
Eur. Phys. J. C (2020) 80:363
https://doi.org/10.1140/epjc/s10052-020-7953-3

Regular Article - Experimental Physics

Background rejection in atmospheric Cherenkov telescopes using
recurrent convolutional neural networks

R. D. Parsons1,3,a, S. Ohm2

1 Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany
2 DESY, 15738 Zeuthen, Germany
3 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany

Received: 23 October 2019 / Accepted: 20 April 2020 / Published online: 6 May 2020
© The Author(s) 2020

Abstract In this work, we present a new, high perfor-
mance algorithm for background rejection in imaging atmo-
spheric Cherenkov telescopes. We build on the already pop-
ular machine-learning techniques used in gamma-ray astron-
omy by the application of the latest techniques in machine
learning, namely recurrent and convolutional neural net-
works, to the background rejection problem. Use of these
machine-learning techniques addresses some of the key chal-
lenges encountered in the currently implemented algorithms
and helps to significantly increase the background rejection
performance between 100 GeV and 100 TeV energies. We
apply these machine learning techniques to the H.E.S.S. tele-
scope array, first testing their performance on simulated data
and then applying the analysis to two well known gamma-ray
sources. With real observational data we find significantly
improved performance over the current standard methods,
with a 20–25% reduction in the background rate when apply-
ing the recurrent neural network analysis. Importantly, we
also find that the convolutional neural network results are
strongly dependent on the sky brightness in the source region
which has important implications for the future implementa-
tion of this method in Cherenkov telescope analyses.

1 Introduction

Historically, one of the largest challenges in ground-based
gamma-ray astronomy with imaging atmospheric Cherenkov
telescopes (IACTs) is the identification and rejection of
hadron-initiated air showers based on shower images. This is
due to the extreme outnumbering of gamma-ray induced air
showers by those from cosmic-ray hadrons (a factor 104 in
even the brightest fields of view). Therefore, in order to detect
most sources, the difference in development of hadronic and
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electromagnetic air showers, which causes a corresponding
difference in the observed IACT camera image, must be
used to discriminate gamma-ray candidates from the mostly
hadronic background. Although cosmic-ray electrons are a
much less abundant particle species in the cosmic-ray spec-
trum (∼ 103 cosmic-ray hadrons per cosmic-ray electron at 1
TeV), they constitute an irreducible background for the clas-
sification because of the electromagnetic nature of the air
shower the initiate.

Traditionally, this background rejection has been per-
formed through the use of Hillas Parameters [1], which
parameterise the cleaned camera images using their second
moments. The so-called tail cuts cleaning requires a pixel to
have an intensity exceeding a threshold t1 and a neighbour
exceeding a threshold t2 [2]. Images from hadronic showers
appear to be both, longer and wider, than those from gamma
rays, due to the larger transverse momentum transfer within
the hadronic interactions in the shower cascade. By placing
cuts on the image width and length, the first generation of
very-high-energy (VHE; 0.1 TeV≤ E ≤ 50 TeV) gamma-
ray sources were detected [3,4]. In the following generation
of gamma-ray observatories the use of multiple telescopes to
image air showers from different directions improved their
characterisation and the classification capability. The infor-
mation from more than one image of the same shower has
been combined by using the Hillas parameters from multi-
ple telescopes to construct mean scaled parameters [2], for
example mean scaled width (MSCW) defined below:

MSCW =
n∑

i=1

wi − 〈w〉
σw

.
1

n
(1)

where w is the Hillas width, 〈w〉 is the expected width
determined from lookup tables derived from Monte Carlo
air-shower simulations and σw is the expected RMS of the
width. In this way the Hillas parameters can be combined into
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a single parameter with a mean of zero and a standard devi-
ation of one. Background rejection can then be achieved by
placing cuts on both MSCW, and mean scaled length (MSCL)
parameters. Note that lookup tables are typically produced
for a broad phase-space range, covering a variety of observ-
ing conditions and telescope configurations.

The use of Hillas parameters for background rejection
has proven extremely effective in the rejection of hadronic
background, however, it is clear that these parameters do not
effectively contain all the information from individual cam-
era images like asymmetries or pixel-wise information. By
construction, mean-scaled parameters also average over mul-
tiple telescopes employing different weightings. Necessarily,
this leads to a loss of information on the separation power
stored in individual images. Another limitation of the classi-
cal mean-scaled parameter based box cuts is that they do not
take into account linear and non-linear correlations between
input parameters. Machine-learning techniques such as ran-
dom forests [5], boosted decision trees [6,7] or neural net-
works [8] have been developed and successfully applied
to data taken with the third generation of IACTs based on
telescope- and event-wise input. These algorithms do exploit
correlations between variables, but cannot compensate the
information lost in the construction of the input parameters.
The same is true for the much more powerful state-of-the-art
likelihood methods that base the classification on parameters
from pixel-wise comparisons between the recorded shower
images and the expected image from a semi-analytical [9]
or template-base model [10]. Attempts to include the maxi-
mum possible information into the background rejection with
IACTs are therefore clearly an important topic.

The vast progress made in recent years in the field of deep
learning techniques allows to apply new data-driven feature
extraction methods to scientific data. For instance, convolu-
tional neural networks (CNNs, [11]) extract spatial features
or identify objects in image data using complex, hierarchical
artificial neural networks (e.g. [12]). Recurrent neural net-
works (RNNs), on the other hand, are designed to classify
sequenced or temporally correlated data. Methods employ-
ing long short-term memory (LSTM) units [13] are particu-
larly powerful in areas such as speech recognition [14] and
are nowadays applied in astronomy in different variants (e.g.
[15,16]). Lately the development of combined convolutional
and recurrent neural networks (CRNNs) have been explored
to classify transient objects in optical astronomy (e.g. [17]).

The application of a convolutional, recurrent network
structure has also been demonstrated on IACT simula-
tions [18] with encouraging results. However, the expected
improvements were not seen when applied to H.E.S.S. data.
This demonstrates the challenges regarding the stability and
reputability when deploying those advanced analysis meth-
ods on experimental data. Tackling those aspects is one of
the primary focus of this work.

This paper is organised as following: in the first section
we motivate the usage of deep neural networks to address the
apparent information-loss problem in classical parameter-
based IACT classifiers and introduce the deep neural network
designs used for this study. The following section explains
how the networks are constructed and trained, followed by
a section addressing the performance of the network with
Monte-Carlo events. Finally, we will test the performance
and stability of the network against real H.E.S.S. data.

1.1 Convolutional input layers

If we wish to move beyond the paradigm of image parame-
terisation as used in state-of-the-art machine-learning tech-
niques such as [19] and [8], using a multi-layer perceptron
(MLP) is no longer sufficient. Although an MLP could be cre-
ated using individual image pixels as input, such a network
would require an extremely large training data set in order to
properly classify data. This is due to two effects: firstly the
maximally connected nature of the MLP (each neuron in a
layer is connected to each neuron in the proceeding layer)
would create a huge number of parameters to fix in the case
of even a very coarsely pixelated image. Secondly all spatial
information of the pixels relative to their neighbouring pix-
els would be lost, therefore the network would not be stable
against the translation of a given classifying feature through
the image.

Convolutional neural networks offer a way around this
problem by instead extracting the information from the
shower image in the Cherenkov camera itself, and by apply-
ing a series of convolutional kernels on it. The result of this
application is a 2-dimensional feature map of the image.
Typically in such networks the most important features are
selected (and the dimensionality reduced) through the use
of a max pooling layer, where the maximum value of the
feature map in a given 2D window is selected. The results of
this pooling can then be passed through further convolutional
and pooling layers, allowing features on larger scales than the
convolutional kernel to be extracted. Different CNN archi-
tectures have been successfully implemented and applied in
particle and astroparticle physics (e.g. [20–22]).

1.2 Recurrent network layers

Often in machine learning problems the classification of a
number of sequential correlated images (for example images
of the same shower seen from different perspectives) is
required. Again, in this case the construction of a traditional
network structure with each image of the series as an input
would introduce an unsatisfactory number of free parameters
to the network. Additionally, as the same features are being
searched for in all images, such separate input is counterpro-
ductive.
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To counter this problem, recurrent layers are constructed
in such a way that the correlated inputs can be fed through
the same network in sequence with each input modifying
the behaviour of the network for all subsequent inputs. In
this way the network is able to process inputs while retaining
knowledge of information, which has already been seen. Typ-
ically, recurrent network implementations such as the LSTM
contain mechanisms to “forget” older inputs, such that the
sum of potentially extreme former inputs does not lead to a
runaway of the network weights to infinity. One example of a
RNN in particle physics, is the work by [23], where identifi-
cation of b quarks based on particle jet properties in ATLAS
at the LHC is performed. In this work, different tracks asso-
ciated to the same jet are sequentially input into the RNN,
which learns about the correlations between tracks associated
to the same vertex.

2 Neural network design

In order to quantify the performance of the recurrent neural
network on both, simulations and IACT data, three networks
were designed using different inputs and network topolo-
gies (see Figs. 1 and 2). All networks were created using the
Keras [24] python-based machine-learning interface, using
TensorFlow [25] as the back-end module.

2.1 Mean scaled input

Firstly a simple multi layer perceptron (MLP) was created
using mean scaled parameters as input. This network was
created to provide a baseline comparison for the recurrent
networks. The input parameters for this network are the
mean scaled width and length of the shower in comparison to
both simulated gamma-ray (MSCL, MSCL) as well as back-

Fig. 1 Network topology of the mean scaled (left) and Hillas-based
recurrent (right) networks, stacked boxes show regions of the network
where telescope inputs are processed in parallel. More details given in
Sect. 2

Fig. 2 Network topology of the convolutional network, stacked boxes
show regions of the network where telescope inputs are processed in
parallel

ground events (MSCWO, MSCLO), the reconstructed depth
of the shower maximum in the atmosphere Xmax and the
�E/E parameter, calculated as the averaged spread in energy
reconstruction between. These input parameters are similar
to those used in the BDT method of [19], and hence should
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perform similarly to the technique already implemented in
the H.E.S.S. framework. However, a retraining is performed
to ensure consistency of the MVA tools used and the training
data set. In general this network performs similarly to that
described in [19].

2.2 Parametric input

The second network created also used the Hillas parame-
ters for the input information, however, rather than combin-
ing these parameters using the aforementioned mean scaled
method instead the unscaled parameters are used as input
and combined within the network using a recurrent layer.
The inputs to this network are the Hillas width and length,
sum of pixel amplitudes in the cleaned image, reconstructed
impact parameter, the displacement of the image centroid
from the reconstructed source position and the distance of
the image centroid from the camera field of view.

2.3 Image input

Finally, in order to quantify the effects of adding more
image information, a network was created, which also takes
the camera images as input. However, as most convolutional
algorithms are created to operate on a regular image of square
pixels, rather than the hexagonal arrangement used in many
IACT cameras (such as those of the H.E.S.S. array) some
preprocessing must be performed. Firstly the camera images
are cleaned using the standard split level tail cut scheme used
in H.E.S.S. [2] and then four rows of additional pixels are
added to the edge of the cleaned image (in the same proce-
dure used by [10]). A linear interpolation is then performed
between these pixels, using Delauney triangulation, allow-
ing them to be mapped onto a square grid with pixel size of
0.05◦ and a total width of 5◦. Although the image cleaning
step is not strictly necessary for the convolutional analysis,
the reduction in the number of image pixels greatly increases
the speed of the interpolation step and reduced the amount of
data stored. Additionally the removal of noisy pixels not in
the vicinity of the shower image may help to produce a more
stable result. Finally the image is rescaled such that the image
intensity lies between 0 and 1 (with negative intensity pixels
set to 0). This rescaling was found to greatly ease training
and although it does remove some normalisation information
from the network the amplitude information is added to the
network as part of the parameteric input layer (Fig. 3).

Once this preprocessing is complete the data are passed
to the convolutional neural network pictured in Fig. 2. This
network takes the interpolated images as input, passing them
through two steps of convolution and max pooling and then
flattening the resulting feature map into one dimension. This
flattened information was then passed through a densely con-
nected neural network. To avoid significant over-training of

the network, dropout layers were added to this Sect. [26].
During the training of the network these layers randomly
remove a fraction of the network connection (in this case
50%) to ensure no individual connections can dominate
the network. This convolutional section was purposefully
designed to be rather simple (in comparison with cutting-
edge image classification algorithms) to try to avoid the situ-
ation where classification power is dependent on subtle image
features present only in simulated data. In this case we sacri-
fice some potential performance for stability. In general this
convolutional section is rather similar to that presented in
[18], however more information is then added to the network.

The result of this convolutional section is then concate-
nated with the densely connected layer of the parametric
network described earlier and fed into a recurrent layer and
ultimately to the output layer. In principle concatenating the
results of the network in this fashion is not required to per-
form image classification, however, it is useful in this case
for two main reasons. Firstly, it allows us to assess the rejec-
tion power of the information added to the network by the
image data over the parametric. Secondly, and most crucially,
it provides information to the network which cannot be eas-
ily extracted from the camera images, such as the distance
of the telescopes from the shower core. Given a sufficiently
large training data set such information could be included in
the network implicitly, by learning the locations of the tele-
scopes in addition to how to perform event reconstruction.
However, this would significantly increase training time and
could potentially introduce systematic effects to the results.

3 Network training

The three networks were trained using simulated data gener-
ated from the CORSIKA Monte-Carlo air shower simulation
code [27] and the sim_telarray telescope and camera sim-
ulation [28]. This simulation chain has been proven within
the H.E.S.S. and CTA collaborations to provide an accurate
representation of the telescope data. To train the network, a
sample of simulated gamma rays and protons was created
which simulates the performance on the phase 1 H.E.S.S.
array (4 × 12 m telescopes) at 70% of their design optical
efficiency. Gamma-ray and proton events were simulated in
a diffuse cone of opening angle 2.5◦ with an energy spectrum
of E−1.5 and an energy range covering from below 100 GeV
to over 100 TeV (dependent of the simulated species).

The simulated events were then passed through the
H.E.S.S. Analysis Program (HAP) and the standard event
selection cuts applied, requiring at least two camera images
in an event over 60 photoelectrons and with an image cen-
troid less than 2◦ from the camera centre [19]. The remaining
events were then reconstructed using the standard H.E.S.S.
Hillas parameter based shower reconstruction and events
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Fig. 3 Example images of gamma-ray and proton events both before
(upper panels) and after (lower panels) the image pre-processing step
described. Hillas parameter ellipses are overlaid on top of the camera

images. Note, in the network input an additional random rotation is
added to the processed images but this is omitted here for clarity

reconstructed as lying within the central 1◦ from the cam-
era centre passed to the neural network (to ensure the train-
ing sample is not dominated by highly truncated large offset
events). This event selection resulted in a total of around
100,000 gamma-ray and proton events. These events were
then split into four energy bins (0.1–0.4, 0.4–1, 1–5 and

5–100 TeV), with energy ranges chosen as a compromise
between keeping a small range to ensure similar events are
compared and having sufficient event statistics to perform
the training.

The network was then trained in these 4 energy bins using
80% of the events as the training sample and the remaining

123



363 Page 6 of 11 Eur. Phys. J. C (2020) 80 :363

Fig. 4 Distribution of the CRNN classifier for a sample of gamma-
ray and proton events. Events are re-weighted to represent an energy
spectrum of E−2 for both signal and background

20% as an independent validation sample used to modify the
network learning rate during training. A single loss function
was introduced by computing the cross entropy of the two
event categories after passing through each network type. A
maximum of 100 training iterations was allowed, however
an early stopping criterion was implemented to terminate the
training in the case that the loss function (evaluated on the
validation sample) shows no improvement. Typically the net-
work training was terminated after 40–50 iterations. Training
was performed using an Nvidia P100 GPU and the CRNN

training took from 0.5 to a few hours to complete, dependent
on the energy bin and the number of iterations completed.

4 Monte Carlo performance

Once training was complete the performance of the network
was tested using an independent set of Monte-Carlo data rep-
resenting the four H.E.S.S. phase one telescopes at 70% of
their nominal optical efficiency and a zenith angle of 20◦. In
order to represent the typical data taking mode of H.E.S.S.,
gamma-ray events were simulated as a point source with an
offset from the telescope pointing direction of 0.5◦, while
protons were simulated as a diffuse source with an open-
ing angle of 2.5◦, however only events reconstructed in the
central 1◦ were included in performance evaluations.

The output of the neural network when evaluated on this
dataset is a classification value between 0 and 1, roughly
representing the probability that the event is a gamma ray
(Pγ ). However, as most gamma-ray events lie so close to 1
this classifier was reformulated to make the distribution more
easily visible.

ζ = − log10(1 − Pγ ) (2)

The resultant classifier distribution of ζ is shown in Fig. 4
and is strongly peaked at 0 for the tested protons and lies
between 0 and 10 for gamma-ray events. However, it is typ-
ically useful when cutting on this parameter to select events
based on an energy-dependent (as the classifier distribution is
typically strongly energy-dependent) gamma-ray efficiency.

Fig. 5 Left: Comparison of background rejection performance (as a
ratio to mean scaled network performance) vs energy-dependent sig-
nal cut for the two recurrent networks. Right: Energy dependence of
background rejection performance (as a ratio to mean scaled network

performance) for the two recurrent networks at 80% (solid line) and
60% signal efficiency. Events are re-weighted to represent an energy
spectrum of E−2 for both signal and background
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4.1 Background rejection performance

Figure 5 (left) shows the performance of the recurrent net-
works in comparison with the traditional mean scaled param-
eter based network at different gamma-ray efficiency cut lev-
els. The performance improvement of the recurrent networks
is clear, with improvements seen at all levels of signal effi-
ciency. The Hillas RNN shows around a 20% reduction in
background in comparison to the mean scaled network, while
the CRNN shows almost a 60% improvement in rejection
power.

Figure 5 (right) shows the energy dependent comparison
of background rate to mean scaled network at performance
at 80% and 60% gamma-ray efficiency. In the lower energy
bins (< 5 TeV) a clear improvement is seen in the per-
formance of the recurrent networks over the mean scaled
network. A ∼ 20−25% reduction is seen in the proton rate
in the Hillas RNN at both 80% and 60% signal efficiency
. Such an improvement at low energies could be expected
due to the relatively large fluctuations in the Cherenkov light
distribution in this energy range, potentially resulting in sig-
nificantly different images being seen in the different tele-
scopes. In this case taking the mean of the shower parameters
will result in a loss of information and performance, whereas
the recurrent network can use the full information from all
telescopes.

The CRNN shows an even larger improvement in the low-
est energy bins, showing a reduction in proton rate of more
than 60% at both 80% and 60% signal efficiency. At low
energies the convolutional layers are able to provide addi-
tional image information to the background rejection, most
likely using shower information from pixels that were elim-
inated from the Hillas parameter construction by the image
cleaning.

Above 5 TeV, the Hillas RNN performance matches
closely the mean scaled network at both signal efficiencies,
as the more well defined air showers in this energy range
reduce the observed differences in the different telescopes.
The larger images available in this energy range, however,
provide significant information to the CRNN maintaining
the 60% improvement in background rejection seen at lower
energies.

4.2 Sensitivity to NSB level

The performance of the neural networks presented so far
were evaluated at the nominal, per pixel, night-sky back-
ground (NSB) of 100 MHz used within H.E.S.S. simulations.
However, this simulated value is a compromise between that
observed level in extragalactic regions of as low as 50 MHz
and that seen in the Galactic plane, which can reach to
300 MHz or above in some bright regions (e.g. the Carinae
region). In order to test the robustness of the networks against

Fig. 6 Degradation in signal (gamma-ray) efficiency for the three
tested networks as a function of NSB level

differing levels of noise we created gamma-ray simulations at
5 different NSB levels (100–300 MHz) and tested the fraction
of events passing a background rejection cut defined using
the 100 MHz simulations.

Figure 6 shows the acceptance of gamma-ray events at the
different NSB levels, when defining the background rejection
cut level at 80% gamma-ray acceptance based on the simula-
tions at 100 MHz NSB. It is clear from these results that the
Hillas-based networks are rather robust, falling in acceptance
by only around 10% from 100 to 300 MHz. The robustness
of the Hillas parameters can be understood from the two tail
cut cleaning levels (typically 5 and 10 p.e.) applied to the
image being significantly higher than the expected pixel to
pixel fluctuations resulting from NSB noise (around 1 p.e.
at 100 MHz in H.E.S.S.), resulting in the noise level in the
included pixels being low. The CRNN however is strongly
affected by the NSB, with a 50% reduction in gamma-ray
event acceptance from 100 to 300 MHz. This reduction in
acceptance is due to increased noise in the convolutional por-
tion of the network, with the larger noise level introducing
larger fluctuations in the image as well as potentially larger
NSB fluctuations being mistaken for hadronic sub-showers in
the uncleaned image section. Therefore increasing the noise
level in the non-signal distribution clearly affects the CRNN
classifier distribution, producing lower ζ values for equiva-
lent events.

This strong sensitivity to NSB is clearly a concern when
evaluating the performance of the CRNN on data and it must
be ensured that the results are compared with simulations of
an appropriate NSB when extracting results.
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5 Performance on H.E.S.S. data

Tests on an independent Monte Carlo have shown a signif-
icant increase in performance of both recurrent neural net-
works over the mean scaled network. However, these simu-
lations are based on an idealised representation of the instru-
ment behaviour. In reality camera images may contain a num-
ber of issues that affect the quality of the data, for example
some camera pixel may be broken or the level of NSB may
vary across the field of view. The network was therefore tested
on H.E.S.S. phase one data. The outcome of this analysis was
then used to test the stability of the results and check the per-
formance in comparisons to the predictions of Monte Carlo
simulations.

In order to ensure the different classifiers are compared in a
fair way, energy dependent cut sets were created for the three
classifiers that maintain a fixed efficiency of gamma rays
passing cuts. In this case values of 80% and 60% gamma-ray
efficiency were chosen as typical values for soft and hard cuts
respectively. Table 1 shows the statistics for the cuts tested
using the three different neural network configurations.

5.1 PKS 2155-304

The first source tested was the well known BL Lac object
PKS 2155-304 observed throughout the operation of the
H.E.S.S. instrument (e.g. [29,30]). A sample of around 15
h of observation with zenith angle of close to 20◦ and optical
efficiency similar to that in the MC simulations was selected
from the non-flaring periods of PKS 2155-304. This dataset
contains a similar number of more than 1300 excess events
and takes place over a relatively diverse set of observing con-
ditions. Figure 7 (left) shows the resultant significance map
(created using the gammapy software package [31]) of this
region, clearly showing a strong source at a position consis-
tent with the catalogue position of PKS 2155-304. Figure 7
(right) shows the distribution of significance from non-source
pixels, which is well fit by a Gaussian with a mean of 0.14
and a width of 1.07, quite consistent with the expectation for

well normalised background in signal free regions (mean of
0, width of 1).

Table 1 shows the detection statistics for the dataset using
the reflected background [32] to estimate the residual back-
ground contamination in the source region. For all network
configurations tested a similar number of excess gamma-
ray events are detected due to the cut being made on the
expected gamma-ray efficiency. As expected the RNN-based
networks show a reduction in the estimated level of back-
ground contamination. However as in this case as there is
some small variation in the number of excess events it is
fairer to make comparisons of the signal to background ratio
(S/B) i.e. the number of excess events divided by estimated
background contamination. In both the 60% and 80% cut set
the Hillas-RNN shows an improvement in S/B of around 5–
10%, while the CRNN shows an improvement of around 20%
over the mean scaled network. This improvement in back-
ground rejection does not translate into large increases in
source significance due to the extremely bright source being
investigated.

Figure 8 (left) shows the distribution of the CRNN classi-
fication parameter obtained from this dataset in comparison
with the results of MC simulations (at 100 MHz NSB rate)
re-weighted to a spectral index of −3.4. In this case the data
distribution provides an excellent match to the Monte Carlo
expectation, demonstrating a stable behaviour of the classi-
fier on strong, steep spectrum sources.

5.2 HESS J1745-290

The second case studied was the Galactic Centre point source
HESS J1745-290 [33] commonly associated with the super-
massive black hole Sagittarius A*. In this case a selection of
data was made from 2004 to 2008 datasets, resulting in a total
of around 30 hours of observations. This field of view rep-
resents a rather different analysis to PKS 2155-304. Firstly
the spectrum of this source is comparatively hard, with a
spectral index of -2.1 and a cut-off at around 14 TeV. In addi-
tion to this the level of NSB in this region is significantly

Table 1 Detection statistics for the two run lists tested with background cuts tuned to retain 80% and 60% of the gamma-ray events at energies
between 100 GeV and 100 TeV

80% Gamma-ray efficiency 60% Gamma-ray efficiency

Network NON αNOFF Excess S/B σ NON αNOFF Excess S/B σ

MSC NN 2602 560.4 2041.6 3.64 57.7 1841 288.7 1552.3 5.38 55.7

PKS 2155-304 Hillas RNN 2590 529.4 2060.6 3.89 59.1 1825 268.7 1556.3 5.79 56.7

(quiescent) CRNN 2634 477.1 2156.9 4.52 62.8 1904 248.5 1655.5 6.66 60.4

MSC NN 3071 1553.4 1517.6 0.98 31.5 2068 844.2 1223.8 1.45 32.8

HESS J1745-290 Hillas RNN 2813 1327.1 1485.9 1.12 32.9 1906 716.5 1189.5 1.66 33.9

CRNN 2968 1320.2 1647.8 1.25 36.0 2030 693.0 1337.0 1.93 37.8
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Fig. 7 Left: Significance map of the PKS 2155-304 region created
using an oversampling radius of 0.12◦ at 80% gamma-ray efficiency,
the position of the source is marked with the dotted circle. Right: 1D

distribution of significance from signal-free pixels (solid histogram),
shown in comparison with the best-fit Gaussian

HESS J1745-290PKS 2155-304

Fig. 8 Comparison of the CRNN classifier distribution with three
energy thresholds obtained in the analysis of PKS 2155-304 (left) and
HESS J1745-290 (right), data is compared with Monte Carlo simu-

lations re-weighted to match the source spectrum index with 100 and
200 MHz NSB level respectively, and scaled to number of excess events
in each energy bin

higher at around 200 MHz in comparison with the approxi-
mately 60 MHz in the PKS 2155-304 observations. For this
dataset an improvement in S/B of around 15% is seen for the
Hillas-RNN over the mean scaled NN and around 25% in the
CRNN.

The CRNN classifier distribution shown in Fig. 8 (right)
again shows an excellent match to the MC simulations (with

an NSB level of 200 MHz) re-weighted to the source spec-
trum. Again this demonstrated the stable behaviour of the
network even with diverse observation conditions and higher
NSB levels, although clearly care must be taken to choose
the correct NSB level in the simulations.
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6 Discussion

In this paper we have demonstrated the potential sensitiv-
ity gains available to imaging atmospheric Cherenkov tele-
scopes by using the latest generation of machine-learning
tools for background rejection and for the first time demon-
strated a successful application of this scheme to data from
the H.E.S.S. gamma-ray observatory. Applications of the
convolutional-recurrent neural network to Monte Carlo air
shower simulations and real data show an improvement in
background rejection power of around 20–25% over the use
of mean-scaled parameters typically used in previous back-
ground rejection implementations.

Although this does not match the even stronger perfor-
mance gains predicted from simulated events (20% and 60%
for the Hillas RNN and CRNN respectively) this mismatch
could be caused by several factors. First the presence of
cosmic-ray electrons which are present in the data (e.g. [34])
is not accounted for in the simulation predictions. These
electron-induced air showers develop almost identically to
gamma-ray induced air showers and are often considered
to represent an irreducible background in IACT data which
becomes more and more important as the hadron rejection
power improves.

Secondly the network training is performed using simu-
lated protons as the background events, however significant
systematic uncertainties exist in the modelling of hadronic
interactions in this energy range [35]. This behavioural uncer-
tainty could result in a reduced performance when applying
the trained networks to data due to incorrectly reproducing
features within the air shower. However, due to the “black
box” nature of the network behaviour it is difficult to iden-
tify any features that do not match between data and simula-
tions. In principle this issue could be negated by using data
from gamma-ray source free regions as the background train-
ing sample. However, to do this one must address the issues
associated with the network efficiently learning the differ-
ence between simulated events and real data (discussed in
detail in [18]).

This improvement is in line with the performance of that of
goodness of fit cuts from image template based event recon-
struction (e.g. [9]). The reproduction of the sensitivity of
goodness of fit based cuts is to be expected in the case of
gamma-rays where the air showers behave in relatively pre-
dictable way and the images seen in the individual telescopes
are strongly correlated. It is important to take note of the sen-
sitivity of the network performance to different observing
conditions and that care must be taken to ensure that particu-
larly the NSB level of the simulations matches that of the data
to which it is being compared. This strong sensitivity to NSB
level could potentially be lowered by careful preprocessing
and denoising of the image, however it is possible that a run-
wise-simulation scheme (e.g. [36]) may be required to ensure

the lowest possible systematic uncertainties if such a scheme
is deployed.

7 Conclusion

Although no significant performance gains are seen in back-
ground rejection power over the current state of the art good-
ness of fit based background rejection, use of this machine
learning scheme does add some benefits. Firstly, the sys-
tematic uncertainties of this method, while likely as large,
are different from the goodness of fit based approach. Thus
allowing evaluation of the systematic uncertainties of analy-
sis at the limits of the instrumental threshold. Secondly, the
goodness of fit based approach relies on comparing shower
images to a mean expected image template, limiting it is
usefulness in the classification of particle species which pro-
duce large shower-to-shower fluctuations (such as protons or
heavier nuclei). However, the training step of the RNNs nat-
urally includes these fluctuations, meaning the RNNs may
also be extremely useful in measuring the mass composition
of hadrons in IACT data.

This work represents an early step in the use of such
CRNNs for the rejection of hadronic background in IACTs.
However, in order for such a system to be deployed for reg-
ular use in this generation of IACTs (or the next) significant
further study is required. Particularly the network must be
generalised for use with a much wider range of observing
conditions. This work shows that the level of NSB of the
observations is particularly important and some method of
accounting for this must be found, but also one must con-
sider the zenith angle, azimuth angle and also the optical
efficiency of the telescopes observing to ensure a stable clas-
sifier performance.
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