms have been
eliminated and have been adopted to fix the renormaliza-
tion scale-independent strong coupling constant of the pro-
cess, αs(Q
). The resultant pQCD series is conformal and
scheme independent, one can thus conclude that the PMC
series shows the intrinsic property of the pQCD approxi-
mant and shows the correct convergent behavior of the pQCD
series. At present, the PMC scales for Rηc and Rηb can be
determined up to NLL-accuracy:

ln
Q2




(2mc)2 = −0.846 − 1.005αmMOM
s (2mc)

= −0.846 − 0.299

⇒ Q
 � 1.88 GeV (33)

and

ln
Q2




(2mb)2 = −1.009 − 0.280αmMOM
s (2mb)

= −1.009 − 0.058

⇒ Q
 � 5.61 GeV, (34)

which are at the order of O(mQ). The second lines of those
two equations show that the second terms are about 35% and
6% of the first terms, indicating the perturbative series of
ln Q2


/Q
2 has good convergence at the NLL level for both

cases. The effective PMC scale Q
 is physical, which is
renormalization scale independent and determines the cor-
rect value of the strong running coupling and hence the cor-
rect momentum flow of the process. The heavy quark mass
(mQ) provides a natural hard scale for the heavy quarkonium
decays into light hadrons or photons, and O(mQ) is usually
chosen as the renormalization scale. The PMC scale-setting
approach provides a reasonable explanation for this conven-
tional “guessing” choice.

3.2 The PAA prediction of the contribution from the
uncalculated NNNLO-terms

Table 2 shows that the NNLO PMC prediction of Rηc is
3.93×103, which is only ∼ 65% of the NLO PMC prediction,
Rηc = 6.09 × 103 [31], and is also smaller than the PDG
central value, Rexp

ηc = (5.3+2.4
−1.4) × 103 [2]. This is due to the

Table 4 The predicted NNNLO RηQ -ratio by using the [1/1]-type PAA
with known NNLO PMC pQCD series, in which the errors are for
�αs(M2

Z ) = ±0.0011

NNNLO prediction

Rηc |PMC(×103) 5.66+0.65
−0.55

Rηb |PMC(×103) 26.02+1.24
−1.17

large negative NNLO-term,3 as shown by Table 2. Because
the pQCD series of Rηc shows a slowly convergent behavior,
the facts of the previous NLO prediction agrees with the data
and the present NNLO prediction does not agree surely do not
indicate the failure of the PMC or the pQCD factorization.
We should at least know the magnitude of the NNNLO-term
before drawing any definite conclusions.

A strict NNNLO calculation is unavailable in near future
due to its complexity. Because the conventional pQCD series
cannot be adopted for a reliable prediction, since its known
terms are both scale dependent and scheme dependent, and
in the following, we shall give an approximation of NNNLO
prediction by applying the PAA to the PMC scheme-and-
scale independent conformal series.

Using the known NNLO PMC conformal series (21) ,
the predicted NNNLO Rηc and Rηb for [1/1]-type PAA are
presented in Table 4. The approximate NNNLO-terms are
1.73×103 and 3.17×103 for Rηc and Rηb , respectively. The
absolute values of the LO, NLO, NNLO and the approximate
NNNLO terms over the LO-term are 1 : 0.69 : 0.58 : 0.49
and 1 : 0.39 : 0.25 : 0.16 for Rηc and Rηb , respectively.
Thus the NNNLO term could still have large contribution and
should be taken into consideration for a sound prediction. In
fact, Table 4 shows that if taking the approximate NNNLO-
term into consideration, the RNNNLO

ηc
-ratio agree well with

the PDG value within errors.
In the literature, Ref. [10] calculated the ηc,b decays up to

NNLO level and gave Rηc = (3.03−3.23)×103 and Rηb =
(20.8+3.6

−2.7)× 103 by varying μr within the guessed region of
1GeV to 3mQ . Ref. [11] also analyzed the ηc,b decays up to
NNLO level in the large-n f limit by further using the bubble
chain resummation: I) Using the naive non-Abelianization
resummation [56], they obtained Rηc (NNA) = (4.28+1.38

−0.72)×
103 and Rηb (NNA) = (23.2+0.8

−0.9) × 103; II) Using the
background field gauge resummation (BFG) [57], they
obtained Rηc (BFG) = (3.39+0.61

−0.64) × 103 and Rηb (BFG) =
(24.1+0.9

−1.0)×103. We should point out that even though those
two predictions are consistent with the PDG value, they only
partly resum the large renormalon-terms with the purpose of

3 A more accurate PMC scale Q
 at the NLL-accuracy is now achieved
by using the NNLO prediction, which reduces the LL-accuracy Q
 by
∼ 14%. This leads to an extra difference between the NLO and NNLO
predictions.
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Fig. 3 The Rηc -ratio under various approaches. “EC” is the exact
prediction by using the known NLO or NNLO PMC series, and
“PAA+PMC” is the PAA prediction by using the PMC NNLO series.
The error of “PAA+PMC” at the NNNLO level (N=4) is caused by
�αs(M2

Z ) = ±0.0011. As comparisons, the PDG value, the NNLO
predictions (N=3) of Feng et al. [10], NNA [11] and BFG [11] are also
presented

Fig. 4 The Rηb -ratio under various approaches. “EC” is the exact
prediction by using the known NLO or NNLO PMC series, and
“PAA+PMC” is the PAA prediction by using the PMC NNLO series.
The error of “PAA+PMC” at the NNNLO level (N=4) is caused by
�αs(M2

Z ) = ±0.0011. As comparisons, the NNLO predictions (N=3)
of Feng et al. [10], NNA [11] and BFG [11] are also presented

improving the pQCD convergence along [11], which how-
ever by using the guessed scale cannot get the correct magni-
tude of the running coupling and there are still large renormal-
ization scale errors. Thus those predictions cannot be treated
as precise pQCD predictions.

Our present PMC predictions are based on the NNLO
fixed-order result of Ref. [10], which includes the important
relativistic O(αsv

2)-contribution and has negligible factor-
ization scale dependence. We present the Rηc -ratio and Rηb -
ratio under various approaches in Figs. 3 and 4. “EC” is the
exact prediction by using the known NLO or NNLO PMC

series, and “PAA+PMC” is the PAA prediction by using the
PMC NNLO series. The PDG value, the NNLO predictions
of Feng [10], NNA [11] and BFG [11] are also presented
as comparisons. Different to the previous theoretical predic-
tions whose uncertainties are mainly caused by the renormal-
ization scale dependence, there is no renormalization scale
dependence in PMC prediction, and we give a prediction of
the error of “PAA+PMC” approach at the NNNLO level by
taking �αs(M2

Z ) = ±0.0011.

4 Summary

In the paper, we have studied the RηQ -ratio up to NNLO level.
By using the RGE, the scale-independent αs-value can be
achieved at any perturbative order, and the correct momentum
flow of the process can be determined up to NLL accuracy;
and because of the eliminating of the RGE-involved {βi }-
terms, the resultant pQCD series is conformal and scheme
independent. Thus we achieve an accurate NNLO fixed-order
prediction which is free of conventional renormalization
scheme and scale dependence. Figure 3 shows that the NNLO
PMC prediction is somewhat smaller than the PDG value.
Table 2 shows that the resultant PMC conformal series of
Rηc |PMC has a slowly convergent behavior, thus before draw-
ing definite conclusions, it is important to make a prediction
on the contribution of the uncalculated NNNLO-terms. By
using the Pade approximation approach, we give the approx-
imate NNNLO predictions: Rηc |PMC = 5.66+0.65

−0.55 × 103 and

Rηb |PMC = 26.02+1.24
−1.17 × 103. The approximated NNNLO

PMC prediction of Rηc -ratio agrees with the PDG value
within errors, indicating the necessity of finishing a strict
NNNLO calculation.
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