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Abstract An well posed theory of nature is expected to
determine the future of an observer uniquely from a given
set of appropriate initial data. In the context of general rela-
tivity, this is ensured by Penrose’s strong cosmic censorship
conjecture. But in recent years, several examples are found
which suggest breakdown of the deterministic nature of the
theory in Reissner–Nordström–de Sitter black holes under
the influence of different fundamental fields. Nevertheless,
the situation has been reassuring for the case of astrophysi-
cally meaningful Kerr–de Sitter black hole solutions which
seems to respect the conjecture. However, the previous anal-
yses were done considering only the effect of scalar fields. In
this paper, we extend the study by considering Dirac fields in
Kerr–de Sitter background and show that there exist a param-
eter space which does not respect the conjecture.

1 Introduction

In recent years, advancement in technology brought a revo-
lution in observational astrophysics that make it possible to
test some of most intriguing predictions of general relativity
[1,2]. While, due to the uncertainty in the data, the possibility
of a modified theory of gravity is not discarded right away,
the stature of Einstein’s general relativity as the most suc-
cessful theory of gravity remains unaltered [3–5]. This situ-
ation gives confidence to the scientists to propose interesting
research work to test the theory in more and more extreme
conditions. A possible alternative to this path is to find para-
doxes within the theory of general relativity i.e., to check
mathematical consistency of the theory. The existence of the
Cauchy horizon in Kerr and Reissner–Nordström solutions
is one of such paradoxes since the theory loses its predic-
tive power beyond that region. However, soon it was realized
that the Cauchy horizons are subject to blue shift instabil-
ity that can turn them into curvature singularities under the
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influence of even small perturbations [6–9]. This phenomena
led Penrose to propose the strong cosmic censorship conjec-
ture which can be stated as follows: “for a generic initial
data, the maximal Cauchy development (the largest mani-
fold that is uniquely determined by Einstein’s field equations
from a given set of initial data ) is inextendible as a C0

metric” [9–13]. This conjecture ensures that the observers
who dare to cross the Cauchy horizon are torn apart by the
infinite tidal forces. An another way to look at the prob-
lem is to consider the effect of a linear perturbations on the
spacetime metric [14]. Here, the question of determinism is
answered by considering nonlinear effects where the linear
perturbations under consideration acts as the source of sec-
ond order metric perturbations. Adopting the approach men-
tioned above, a version of strong cosmic censorship conjec-
ture for a Einstein–Maxwell–scalar field system can be stated
as follows : “the maximal Cauchy development of the station-
ary, axisymmetric solutions of a Einstein–Maxwell–scalar
field system can not be extended across the Cauchy hori-
zon (provided they exist!) with square integrable Christoffel
symbols and scalar fields that live on Sobolov space i.e.,
� ∈ H1

loc” [14–17]. The same conclusion is obtained for
the static and spherically symmetric solutions of a Einstein–
Maxwell–Dirac field system with the Dirac field Ψ replacing
the scalar field � [18,19].

Although, any contradiction to this version of strong cos-
mic censorship conjecture is yet to be found for asymptot-
ically flat black holes [9], the same conclusion may not be
drawn in the presence of a positive cosmological constant
[20]. In this scenario, the effect of blue shift amplification
at the Cauchy horizon may be compromised by the expo-
nential decay of the perturbations at event horizon. In fact,
recently Cardoso et al. have found a finite parameter space
where strong cosmic censorship conjecture gets violated in
Reissner–Nordström-de Sitter black holes in presence of a
massless, neutral scalar perturbations [21]. Since then, sig-
nificant amount of works have been done on this topics, fur-
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ther confirming the same for several fundamental fields in
a Reissner–Nordström–de Sitter background [18,19,22–27].
Interestingly enough, strong cosmic censorship conjecture
seems to be always respected in rotating black holes in de
Sitter background in the presence of scalar fields [14,24,27].
Here, the rotation of the black hole plays a crucial role to
uphold the conjecture. So it is legitimate to check whether
the conjecture still holds true in presence of other funda-
mental fields in rotating black hole background in order to
better understand the effect of the rotation. In this paper, we
study the effect of Dirac fields on strong cosmic censorship
in Kerr–de Sitter background. From an astrophysical per-
spective, this situation is extremely important since Kerr–de
Sitter solution describes the most realistic black holes in an
expanding universe.

The paper is organized as follows: in Sect. 2, we constitute
weak solutions of Einstein’s equations in presence of Dirac
field and discuss the effect of these solutions on strong cosmic
censorship conjecture which we use to find the the criteria
for strong cosmic censorship violation in Sect. 3. In Sect. 4,
we present the main results of the paper. Finally, with some
relevant discussions in last section, we conclude our paper.
Throughout the paper, we use units in whichG = c = � = 1.

2 Weak solution of Einstein equation in presence of
massless Dirac fields

The fate of strong cosmic censorship conjecture relies on the
possibility of finding a solution of Einstein equation at the
Cauchy horizon. Even if the metric is not differentiable (but
continuous!) at the Cauchy horizon, one can still make sense
of Einstein equation there by constituting a weak solution
of the equation [14]. This can be understood by considering
the effect of linear perturbation on the spacetime. Consider
a massless Dirac field which satisfies the equation ̂DΨ = 0,
triggers a perturbation in the spacetime. Here ̂D is the Dirac
operator that acts on the spinor Ψ . Let the Dirac field act
as a first order perturbation which induces a second order
perturbation of the metric, denoted by h(2)

μν which satisfies
the following equation

̂Oh(2)
μν = 8π TΨ

μν (1)

where, ̂O is a second order differential operator and TΨ
μν

is the stress-energy tensor for the Dirac field which can be
expressed in the following form

TΨ
μν = i

2

[

Ψ γ(μ∇ν)Ψ − ∇(μΨ γν)Ψ
]

− i

2
gμν

[

Ψ γ λ∇λΨ − ∇λΨ γ λΨ
]

.

Even when h(2)
μν is not differentiable at Cauchy horizon,

we can have a solution of Einstein equation by multiplying
Eq. (1) with a smooth, symmetric tensor Kμν . By performing
integration by parts, we obtain the following equation

∫

M
d4x

√−g
(

h(2)
μν L † Kμν

)

=
∫

M
d4x

√−g
(

Kμν TΨ
μν

)

(2)

where,M is themaximal Cauchy development i.e. the region
of spacetime uniquely determined by a set of generic initial
data [10,15] and L † is the adjoint of the operator L . If
this equation is satisfied for any smooth, symmetric func-
tion Kμν , there exists a weak solution of Einstein equation
provided that both sides of the equation remains finite. The
requirement is fulfilled when Ψ belongs to H1

loc. When such
solutions exists at the Cauchy horizon, we can extend the
metric across it which leads to the breakdown of strong cos-
mic censorship conjecture.

3 Dirac equation in Kerr–de Sitter spacetime and the
criteria of violation of strong cosmic censorship
conjecture

In the previous section, we have found that the presence of
Dirac fields in Kerr–de Sitter spacetimes can lead to the viola-
tion of strong cosmic censorship, if the spinor field Ψ belongs
to H1

loc at Cauchy horizon. In this section, we closely inspect
this condition. We solve the Dirac equation near the Cauchy
horizon of Kerr–de Sitter black holes and then rewrite the
condition in terms of black hole parameters. We start with
a Kerr–de Sitter black hole spacetime in Boyer–Lindquist
coordinate (t, r, θ, φ) whose line element can be expressed
as follows [28]

ds2 = − Δr

(1 + α)2�

[

dt − a sin2 θ dφ
]2 + �

[

dr2

Δr
+ dθ2

Δθ

]

+ Δθ sin2 θ

(1 + α)2�

[

adt − (r2 + a2) dφ
]2

(3)

where,

Δr (r) = (r2 + a2)(1 − r2

3
) − 2Mr, Δθ (θ) = 1 + a2

3
cos2 θ,

α = a2

3
, � = r + ia cos θ , � = ��∗

here, M is the mass of the black hole, a is the black hole
rotation parameter and  > 0 is the cosmological constant.
Throughout the paper, superscript ‘∗’ denotes the complex
conjugate of a quantity. Since we want to check the validity of
strong cosmic censorship conjecture in presence of positive
cosmological constant, we choose the values of the black hole
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parameters M , a and  in such a way that the spacetime pos-
sesses three distinct horizons. The position of Cauchy, event
and cosmological horizon which we denote by r−, r+ and rc,
respectively, can be found by solving the equationΔr (r) = 0.
The properties of Dirac fields in this spacetime can be best
understood in the framework of Newman–Penrose formalism
[29,30]. Here, we choose our null tetrad to be [28,31,32]

lμ =
[

(1 + α)(r2 + a2)

Δr
, 1, 0,

(1 + α)a

Δr

]

nμ = 1

2�
[(1 + α)(r2 + a2),−Δr , 0, (1 + α)a]

mμ = 1√
2Δθ�

[

ia(1 + α) sin θ, 0,Δθ ,
i(1 + α)

sin θ

]

m̄μ = m∗μ

(4)

in the (t, r, θ, φ) coordinate. We can easily verify that the
only non-vanishing inner product combination is given by
the normalization condition, l · n = −1 and m · m̄ = 1. The
advantage of this choice is that the tetrad vectors are regular
across the Cauchy horizon. To see that we write the tetrad
in outgoing Eddington–Finkelstein coordinate (u, r, θ, ϕ) by
using the following transformation [33]

du = dt − (1 + α)(r2 + a2)

Δr
dr, dϕ = dφ − (1 + α)a

Δr
dr

Under this transformation the tetrad vectors take the follow-
ing form

lμ = [0, 1, 0, 0]
nμ = 1

�

[

(1 + α)(r2 + a2),
−Δr

2
, 0, (1 + α)a

]

mμ = 1√
2Δθ�

[

ia(1 + α) sin θ, 0,Δθ ,
i(1 + α)

sin θ

]

m̄μ = m∗μ.

(5)

Note that, the tetrad vectors are regular at the Cauchy horizon.
In Newman–Penrose formalism, the equation for a mass-

less Dirac field Ψ can be written as four coupled differential
equations as follows [29]

(D + ε − ρ)F1 + (δ̄ + π − α)F2 = 0

(Δ + μ − γ )F2 + (δ + β − τ)F1 = 0

(D + ε∗ − ρ∗)G2 − (δ + π∗ − α∗)G1 = 0

(Δ + μ∗ − γ ∗)G1 − (δ̄ + β∗ − τ ∗)G2 = 0.

(6)

where, D = l · ∇, Δ = n · ∇, δ = m · ∇, δ̄ = m̄ · ∇ are the
directional covariant derivative along the tetrad vectors and
α, β, γ , ε, π , ρ and τ are the spin coefficients (for details see
[29,30]). Here, F1, F2, G1, G2 denote the spinor components
such that Ψ = (F1, F2,−G2,G1)

T . For our choice of tetrad

(given by Eq. (4)), the non-vanishing spin coefficients are
given by [31,32]

ρ = − 1

�∗ , τ = − i a
√

˜Δθ√
2�2

, π = i a
√

˜Δθ√
2(�∗)2

,

μ = − Δr

2��∗ , γ = μ + 1

4�

dΔr

dr
,

β = 1

2
√

2ρ sin θ

d
√

˜Δθ

dθ
, α = π − β∗.

where, ˜Δθ = Δθ sin2 θ . Due to presence of timelike and
angular Killing vectors, the Dirac field can be decomposed
as Ψ (t, r, θ, φ) = e−iωt eimφ( f1, f2,−g2, g1)

T , where f1,
f2, g1, g2 are functions of r and θ only. Moreover, if we take
the following transformation [29,32]

f1(r, θ) = R−(r) S−(θ)

�∗ , f2(r, θ) = R+(r) S+(θ)

g1(r, θ) = R+(r) S−(θ), g2(r, θ) = R−(r) S+(θ)

�

Equation (6) can be decomposed into radial and angular parts
which can be written as follows [31,32]

D−R− = λ
√

Δr R+, D+
√

Δr R+ = λR− (7)
√

ΔθL−S− = λS+,
√

ΔθL+S+ = −λS+ (8)

where,

D+− =
(

√

Δr∂r −+ i
V (r)√

Δr

)

L+− = ∂θ −+ 1 + α

Δθ

H(θ) + 1

2
√

˜Δθ

d
√

˜Δθ

dθ

here, λ is a constant of separation, V (r) = (1 + α)[ω(r2 +
a2) − am] and H(θ) = (aω sin θ − m csc θ).

Since we are interested in the behavior of the Dirac
field near the Cauchy horizon, it is convenient to adopt the
outgoing Eddington–Finkelstein coordinate (u, r, θ, ϕ) [33].

Moreover, if we set ˜R+(r) = (Δr )
1
2 R+(r) and ˜R−(r) =

R−(r), Eq. (7) can be written in a more symmetric form
D+−˜R+− = λ˜R−+. Near the Cauchy horizon, the radial equa-
tions can be written as follows

d2
̂R+−

dr2∗
+ 2i(ω − m�−)

d̂R+−
dr∗

= 0 (9)

where, ̂R+− = ˜R+− exp[−i(ωr∗ − mrφ)] and �− corre-
sponds to the angular velocity of the black hole at the
Cauchy horizon. Here, dr∗ = (1 + α)(r2 + a2)dr/Δr and
drφ = (1 +α)a dr/Δr . The above equations have two inde-
pendent solutions such that the spinor field can be written as
follows
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̂Ψ (1)(u, r, θ, ϕ) = e−i(ωu−mϕ) ψ(r, θ)

̂Ψ (2)(u, r, θ, ϕ) = e−i(ωu−mϕ) ψ(r, θ) (r − r−)p
(10)

where, ψ = (
R− S−

�∗ ,R+ S+,−R− S+
�

,R+ S−)T . Here,
R+−(r) represent some smooth functions of r which are non-
vanishing at the Cauchy horizon and p = i(ω − m�−)/κ−
where κ− corresponds to the surface gravity of the black hole
at the Cauchy horizon. Given the solution of Dirac equation
near the Cauchy horizon, we need to check whether the Dirac
field belongs to H1

loc or not in order to investigate the possi-
bility of having weak solutions of Einstein equations. In other
words, we have to check whether ∂μΨ is locally square inte-
grable which boils down to investigate the finiteness of the
integral of quantity ∼ (r−r−)2(p−1). Thus, the condition for
Ψ to remain in H1

loc then reduces to the following inequality

β ≡ − I m(ω)

κ−
>

1

2
(11)

The existence of weak solutions of Einstein’s equation at
Cauchy horizon is guaranteed by this condition which leads
to a possible violation of strong cosmic censorship conjec-
ture. In our study, we need to focus on the dominant mode
contributions only which are the least damped modes of the
quasinormal spectrum.

4 Strong cosmic censorship conjecture for Kerr–de
Sitter black holes in presence of Dirac field

In this section, we compute the quasi-normal modes of Kerr–
de Sitter black hole in presence of Dirac field using numerical
methods. But before that let us put the radial and angular
equations given by Eqs. (7) and (8) in standard Teukolsky
form which read as follows [28]

Δ−s
r ∂r

[

Δs+1
r ∂r R+(r)

]

+
[

4i(α + 1)rsω + 2(1 − α)s

− 2αr2(s + 1)(2s + 1)

a2 + V (V − is∂rΔr )

Δr
− λ2

]

R+(r) = 0

(12)

and
[

∂x (1 + αx2)(1 − x2)∂x + λ2 − s(1 − α) + (1 + α)2

α
ξ2

−2αx2 + 1 + α

1 + αx2

{

2s
(

αm − (1 + α)ξ
)

x − (1 + α)2

α
ξ2

−2m(1 + α)ξ + s2
}

− (1 + α)2m2

(1 + αx2)(1 − x2)

− (1 + α)(s2 + 2smx)

1 − x2

]

S+(x) = 0 (13)

where, x = cos θ , s = 1/2 and ξ = aω. Note that, in the non-
rotating limit (a → 0), the angular Teukolsky equation (13)
gives the separation constant as λ → l(l − 1) − s2 + s. This
can be used to define the angular eigen mode number l which
satisfies the following relation, l ≥ max(|m|, |s|) [34]. These
transformed equations allow us to use the method developed
by [28], who showed that Eq. (13) can be transformed into
Heun’s equation which, in turn, give us a three-term recur-
rence relation for the angular equation. This three term recur-
rence relation can be rewritten in terms of a continued fraction
equation which we denote by P1(λ, ω) = 0.

The radial Teukolsky equation (12) has five regular sin-
gularities at r+, r−, rc, −(r+ + r− + rc) and spatial infinity.
The quasi-normal modes are defined as the eigen values of ω

with Ψ satisfying the following boundary condition: there are
only outgoing waves at the cosmological horizon rc and only
ingoing waves at the event horizon r+. In order to satisfy the
boundary condition, we write R+(r) as the multiplication of
a function y(z) which is regular at the boundary and a factor
which is divergent at r+ and rc, i.e.,

R+(r) = r−(2s+1)

(

r − r−
r − r+

)s+2i V (r+)

Δ′
r (r+)

ei B(r) y(z) (14)

where, dB/dr = V (r)/Δr and z = (r − r+)(rc − r−)/(r −
r−)(rc−r+). By inserting Eq. (14) into Eq. (12) and express-
ing y(z) as a Frobenious series of the form

∑∞
n=0 anz

n , we
get a seven-term recurrence relation. Due to convergence
problem of seven term recurrence relation [35], it is bet-
ter to reduce the seven-term recurrence relation into a three
term recurrence relation using Gaussian elimination method
[36,37]. Similar to the angular equation, this three term recur-
rence relation can also be written as an infinite continued frac-
tion equation which we denote by P2(λ, ω) = 0. By solving
the angular and radial continued fraction equations simul-
taneously, one gets the desired quasi-normal modes. How-
ever, instead of using the Gaussian elimination procedure to
find the three-term recurrence relation for the radial equation,
we have employed the Mathematica package developed by
Jansen [38] to find the quasinormal modes. Here, we have
solved the angular equation P1(λ, ω) = 0 and radial equa-
tion for y(z) iteratively, taking the approximate value of λ in
Ref. [28] as the initial guess value.

In order to understand the effect of Dirac particles on
strong cosmic censorship conjecture, we need to look for
modes for which the parameter β ≡ −I m(ω)/κ− becomes
greater than 1/2. As stated earlier, we are interested in the
dominant modes (least damped modes) of the quasinormal
spectrum for a given value of angular eigen mode number
l for the calculation of the parameter β. From Fig. 1, we
can see that the dominant mode is always corresponds to
modes with m = l for any values of mass scaled cosmo-
logical constant M2 [14,39]. Moreover, the imaginary part
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Fig. 1 The variation of imaginary part of quasinormal frequency
−I m(ω) as a function of (a/amax) has been presented for different
values of M2 and angular eigen mode number l. Here, amax denotes

the extremal value of the rotation parameter. As evident from each of
these plots, the lowest lying modes always correspond to the mode with
m = l regardless of the the values of M2

of the quasinormal frequency decreases with the increase of
both the rotational parameter a and the cosmological con-
stant . In this regard, our result is fully consistent with the
results presented in [39]. Moreover, near to the extremity, a
rapid decrease of the value of I m(ω) is observed.

The variation of the quantity I m(ω)/κ− with respect to
the rotational parameter a for different values of M2 is pre-
sented in Fig. 2. Here, we consider only the least damped
modes for a given value of angular eigen mode number
i.e. the modes with m = l. It is interesting to see that
for smaller values of mass scaled cosmological constant
(M2 ≈ O(10−3)), modes corresponding to l = 1/2 domi-
nate the quasinormal spectrum for certain values of a. How-
ever, for larger values of M2, the eikonal modes (corre-
sponding to the modes with large l value) become dominant.
As evident from Fig. 2, strong cosmic censorship conjecture
is respected for larger values of M2. But for smaller values
of mass scaled cosmological constant (M2 � 0.02), we
are able to find a parameter space for which strong cosmic

censorship gets violated. Moreover, in this parameter space,
the violation is more severe for smaller values of M2 since
β becomes greater than 1/2 for smaller values of rotational
parameter a. So the assurance that strong cosmic censorship
is always respected in astrophysical black holes [14,24] is no
longer valid in the presence of Dirac fields.

5 Conclusion

In recent years, several examples are found which suggest
a breakdown of determinism in Reissner–Nordström–de Sit-
ter black holes under the influence of several fundamental
fields [18,19,21–26]. Anyway, astrophysically meaningful
Kerr–de Sitter black hole solutions seems to respect the con-
jecture [14,24]. However, the previous analyses were done
considering only the effect of scalar fields. In this paper, we
extended the study by considering Dirac fields in Kerr–de
Sitter background.
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Fig. 2 The variation of I m(ω)/κ− as a function of (a/amax) has been
presented for different values of M2. The parameter β corresponds to
the least damped modes of the quasi-normal spectrum. Here, we have
considered only the modes withm = l. In each of these plots, red, green
and blue curves corresponds to value of I m(ω)/κ− for l = 0.5, l = 1.5

and l = 10.5 respectively. The vertical lines in the plots presented in
upper-left and upper-right corner corresponds to the value of rotation
parameter a for which strong cosmic censorship conjecture gets vio-
lated. As evident from the plots, for smaller values of M2, we can
find a parameter space which does not respect the conjecture

By considering the effect of linear perturbations on the
spacetime metric of our interest, we found that there exist
weak solutions of Einstein equation at the Cauchy horizon,
if the parameter β defined by Eq. (11) become greater than
1/2 which leads to the violation of strong cosmic censor-
ship conjecture. Comparing our result with Ref. [14], where
the effect of scalar fields are considered, we see that the
criteria for strong cosmic censorship violation remains the
same in the presence of Dirac fields also. Once this criteria is
obtained, we performed detailed numerical computation to
find lowest lying quasinormal modes to determine the value
of β as a function of rotational parameter a for different val-
ues of mass scaled cosmological constant M2. In Figs. 1
and 2, we presented our main results. From these figures, it
is clear that the lowest lying quasinormal modes always cor-
respond to the m = l mode. Moreover, an increased value
of rotational parameter results in modes with smaller decay
rate. Near to the extremity, a rapid decrease of decay rate is
observed. The decay rate also decreases with the increase of
M2. From Fig. 2, it is clear that the value of the parameter

β always remains smaller than 1/2 for larger values of M2.
Hence, we can conclude that the strong cosmic censorship
conjecture is always respected in “large” rotating black holes
(black holes with M2 � 0.02). However, for smaller values
of M2, we found a parameter space where β becomes larger
than 1/2. This, in turn, implies that in “smaller” black holes,
Dirac fields can be smoothly extended beyond Cauchy hori-
zon. Hence, in presence of Dirac fields, even the rotational
parameter can not save the strong cosmic censorship conjec-
ture for a certain parameter range. Moreover, for a fixed value
of cosmological constant, black holes with smaller masses
are more prone to violate the conjecture.

Note that, in our work, we have considered the effect of
linear perturbation only. It may be possible that the violation
of strong cosmic censorship can be prevented by consider-
ing the non-linear or quantum gravitational effects. However,
Cardoso et al. have shown that for Einstein–Maxwell–scalar
field system, the non-linear perturbations can not save the
conjecture [25]. Moreover, a recent study showed that the
violation of this conjecture in 2 + 1 dimensional BTZ black
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holes even when quantum correction terms are added [40].
However, the studies in 3+1 dimensional black holes remain
inconclusive. In particular, it has shown that the quantum
correction can either amplify or suppress the blue shift insta-
bility in Reissner–Nordström black holes [41]. It would be
interesting to see the those effects on Einstein–Dirac field
system, which we leave for future work. Recently, Dafermos
and Shlapentokh-Rothman [15] suggested an interesting pro-
posal that the strong cosmic censorship can still be saved if
one starts with rough initial data. This idea is further sup-
ported by Ref. [42], where the authors have studied a coupled
gravitational and electro-magnetic perturbation and showed
that in order to save the strong cosmic censorship, one must
consider physically reasonable but slightly less smooth initial
data. It will be interesting to see whether this proposal can
save the conjecture in presence of Dirac field also. However,
this is beyond the scope of this paper.
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