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Abstract In this manuscript we report the flag-dipole
spinors dual structure direct definition and analyze the prop-
erties behind the corresponding operator which generates
such structure. This particular construction may be interest-
ing for cosmological, phenomenological and mathematical
physics applications. In addition, we analyse the behaviour of
the flag-dipole spinors under action of discrete symmetries,
facing an unconventional property encoded on (CPT )2.

1 Introduction

Spinors play an important role in several areas of Quan-
tum Field Theory. Such mathematical objects must be under-
stood as an irreducible representation of the Lorentz group
SO+(1, 3) [1–3], which carry an extensive information about
the space-time in which they are defined. All relevant physi-
cal information associated with the spinors is encoded in its
bilinear forms. In fact, some years ago an spinor classification
based on bilinear covariants and multivectors of observables
was developed by Lounesto [4].

Such classification sheds light on the existence of new
classes of spinors. In particular, it revealed the so-called flag-
dipole spinors, which reside between the Weyl, Majorana and
Dirac spinors. It is of common knowledge that the relativis-
tic description of the electron allow one to define the fol-
lowing set of bilinear forms: the invariant length σ = ψ̄ψ ,
the pseudo scalar amount ω = ψ̄γ 5ψ , the current density
defined as J = ψ̄γ μψγμ, the spin projection in the momen-
tum direction K = ψ̄γ μγ 5ψγμ, and the momentum elec-
tromagnetic density S = ψ̄iγ μνψγμ ∧ γν , where we have
defined ψ̄ = ψ†γ0 and γ stands for the Dirac matrices [4,5].
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A more comprehensive description for bilinear forms can
be found at [6]. The 16 aforementioned bilinear forms are
restricted to obey an algebraic quadratic relation known as
Fierz-Pauli-Kofink identities [4].

The Lounesto’s classification can be divided into two sec-
tors, one embracing single-helicity spinors (classes 1, 2 and
3) and the other dual-helicity spinors (classes 4 and 5) [7–
9]. The first three classes of the Lounesto’s classification
describe the Dirac spinors. The fourth class consists of flag-
dipole spinors with a flag S on a dipole of two poles J and
K . The fifth class (Majorana spinors) consists of flag-pole
spinors with a flag S on a pole J , and the sixth class (Weyl
spinors) consists of dipole spinors with two poles J and K
[4]. At this point, it is worth mentioning that the properties
of the flag-dipole spinors had not been yet defined properly,
only slightly explored in some very specific scenarios [10–
17]. Therefore, it is one of the purposes of this communica-
tion, to report and to describe some of the properties related
to such spinor.

Quite recently, interesting new insights were brought to
scene after the Elko’s theoretical discovery [18]. Proposed in
its first formulation in 2004 [19], the spin-1/2 fermionic field
endowed with mass dimension one, constructed upon a com-
plete set of eigenspinors of the charge conjugation operator
and, consequently, due to its restricted interactions with the
Standard Model particles, is believed to be a strong candidate
to describe dark matter [18].

The features carried throughout mass dimension one the-
ory, opened windows to a physical content known as Beyond
the Standard Model Theory, trying to answer many ques-
tions that seems to be incomplete. Since the mass dimen-
sion one theory is still being constructed [18,20], we believe
that a broad and quite interesting content is hidden beyond
the mass dimension one fermions. So far, in the literature,
we have two theoretical examples of mass dimension one
fermions: the Elko and the flag-dipole spinors. Both spinors
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carry quite peculiar and particular features. Regarding these
particularities, we are able to list: a new dual structure, the
dynamics, and their unconventional (meanwhile expected)
behaviour under C, P and T discrete symmetries.

The focus of the present manuscript is to exhibit in detail
an Ab Initio construction of the flag-dipole spinor dual struc-
ture. Interesting enough, the contrasting dual structure carry
an involved operator, which is responsible to ensure a Lorentz
invariant and non-null norm besides carrying much of the
physical information encoded on flag-dipole spinors. In such
a way, given emergent operator just playing an important role
when one deal with phenomenological applications [21,22],
cosmological applications and mathematical physics anal-
ysis [6,23–25]. Therefore, we highlight its matrix form in
addition to exploring some of its main characteristics.

Notwithstanding, we analyse the fundamental charac-
teristics of the flag-dipole spinors under the action of the
C, P and T discrete symmetries. Moreover, we conclude
that flag-dipole spinors hold (CPT )2 = +1, an unexpected
behaviour for a spinorial field. However, previously predicted
by Wigner in one of his works [2], placing the flag-dipole the-
ory in a well-posed physical and mathematical level. Thus, by
inspection, we suppose that flag-dipole spinors also belongs
to a degenerated Hilbert space. Besides, we leave open win-
dows for an approach like the one used in [26].

This paper is organized as it follows: In Sect. 2 we provide
a direct definition of the flag-dipole spinors dual structure,
analyzing its main features, besides highlighting verisimil-
itude with other examples of dual-helicity spinors adjoint
structure, present in the current literature. In Sect. 3 we
advance in the formalism of the C, P and T discrete sym-
metries and also we compute (CPT )2. Finally, in Sect. 4 we
present some concluding remarks.

2 On the flag-dipole dual structure definition

Flag-dipole (or type-4) spinors stands for a very rare set of
spinors in the literature and which had not been listed in
physics applications until recently. They are candidates to
construct mass-dimension-one fermions [27] endowed with
dual-helicity [28], and they may explain the reheating phase
of the universe [20]. As soon as spin-1/2 mass-dimension-
one flag-dipole spinors were explicitly defined in [20], we
now turn our attention to explicitly define the flag-dipole
adjoint structure (˜�(pμ)), pointing out the main features
encoded on the operator which compose such structure, and
evincing some important details that were not previously
explained. As it can be seen, Dirac’s dual structure is well-
defined, however, it is not unique and even is not applicable
for all spinors. Some cases, such as Elko [19] and flag-dipole
[20] spinors, for example, require a more involved dual struc-

ture. Accordingly, here we provide some details concerning
the flag-dipole spinors dual structure.

If one impose the Dirac’s dual structure (ψ̄ = ψ†γ0) to
the flag-dipole spinors (�(pμ)), we face the following norm
relation

�̄{±,∓}(pμ)�{±,∓}(pμ) = 0, (1)

where the lower indexes stands for the right-hand and
left-hand component helicity, respectively. Looking towards
unveil a hidden physical content, we apply the very same
procedure as was previously developed for the Elko spinors
in Ref. [29]. Thus, this section is reserved for the derivation
of a mathematical protocol, and the requirement is a real and
invariant norm under Lorentz transformations.

Let us consider the flag-dipole spinors previously defined
in [20]

�S{+,−}(pμ) = B+
(−β∗−1− 	φ−∗

L (kμ)

β+φ−
L (kμ)

)

,

�S{−,+}(pμ) = B−
(

β∗−1+ 	φ+∗
L (kμ)

β−φ+
L (kμ)

)

, (2)

and

�A{+,−}(pμ) = B+
(

β∗−1− 	φ−∗
L (kμ)

β+φ−
L (kμ)

)

,

�A{−,+}(pμ) = B−
(−β∗−1+ 	φ+∗

L (kμ)

β−φ+
L (kμ)

)

, (3)

where we have defined the Lorentz boost factors as B± =
√

E+m
2m

(

1 ± p
E+m

)

and the operator 	 stands for theWigner

time-reversal operator, which read [19]

	 =
(

0 −1
1 0

)

. (4)

The above spinors satisfy the following orthonormal relations

�̄S{±,∓}(pμ)�S{∓,±}(pμ) = +2m, (5)

�̄A{±,∓}(pμ)�A{∓,±}(pμ) = −2m, (6)

�̄S{±,∓}(pμ)�A{±,∓}(pμ) = 0, (7)

�̄S{±,∓}(pμ)�A{∓,±}(pμ) = 0, (8)

�̄A{±,∓}(pμ)�S{±,∓}(pμ) = 0, (9)

�̄A{±,∓}(pμ)�S{∓,±}(pμ) = 0. (10)

The indexes S and A are related with the positive and nega-
tive sing on the right-hand side of the norms relations above.
Please, note that the orthonormal relations are independent
of the phase (β±). However, from now on, we confine our-
selves to the only constraint |β±|2 �= 1, otherwise, we do not
guarantee a proper flag-dipole spinor, in very agreement with
[28]. Such a judicious phases constraint lead to a complete
set of flag-dipole spinors carrying a non-null and a Lorentz
invariant norm.
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The above relations suggest that the new dual structure
must flip the spinor helicity. Looking towards provide a direct
definition of the dual structure, the set of relations above make
an useful tool to accomplish such task. We start from the very
definition of the new dual structure

˜�
S/A
h (pμ)

de f=
[

�(pμ)�
S/A
h (pμ)

]†
γ0, (11)

where h stands for the helicity. The �(pμ) operator must
obey a set of requirements. Denoting the spinor space by S,
then the �(pμ) operator is such that

�(pμ) : S → S,

�h �→ �h′ . (12)

Moreover, �(pμ) has to be idempotent ensuring an invertible
mapping. From (12) we are able to have the following two
possibilities: h = h′, for which �(pμ) = 1, has it is the case
for the Dirac spinors, or h �= h′ leading to a more involved
operator [6,24,29–31].

With the orthonormal relations (5)–(10) at hands, one is
able to define

�(pμ) = 1

2m

[

�S{+,−}(pμ)�̄S{+,−}(pμ) + �S{−,+}(pμ)�̄S{−,+}(pμ)

−�A{+,−}(pμ)�̄A{+,−}(pμ) − �A{−,+}(pμ)�̄A{−,+}(pμ)
]

,

(13)

in which its matricial form reads

�(pμ) =

⎛

⎜

⎜

⎝

−g∗(θ, β) f ∗
1 (φ, θ, β) 0 0

f ∗
2 (φ, θ, β) g∗(θ, β) 0 0

0 0 −g(θ, β) f2(φ, θ, β)

0 0 f1(φ, θ, β) g(θ, β)

⎞

⎟

⎟

⎠

.

(14)

Here we have defined the functions g(θ, β), f1(φ, θ, β) and
f2(φ, θ, β) as follows

g(θ, β) = sin(θ)

2

[

(E + p)β2+ + (E − p)β2−
mβ+β−

]

,

f1(φ, θ, β)

= eiφ
[

(E + p) cos2(θ/2)β2+ − (E − p) sin2(θ/2)β2−
mβ+β−

]

,

f2(φ, θ, β)

= e−iφ

[

(E − p) cos2(θ/2)β2− − (E + p) sin2(θ/2)β2+
mβ+β−

]

.

(15)

Note that we fully defined the important operator present in
the flag-dipole dual structure. The �(pμ) operator obeys the
following requirements: �2(pμ) = 1, and the inverse indeed
equal itself. In the lights of [6] an useful fact concerning such
operator is [�(pμ), γ5] = 0. Remarkably enough, a judicious
choice of the phases value, as previously shown in Ref [28],

turn it possible to recover the Elko’s 
(pμ) operator, in other
words, �(pμ) → 
(pμ).

Let us now analyse the behaviour of �(pμ) under Lorentz
transformations. For a Lorentz boost we have that

�h(p
μ) = exp(iκϕ)�h(k

μ), (16)

with κ† = −κ , and then
[

�(pμ)�h(p
μ)

]†
γ0�h(p

μ)

= �
†
h(k

μ)eiκϕ�†(pμ)γ0e
−iκϕ�h(k

μ). (17)

The expression above provides the following relation

�(pμ) = eiκϕ�(kμ)e−iκϕ . (18)

The action of the �(pμ) operator on the flag-dipole spinors
provide the following relations

�(pμ)�S{+,−}(pμ) = �S{−,+}(pμ), (19)

�(pμ)�S{−,+}(pμ) = �S{+,−}(pμ), (20)

�(pμ)�A{+,−}(pμ) = �A{−,+}(pμ), (21)

�(pμ)�A{−,+}(pμ) = �A{+,−}(pμ). (22)

Such a direct definition of the dual structure provide addi-
tional support to the flag-dipole dual structure previously
found [20]. It is worth mentioning that the above approach is
important because, first – in parallel with the Elko’s case – it
shows the protocol of how the dual structure for dual-helicity
spinors emerges. Consequently, we show some properties of
the �(pμ) operator and, finally, we evinced its explicit form,
which is necessary for carrying out studies as the one devel-
oped in [6,21–23].

We remark that the prescription contained here clearly
leads to a theory where the dual structure presented in (11)
provides a spin sum which contain a term which do not man-
ifest covariantly via Lorentz transformations, consequently,
at a quantum field level it brings a non-local quantum field.
However, in [20], and supported by [29], a redefinition in the
dual structure bring to light a local theory.

3 On the C, P and T discrete symmetries: the dual
helicity spinors (CPT )2 unconventional outcome

The present section carry some fundamental aspects concern-
ing discrete symmetries and flag-dipole spinors. Bearing in
mind that through the relations that will be established here,
we are able to connect, at the second quantization level, the
junction among dynamics, quantum field and locality struc-
ture. In addition, such analysis is extremely relevant when it
is intended to approach the flag-dipole spinors via the for-
malism developed in Ref. [26, and references therein].

We start by analysing the behaviour of the flag-dipole
spinors under action of the parity operator, given operator
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can be defined as P = m−1γμ pμ [32]. As it can be seen in
the current literature, dual-helicity spinors do not obey the
Dirac equation [7,19]. In order to illustrate the procedure, we
choose the �S{+,−}(pμ) spinor, and then apply the operator
γμ pμ on it, to obtain

m−1γμ pμ�S{+,−}(pμ) = m−1[Eγ0 + γ j p
j ]�S{+,−}(pμ),

= m−1
[

E

(

0 1
1 0

)

+ p

(

0 σ · p̂
−σ · p̂ 0

)]

B+

×
( −β∗−1− 	φ−∗

L (kμ)

β+φ−
L (kμ)

)

, (23)

where σ · p̂ stands for the helicity operator, previously defined
in [20]. When this operator acts on the spinor’s components,
we get

σ · p̂ φ±
L (kμ) = ±φ±

L (kμ), (24)

σ · p̂ [	φ±∗
L (kμ)] = ∓	φ±∗

L (kμ). (25)

After simple mathematical manipulations, one obtain the fol-
lowing relation

m−1γμ pμ�S{+,−}(pμ) = m−1B+(E − p)

(

β+φ−
L (kμ)

−β∗−1− 	φ−∗
L (kμ)

)

,

(26)

taking into account the Einstein’s dispersion relation, we are
able to write

B+(E − p) → mB−, (27)

B−(E + p) → mB+, (28)

and also the following relation among the components

	φ−∗
L = −φ+

L , φ−
L = 	φ+∗

L . (29)

Then, from Eq. (23), we get

m−1γμ p
μ�S{+,−}(pμ) = B−

(

β+	φ+∗
L (kμ)

β∗−1− φ+
L (kμ)

)

. (30)

Note that the flag-dipole spinors do not form a set of eigen-
spinors of the Dirac operator. In other words, the flag-dipole
spinors do not satisfy the Dirac equation. This fact had
already been observed previously in [7]. Repeating the very
same procedure described above, i.e., acting with γμ pμ on
the r.h.s of the Eq. (30), it leads to

m−1γμ pμB−
(

β+	φ+∗
L (kμ)

β∗−1− φ+
L (kμ)

)

= B+
(

−β∗−1− 	φ−∗
L (kμ)

β+φ−
L (kμ)

)

,

= �S{+,−}(pμ). (31)

The above results lead us straightforwardly to conclude that
P2 obey the following relation

P2 = 1. (32)

Now, we focus on the charge-conjugation operator, which
can be written as C = γ2K, where K stands for the algebraic

complex conjugation operation [19]. As stated in [7,20] flag-
dipole spinors do not necessarily hold conjugacy under C.
Thus, here we provide a quick derivation of such observa-
tions:

C�S{+,−}(pμ) =
(

0 i	
−i	 0

)

B+
(−β−1− 	φ−

L (kμ)

β∗+φ∗−
L (kμ)

)

= B+
(

iβ∗+	φ−∗
L (kμ)

−iβ−1− φ−
L (kμ)

)

. (33)

Note that the resulting spinor does not belong to the set of
flag-dipoles in (2) and (3), which reinforces the argumenta-
tion in [33]. Nonetheless, acting twice with C operator on
Eq. (33), provides the following result

C2 = 1. (34)

Finally, the last discrete symmetry concern to the time-
reversal operator T = iγ5C, an anti-unitary operator. With
the previous results at hands, the action of such an operator
on a flag-dipole spinor is given by

T �S{+,−}(pμ) = iγ5B+
(

iβ∗+	φ−∗
L (kμ)

−iβ−1− φ−
L (kμ)

)

,

= −B+
(

β∗+	φ−∗
L (kμ)

β−1− φ−
L (kμ)

)

. (35)

Note again that the result obtained is not compatible with the
spinors shown in (2) and (3), evincing that the flag-dipole
spinors do not stand for a set of eigenspinors of time-reversal
operator. However, we have

T 2�S{+,−}(pμ) = −iγ5B+
(

β∗+	φ−∗
L (kμ)

β−1− φ−
L (kμ)

)

,

= −B+
(−β∗−1− 	φ−∗

L (kμ)

β+φ−
L (kμ)

)

, (36)

which allows us to conclude that

T 2 = −1. (37)

Previous results evades Lee and Wick Theorem 1 in Ref. [34],
where it is stated that all the local spin-1/2 fields hold the
relation P2 = T 2, and as it can be seen, for the flag-dipole
spinors we obtained P2 �= T 2. In the meantime, a very inter-
esting and unexpected outcome emerges when we compute
(CPT )2 for the �(pμ) spinors, using the results above, it
yields

(CPT )2 = +1. (38)

Thus, both Elko and flag-dipole spinors show congruous
features. Such result combined with the above calculations
evince that flag-dipole spinors also belong to the Wigner
Class 3 [2] and may also belong to the degenerated Hilbert
space [26]. Note that for the second time this behaviour is
reported for a fermion.
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For completeness, we establish the commutation/anti-
commutation among the discrete symmetry operators. Accord-
ingly, acting C from the left on the equation (30) it yields

CP�S{+,−}(pμ) = B−
(

iβ−1− 	φ∗+
L (kμ)

iβ∗+φ+
L (kμ)

)

. (39)

On the other hand,

PC�S{+,−}(pμ) = B−
(−iβ−1− 	φ∗+

L (kμ)

−iβ∗+φ+
L (kμ)

)

. (40)

The above two results leads to anti-commutativity for the C
and P operators for flag-dipole spinors. Applying the same
reasoning for the other flag-dipole spinors, one establishes
that C and P anti-commute for all �S{+,−}(pμ)

{C,P} = 0. (41)

Moreover, one may find the following relations for the other
operators:
[

C, T
] = 0,

[

T ,P
] = 0. (42)

The only relation which is consistent with what is expected
for fermions is the one given by Eq. (41). We remark that
the above approach is important at a quantum field level and
here we provide some details. In the Weinberg framework
[35], the analysis is developed for Dirac spinors, thus, the
quantum field is defined upon spinors which satisfy Dirac
dynamics (eigenspinors of parity operator) playing the role
of expansion coefficients and, then, the quantum field hold
invariance under parity transformation, being in agreement
with all the Lee and Wick expectations. In [26], the situa-
tion is a slightly different from the previous case, where the
analysis takes into account the eigenspinors of the charge
conjugation operator (Elko spinors) to define the quantum
field. As it can be seen, such spinors hold an extra degree of
freedom (helicity) when compared with Dirac spinors, by the
aforementioned reason Elko spinors do not satisfy the Dirac
dynamics. Thus, this was the first reported case to evade
Lee and Wick expectations, in other words, it can be under-
stood as a fermion with bosonic traces. In such framework,
as the authors claims, that given quantum field must belong
to a degenerated Hilbert space. Now, the flag-dipole spinors
shows to be an interesting case, due to the fact that it does not
satisfy any discrete symmetry (C, P or T ), do not satisfy the
Dirac dynamics, and also hold an extra degree of freedom,
as Elko do, being the second reported case that do not match
with Lee and Wick expectations.

4 Concluding remarks

As previously mentioned, we remark once again the impor-
tance of the dual structure direct definition due to its delicate
structure. Since the dual structure for spinors endowed with

dual-helicity feature is not a trivial structure – and strongly
contrasts with Dirac’s dual structure – then, it is necessary to
define a more rigorous approach, accordingly, we have made
a detailed inspection of the flag-dipole spinor dual structure.
Hereupon, we gave an additional mathematical support in the
definition of such a structure, evincing some details of the
operator that composes such a dual structure. The explicit
form, besides the properties of the �(pμ) operator which is
part of the flag-dipole dual structure, is extremely necessary
so that we can advance in other branches of research, e.g.,
particle physics phenomenology, cosmology and mathemat-
ical physics.

We shall finalize making allusive comments about the
flag-dipole spinors behaviour under action of (CPT )2. As
previously mentioned, the unexpected outcome obtained in
Sect.3 was predicted by Wigner, and later revisited in [26].
Hence, this is the second case reported in the current litera-
ture of an entity that fits Wigner’s non-standard classes, being
a fermion with unexpected features, carrying similar features
to the Elko spinors.
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