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Abstract Based on a holographic model incorporating both
the chiral anomaly and the gravitational anomaly, we study
the effect of magneto-vortical coupling on the transport prop-
erties of a strongly coupled plasma. The focus of present
work is on the generation of a vector charge density and
an axial current, as response to vorticity in a magnetized
plasma. The transport coefficients parameterizing the vector
charge density and axial current are calculated both analyti-
cally (in the weak magnetic field limit) and also numerically
(for general values of the magnetic field). We find the gen-
eration of vector charge receives both non-anomalous and
anomalous contributions, with the non-anomalous contribu-
tion dominating in the limit of a strong magnetic field and
the anomalous contribution sensitive to both chiral anomaly
and gravitational anomaly. On the contrary, we find the axial
current is induced entirely due to the gravitational anomaly,
thus we interpret the axial current generation as chiral vorti-
cal effect. The corresponding chiral vortical conductivity is
found to be suppressed by the magnetic field. By the Onsager
relation, these transport coefficients are responsible for the
generation of a thermal current due to a transverse electric
field or a transverse axial magnetic field, which we call the
thermal Hall effect and the thermal axial magnetic effect,
respectively.

1 Introduction

The effect of magnetic field and vorticity on QCD matter
has attracted much attention over the past few years. At very
high temperature, when quarks become asymptotically free,
a charged-neutral QCD matter can be either magnetized in the
magnetic field or polarized in the vorticity field. Close to the
chiral phase transition, when the interaction among quarks
becomes strong, more interesting phenomena such as inverse
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magnetic catalysis [1–4] and vector meson condensation [5,
6] can emerge. Similarly, the vorticity field may suppress the
chiral condensation [7,8].

When the QCD matter carries net vector charge or
axial charge densities, the chiral anomaly and gravitational
anomaly can induce a variety of anomalous transport phe-
nomena such as the chiral magnetic effect (CME) [9–11],
the chiral vortical effect (CVE) [12–14] and the chiral sepa-
ration effect (CSE) [15,16].

Recently, the interplay of a strong magnetic field and a
vorticity was found to lead to new transport phenomena such
as dynamical generation of a vector charge [17]; see also [18–
21]. Under the lowest Landau level (LLL) approximation,
Hattori and Yin found the generation of a vector charge from
spin–vorticity coupling as [17]1

J t = q f
CA

2
( �B · ��), (1)

with CA = 1
2π2 the chiral anomaly coefficient. In fact, such

a contribution should be viewed as a large B, free limit of
a QED plasma. More generally, one would expect from the
viewpoint of polarizable matter [22] that

J t = ξ(B, T )( �B · ��). (2)

Moreover, if we could associate an effective chemical poten-
tial for the generated vector charge, this can further give rise
to the generation of an axial current by the chiral anomaly
and gravitational anomaly. Note that the vector charge sus-
ceptibility is χ = CA|q f |B in the LLL approximation,
and thus (1) corresponds to the effective chemical poten-

tial μeff = sgn(q f )

2
�� · B̂ with B̂ = �B/|B|. The vector charge

imbalance would result in an axial current through the chiral

1 See also [8] for possible contribution from orbital angular momentum
and vorticity coupling.
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separation effect [15,16]

�J5 = |q f |CA

2
( �B · ��)B̂. (3)

Again, this is a large B, free limit of a QED plasma. More
generally, one would expect an extra contribution from the
gravitational anomaly, which always induces a temperature-
dependent contribution to the axial current, even in the
absence of the chiral imbalance [14,23,24]. Therefore, we
expect the more general axial current

�J5 = σ(B, T ) ��. (4)

It is worth noting that the physical picture behind (1) and
(3) is the spectral flow: a shift in the background vector
gauge field leads to an opposite energy shift for right- and
left-handed fermions, generating a net axial charge. In order
for the spectral flow picture to generate vector charge, we
would need an axial gauge field, whose couplings to right-
and left-handed fermions differ in sign, thus leading to the
same energy shift for them. In the analysis of Hattori and
Yin [17], the role of the axial gauge field is played by the
vorticity. Indeed, in free theory, we have �S = �J5 so that we
can identify �A5 with �� by comparing the coupling �� · �S
with �J5 · �A5. However, in an interacting theory, the “equiv-
alence” of �A5 with �� is far from obvious. First of all, even
in a free theory the presence of an axial gauge field as a
source poses an ambiguity in the definition of currents: con-
sistent current and covariant current could differ by terms
proportional to the axial gauge field [25]. A similar ambigu-
ity does not exist in the case with the vorticity as a source.
Secondly, in an interacting theory, the vorticity couples to
the angular momentum as a whole. The separation of the
spin from the total angular momentum is often ambiguous.
Therefore, it is desirable to go away from the free theory limit
to test the robustness of the mechanism. In this paper, we go
to the opposite limit, where the theory is strongly coupled.
Specifically, we will study the response of a strongly coupled
magnetized plasma to the vorticity field by a holographic
model.

The rest of the paper is organized as follows: In Sect. 2,
we present the setup of the holographic model. In Sect. 3, we
turn on a metric perturbation as a proxy for the vorticity in the
magnetized plasma. We will study the response of the vector
charge density and axial current to the vorticity. In Sect. 4, we
will present both analytic results in the small B regime and
numerical results for general B. In Sect. 5, we use the Onsager
relation to obtain the thermal Hall effect and the thermal axial
magnetic effect. We conclude and discuss implications of our
results in Sect. 6. Details of the computations are collected
in Appendices A, B and C.

2 Holographic setup: magnetic brane in AdS5

2.1 Gravity action and dictionary

We extend the holographic model initially considered in [26,
27] by including both vector and axial gauge fields. The full
action is

S = 1

2κ2

∫
d5x

√−g

{
R[g] + 12 − 1

4
(FV )2

−1

4
(Fa)2 + εMN PQR AM ×

[
1

3
α(Fa)N P (Fa)QR

+α(FV )N P (FV )QR + λRY
XN P R

X
Y QR

]}

+ 1

κ2

∫
d4x

√−γ K [γ ] + SCSK + Sc.t.,

(5)

where FV = dV and Fa = d A. The last line of (5) cor-
responds to boundary terms defined on the hypersurface �

of constant r . The notation γ denotes the determinant of the
induced metric γμν on �:

ds2|� = gMNdxMdxN |� = γμνdxμdxν . (6)

We also need the out-pointing unit normal vector of the sur-
face �:

nM = ∂Mr√
gAB∂Ar∂Br

. (7)

Moreover, K = γ μνKμν whereas Kμν is the extrinsic cur-
vature tensor

Kμν = 1

2
Lnγμν = 1

2

(
nM∂Mγμν

+γμN ∂νn
N + γνN ∂μn

N
)

. (8)

The Levi-Civita tensor is εMN PQR = ε(MNPQR)/
√−g

whereas ε(MNPQR) is the Levi–Civita symbol under the
convention ε(r t xyz) = +1. The purely gauge Chern–
Simons action (α-terms) mimics the chiral anomaly, while
the mixed gauge-gravitational Chern–Simons term (λ-term)
is to model the gravitational anomaly of the boundary field
theory.

As explained in [27], in order to get a correct form of the
gravitational anomaly (i.e. guarantee the gauge variation of
the bulk action to be a total derivative), one needs to add the
term

SCSK = − 4

κ2 λ

∫
d4x

√−γ nMεMN PQR AN KPL ∇̃QK
L
R ,

(9)

where ∇̃ is compatible with the induced metric γAB . The
counter-term action is

Sc.t. = − 1

2κ2

∫
d4x

√−γ

(
6 + 1

2
R[γ ] − Ct

)
, (10)
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where Ct cancels the logarithmic divergences [28,29]

Ct = 1

4
log r

[(
FV

)
μν

(
FV

)μν + (
Fa)

μν

(
Fa)μν

]

+ log
1

r2

(
1

8
Rμν[γ ]Rμν[γ ] − 1

24
R2[γ ]

)
.

(11)

Note that Ct non-vanishes only when non-trivial sources
(either external gauge fields or non-flat boundary metric)
are turned on for the boundary theory. In addition, in Ct
we employ the minimal subtraction scheme so that it will
not generate finite contribution to the boundary currents and
stress tensor.

According to the holographic dictionary, the expectation
values of the stress tensor and currents of the boundary theory
are defined as

Tμν ≡ lim
r→∞

−2r2

√−γ

δS

δγ μν
, Jμ ≡ lim

r→∞
δS

δVμ

,

Jμ
5 ≡ lim

r→∞
δS

δAμ

. (12)

Explicitly, the vector current is (from now on, we set 2κ2 = 1
for convenience)

Jμ = lim
r→∞

√−γ

{
nM

(
FV

)μM + 4αnMεMμNQR AN

(
FV

)
QR

− ∇̃ν

(
FV

)νμ

log r

}
. (13)

However, the axial current and stress tensor are somewhat
subtle and complicated:

Jμ
5 = lim

r→∞
√−γ

{
nM

(
Fa)μM + 4

3
αnMεMμNQR AN

(
Fa)

QR − ∇̃ν

(
Fa)νμ log r + Jμ

CSK

}
, (14)

Tμν = −2 lim
r→∞ r2 (

Kμν − Kγμν + 3γμν

−1

2
Gμν[γ ] − TGra

μν

)
+ T C

μν, (15)

where T C
μν arises from the functional derivative of Ct , Jμ

CSK
is due to the added action SCSK, and TGra

μν comes from the
gravitational Chern–Simons term. The expressions for all of
them are [27,30]

Jμ
CSK = −8λnMεMμPQRKPL ∇̃QK

L
R ,

T C
μν = T C1

μν + lim
r→∞

1

4
r6 log r

[
γμν(F

V )αβ(FV )αβ

−4(FV )μα(FV ) α
ν

]
+ (V → a),

Tμν
Gra = 4λε(μαβρ

[
1

2
(Fa)αβ R

ν)
ρ [γ ] + ∇̃δ

(
AαR

δν)
βρ[γ ]

)]
,

(16)

where T C1
μν vanishes for a flat boundary. Tμν

Gra was first derived
in [30] based on the ADM decomposition approach. Above,
we stick to the consistent current formalism. Indeed, in the
absence of a background for the axial gauge field, there will
be no difference between the consistent current and covariant
current [25]. The authors of [26] presented a thorough anal-
ysis for the holographic renormalization of the model, but
did not get the term SCSK. Additionally, the authors of [26]
addressed the fact that the gravitational Chern–Simons term
will make a contribution to the boundary stress tensor. See
also [30,31] for more recently updated formulas for stress
tensor and axial current of the boundary theory. The holo-
graphic model does correctly describe the chiral/gravitational
anomalies for the boundary field theory [27]:

∇̂μ J
μ = 0, ∇̂μ J

μ
5 = 8αε̂αβρδ F̂αβ F̂ρδ

+ λε̂αβρδ R̂τ
καβ R̂

κ
τρδ, (17)

where a hat means that the corresponding quantity is defined
on the boundary.

Under the variation

gMN → gMN + δgMN , VM → VM + δVM ,

AM → AM + δAM , (18)

one obtains the Einstein equation

0 = EMN ≡ RMN − 1

2
RgMN − 6gMN − T bulk

MN , (19)

and anomalous Maxwell equations

0 = EV M ≡ ∇N

(
FV

)NM

+2αεMN PQR (
Fa)

N P

(
FV

)
QR

, (20)

0 = E AM ≡ ∇N
(
Fa)NM

+αεMN PQR
[(

FV
)
N P

(
FV

)
QR

+ (
Fa)

N P

(
Fa)

QR

]

+λεMN PQR RY
XN P R

X
Y QR . (21)

The bulk stress tensor T bulk
MN could be split into two parts,

T bulk
MN = TMaxwell

MN − ∇X�X
MN , (22)

where

TMaxwell
MN = 1

2

(
FV

)
RM

(
FV

)R

N
− 1

8
gMN

(
FV

)2

+1

2

(
Fa)

RM

(
Fa)R

N − 1

8
gMN

(
Fa)2 (23)

�X
MN = λεQRSTU

(
gQM RX

N RS+gQN RX
MRS

) (
Fa)

TU .

(24)

Alternatively, the Einstein equation could be rewritten as

0 = EMN = RMN + 4gMN − T̃ bulk
MN (25)
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where

T̃ bulk
MN = 1

2
(FV )RM (FV )RN − 1

12
gMN (FV )2

+ 1

2
(Fa)RM (Fa)RN − 1

12
gMN (Fa)2

− ∇X�X
MN + 1

3
gMN g

AB∇X�X
AB . (26)

2.2 Neutral magnetic brane background

To proceed, we consider the background solution of the holo-
graphic model (5). For simplicity, we focus on a neutral mag-
netized plasma. To this end, we turn on a constant magnetic
field along the z-direction,

V = Bxdy ⇒ �B = Bẑ, (27)

which obviously breaks the SO(3) rotational symmetry to
SO(2)⊥ on the xy-plane. As a result, the background metric
takes the form

ds2 = 2drdt − f (r)dt2 + e2WT (r)(dx2

+dy2) + e2WL (r)dz2. (28)

Note that in writing down (28), the ingoing Eddington–
Finkelstein coordinate has been employed in order to avoid
a coordinate singularity. The background metric (28) has an
event horizon at r = rh so that

f (r 
 rh) = 0 + f ′(rh)(r − rh) + · · · , (29)

while WT ,WL are regular at r = rh . The Hawking temper-
ature, identified as the temperature of the dual gauge theory,
is

T = ∂r ( f (r))

4π

∣∣∣∣
r=rh

. (30)

Generically, both WT (r) and WL(r) will depend on rh non-
trivially.

It is a simple exercise to check that, given the above ansatz
(27) and (28), both the gauge and the gravitational Chern–
Simons terms do not affect the bulk equations of motion.
Therefore, the background geometry is simply the “magnetic
brane” solution initially studied in [32].

The ordinary differential equations (ODEs) for the metric
functions in (28) are

Err = 0 : 0 = W ′ 2
L + 2W ′ 2

T + W ′′
L + 2W ′′

T , (31)

Ert = 0 = Ett : 24 + B2e−4WT (r)

= 3 f ′(W ′
L + 2W ′

T ) + 3 f ′′, (32)

Exx = 0 = Eyy : 12 − B2e−4WT (r)

= 3 f ′W ′
T + 3 f (W ′

LW
′
T + 2W ′ 2

T + W ′′
T ), (33)

Ezz = 0 : 24 + B2e−4WT (r)

= 6 f ′W ′
L + 6 f (W ′ 2

L + 2W ′
LW

′
T + W ′′

L ), (34)

where the prime denotes a derivative with respect to r . Equa-
tions (33) and (34) look different from those of [32]. How-
ever, suitable combinations of the above equations give rise
to the results of [32]:

2 × (33) − (34) ⇒ 2 f (W ′′
T − W ′′

L ) + 2
[
f ′ + f (W ′

L + 2W ′
T )

]
(W ′

T − W ′
L ) = −B2e−4WT (r),

4 × (33) + (34) ⇒ 2 f ′(2W ′
T + W ′

L ) + 4 f W ′
T (W ′

T + 2W ′
L )

= 24 − B2e−4WT (r). (35)

Obviously, not all the equations in (31)–(34) are independent:
we will take (31) as the constraint and solve the remaining
ones to determine the metric functions f (r),WT (r),WL(r).

In order to fully determine f (r),WT (r),WL(r), we have
to impose two boundary conditions for each of them. For
f (r), we impose

f (r = rh) = 0; f (r → ∞) → r2. (36)

However, it is found that the second boundary condition
(underlined above) is automatically satisfied by the bulk
EOMs. This requires one to impose another condition for
f (r), which is explained in Appendix 1. For WT (r) and
WL(r), the boundary conditions are

WT (r), WL(r) → log r, as r → ∞, (37)

12 − B2e−4WT (r) = 3 f ′W ′
T , at r = rh, (38)

24 + B2e−4WT (r) = 6 f ′W ′
L , at r = rh, (39)

where the last two equations are read off from (33) and (34) by
requiring regularity of WT (r),WL(r) at the horizon r = rh .

We solve the bulk EOMs (31)–(34) analytically when the
magnetic field is weak (i.e., B/T 2 � 1) and numerically
when B is general. The calculational details as well as the
main results are deferred to Appendix A.

3 Fluctuation in the bulk theory: general consideration

3.1 Bulk perturbations

In this section, we study the linear response of the mag-
netized plasma to a fluid vorticity. A weak fluid vorticity
�� would be mimicked by a gravito-magnetic field [27,31].
More precisely, one perturbs the boundary Minkowski space-
time (where the fluid flows) as

123
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ds2
M =−dt2+d�x2+2hti (t, �x)dtdxi ,

with hti (t, �x)=ui (t, �x). (40)

Then the vorticity is generated at linear order in hti as

�i = 1

2
εi jk∇ j uk = 1

2
εi jk∂ j htk, (41)

with the unperturbed fluid velocity uμ = (1, 0, 0, 0). Thus,
the curl of hti could be thought of as a fluid vorticity. We take

hti (�x) = eiqxhty(q)δyi , (42)

which gives rise to a stationary vorticity along the z-direction,
i.e. parallel to the magnetic field. Then we can obtain the
Kubo formulas for the transport coefficients defined in (2)
and (4) as

ξ = 2

B
lim
q→0

〈J t T ty〉
iq

, σ = 2 lim
q→0

〈J z5 T ty〉
iq

. (43)

These will be used in holographic calculations.
To turn on a gravito-magnetic field in the bulk, it is conve-

nient to use the Poincaré coordinate system so that the bulk
metric takes a diagonal form,

ds2 =− f (r)dt2+ dr2

f (r)
+e2WT (r)

×
(

dx2+dy2
)
+e2WL (r)dz2,

(44)

where we still denote the time of the bulk theory by t . On
top of the background (44) and (27), it is consistent to turn
on the following fluctuation modes:

δ(ds2) = 2eWT (r) [
δgty(r, t, x)dtdy + δgxy(r, t, x)dxdy

]
,

δV = δVt (r, t, x)dt + δVx (r, t, x)dx,

δA = δAz(r, t, x)dz, (45)

while setting all the rest corrections to zero. Here, we have
assumed (t, x)-dependent fluctuations for a reason to be dis-
cussed in the next subsection and we consider a plane wave
ansatz:

δgty(r, t, x) ∼ e−iωt+iqxδgty(r),

δgxy(r, t, x) ∼ e−iωt+iqxδgxy(r),

δVt (r, t, x) ∼ e−iωt+iqxδVt (r),

δVx (r, t, x) ∼ e−iωt+iqxδVx (r),

δAz(r, t, x) ∼ e−iωt+iqxδAz(r). (46)

In what follows we record the bulk equations of motion for
the fluctuation modes. First, we consider the constraint equa-
tions. The constraint Ery = 0 is

0 = λωqe−WL δAz

(
−2B2e−4WT

f
+ 2 f ′W ′

L

f

+4 f ′W ′
T

f
− 4W ′

LW
′
T − 8W ′2

T

)

+ 1

2
iq∂rδgxy + iωe2WT

2 f
∂rδgty + 1

2
Be−2WT ∂rδVx .

(47)

The constraint EV r = 0 gives

0 = 8ωαBδAz + qeWL f ∂rδVx + ωeWL+2WT ∂rδVt . (48)

Next, we turn to the dynamical components of the bulk
EOMs. The Einstein equation Ety = 0 reads

0 = ∂r

(
eWL+4WT ∂rδgty

)
− B2eWL

f (r)
δgty − q2eWL+2WT

f (r)
δgty

− ωqeWL+2WT

f
δgxy + iωBeWL

f
δVx

+ iq BeWL

f (r)
δVt + iqλe2WT ∂rδAz

×
(

4B2e−4WT − 4 f ′W ′
L − 8 f ′W ′

T

+8 f W ′
T W

′
L + 16 f W ′2

T

)
+ iqλe2WT δAz

×
(

2B2e−4WT f −1 f ′ − 48 f −1 f ′ − 4B2e−4WT W ′
L

+4 f −1 f ′2W ′
L + 8 f ′W ′2

L − 20B2e−4WT W ′
T

+96W ′
T + 8 f −1 f ′2W ′

T + 16 f ′W ′
T W

′
L

−16 f W ′
T W

′2
L − 48 f W ′

LW
′2
T − 32 f W ′3

T

)
. (49)

The Einstein equation Exy = 0 is

0 = ∂r

(
eWL+2WT f ∂rδgxy

)
+ ω2eWL+2WT

f
δgxy

+ ωqeWL+2WT

f
δgty . (50)

The Maxwell equation EV t = 0 is

0 = ∂r

(
eWL+2WT ∂rδVt

)
+ 8αB∂rδAz − ωqeWL

f
δVx

− q2eWL

f
δVt − iq BeWL

f
δgty . (51)
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The Maxwell equation EV x = 0 is

0 = ∂r

(
eWL f ∂rδVx

)
+ ω2eWL

f
δVx

+ ωqeWL

f
δVt + iωBeWL

f
δgty . (52)

Finally, E Az = 0 yields

0 = ∂r

(
e2WT −WL f ∂rδAz

)
+ ω2e2WT −WL

f
δAz

− q2e−WL δAz + iqλe2WT
(
−4B2e−4WT + 4 f ′W ′

L

+8 f ′W ′
T − 8 f W ′

T W
′
L − 16 f W ′2

T

)
∂rδgty + 8αB∂rδVt .

(53)

3.2 Adiabatic limit and boundary conditions

From the Kubo formulas (43), it seems as if we could set
ω = 0 from the beginning. However, the boundary condition
at the horizon cannot be uniquely determined in this case.
This ambiguity is related to the ambiguity in the Kubo for-
mula itself. It can be evaluated in any equilibrium state, be
it charged or neutral. For our purpose, it should be evalu-
ated in the unperturbed neutral plasma state. The boundary
condition to use should correspond to the neutral state. In
practice, we specify the state as follows: the state is realized
by turning on the vorticity field adiabatically to the original
neutral magnetized plasma.

We will seek solutions to (47) through (53) in the adiabatic
limit ω → 0. To this end, we expand the bulk perturbations
in powers of ω:

X = X (0) + ωX (1) + · · · , (54)

with X = δgxy, δVx , δgty, δVt and δAz . In fact,
we only need the leading order solution X (0), for which
we suppress the superscript (0). The fields decouple into
two sets {δgxy, δVx } and {δgty, δVt , δAz}. The set
{δgty, δVt , δAz} satisfies the following equations:

∂r

(
eWL+4WT ∂rδgty

)
− B2eWL

f (r)
δgty − q2eWL+2WT

f (r)
δgty

+ iq BeWL

f (r)
δVt + iqλe2WT ∂rδAz

×
(

4B2e−4WT − 4 f ′W ′
L − 8 f ′W ′

T

+8 f W ′
T W

′
L + 16 f W ′2

T

)

+ iqλe2WT δAz

(
2B2e−4WT f −1 f ′ − 48 f −1 f ′

−4B2e−4WT W ′
L + 4 f −1 f ′2W ′

L

+8 f ′W ′2
L − 20B2e−4WT + 96W ′

T + 8 f −1 f ′2W ′
T

+16 f ′W ′
T W

′
LW

′
T − 16 f W ′

T W
′2
L

−48 f W ′
LW

′2
T − 32 f W ′3

T

)
= 0, (55)

∂r

(
eWL+2WT ∂rδVt

)
+ 8αB∂rδAz

− q2eWL

f
δVt − iq BeWL

f
δgty = 0, (56)

∂r

(
e2WT −WL f ∂rδAz

)
− q2e−WL δAz + iqλe2WT

(
−4B2e−4WT + 4 f ′W ′

L + 8 f ′W ′
T

−8 f W ′
T W

′
L − 16 f W ′2

T

)
∂rδgty + 8αB∂rδVt = 0. (57)

The boundary conditions on the horizon need to be derived
by matching with the horizon solutions in the limit ω → 0.
We elaborate on the derivation in Appendix B. The resultant
boundary conditions on the horizon are given by

δgty(r = rh) = 0, δVt (r = rh) = 0,

δAz(r = rh) = constant. (58)

The free parameters for the three fields can be chosen as
horizon derivatives of δgty , δVt and horizon value of δAz . The
three parameters on the horizon can be mapped to boundary
values of the three fields. We can further simplify Eqs. (55)–
(57) by considering the limit q → 0. Note that δgty has
an opposite parity to those of δVt and δAz , and δgty is the
only field sourced on the AdS boundary. Therefore, the AdS
boundary conditions are

δgty
r→∞−−−→ hty, others

r→∞−−−→ 0. (59)

We expect the scaling behaviors δgty ∼ O(q0), and
δVt , δAz ∼ O(q). Defining δVt = iqδṼt and δAz = iqδ Ãz ,
we can further simplify (55) through (57) by keeping the
leading terms in the q-expansion

∂r

(
eWL+4WT ∂rδgty

)
− B2eWL

f (r)
δgty = 0,

∂r

(
eWL+2WT ∂rδṼt

)
+ 8αB∂rδ Ãz − BeWL

f
δgty = 0,

∂r

(
e2WT −WL f ∂rδ Ãz

)
+ λe2WT

(
−4B2e−4WT + 4 f ′W ′

L

+8 f ′W ′
T −8 f W ′

T W
′
L−16 f W ′2

T

)
∂rδgty+8αB∂rδṼt = 0.

(60)

4 The correlators 〈J tT t y〉 and 〈J z
5 T

t y〉

In this section, we calculate the generation of J t and J z5 as lin-
ear responses to the external source hty . Note that hty couples
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to T ty in the boundary theory. We can express the responses
in terms of retarded correlators 〈J t T ty〉 and 〈J z5 T ty〉 as

J t (ω, q) = 〈J t (ω, q)T ty(−ω,−q)〉hty(ω, q),

J z5 (ω, q) = 〈J z5 (ω, q)T ty(−ω,−q)〉hty(ω, q), (61)

with the retarded correlators defined as

〈J t (ω, q)T ty(−ω,−q)〉

=
∫

dtd3x

(2π)4 (−i)e−iωt+i �q·�xθ(t)〈[J t (t, x), T ty(0)]〉,
〈J z5 (ω, q)T ty(−ω,−q)〉

=
∫

dtd3x

(2π)4 (−i)e−iωt+i �q·�xθ(t)〈[J z5 (t, x), T ty(0)]〉. (62)

Equation (61) relates the above retarded correlators in equi-
librium to the responses of J t and J z5 to hty , which are exactly
the quantities we will calculate. So, instead of directly com-
puting the retarded correlators (62), we will read off them
by computing the one-point functions of J t and J z5 (with the
only source hty turned on).

The bulk EOMs (60) will be solved under the boundary
conditions (58) and (59). This section will be further split
into two parts: an analytical study when the magnetic field is
weak versus a numerical study when the value of the mag-
netic field is generic. In these two complementary studies,
we will utilize the results of the background metric functions
summarized in Appendix A.

In the limit ω → 0 and q → 0, the vector charge density
and the axial current are (in terms of the bulk fields)

J t = lim
r→∞

{
eWL+2WT ∂rδVt − eWL

√
f (r)

(
B∂xδgty

)
log r

}
,

J z5 = lim
r→∞

{
− f (r)e2WT −WL ∂rδAz

}
. (63)

Near the AdS boundary, the bulk fluctuations behave as

δgty
r→∞−−−→ hty + B2hty

4r4 log
rh
r

+ tty
r4 + O(r−5),

δṼt
r→∞−−−→ Bhty

2r2 log
rh
r

+ v2
t

r2 + O(r−3 log r),

δ Ãz
r→∞−−−→ a2

z

r2 + O(r−3). (64)

So, the vector charge density and axial current for the bound-
ary theory are

J t = −2v2
t iq − Biqhty

(
log rh + 1

2

)
, J z5 = 2iqa2

z .

(65)

Below we solve for J t and J z5 perturbatively in B and also
numerically for generic B.

4.1 Weak magnetic field: a perturbative study

When the magnetic field B is weak, the bulk fluctuations are
expandable,

δgty = δg[0]
t y + ε2δg[2]

t y + · · · ,

δṼt = εδṼ [1]
t + ε3δṼ [3]

t + · · · ,

δ Ãz = δ Ã[0]
z + ε2δ Ã[2]

z + · · · , (66)

where ε ∼ B. At the lowest order O(ε0), first we have

0 = ∂r

(
r5∂rδg

[0]
t y

)
�⇒ δg[0]

t y =
(

1 − r4
h

r4

)
hty . (67)

Then we have

0 = ∂r

(
(r3 − r4

h/r)∂rδ Ã
[0]
z

)
+ 48λr4

h

r2 ∂rδg
[0]
t y , (68)

whose solution is

δ Ã[0]
z = 8λ

(
r4
h

r4 + 2 log
r2 + r2

h

r2

)
hty . (69)

At the first order O(ε1),

0 = ∂r

(
r3∂rδṼ

[1]
t

)
+ 8αB∂rδ Ã

[0]
z − B

r
hty, (70)

which is solved by

δṼ [1]
t = Bhty

{
log(rh/r)

2r2 − 128(log 2)αλ

r2 + 32αλ

3r6 (r4
h −r4)

+64αλ

(
1

r2 + 1

r2
h

)
log

r2 + r2
h

r2

}

r→∞−−−→
{
− log r

2r2 + 1

r2

(
1

2
log rh + 160

3
αλ

−128 log 2 αλ)} Bhty + O(r−3). (71)

At the second order O(ε2):

0 = ∂r

(
r5∂rδg

[2]
t y

)
− B2

r
hty + 8r4

hW
(2)′
T (r)hty . (72)

Here, we would like to recall that W (2)
T is obtained in (114).

The solution for δg[2]
t y would be

δg[2]
t y (r) = −B2hty

∫ ∞

r

log x

x5
dx
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+ 8r4
h hty

∫ ∞

r

W (2)
T (x)

x5
dx + C

r4 , (73)

where the integration constant C is fixed as

δg[2]
t y (r = rh) = 0 �⇒ C = B2r4

h hty

∫ ∞

rh

log x

x5
dx

− 8r8
hhty

∫ ∞

rh

W (2)
T (x)

x5
dx

= 1

24
B2hty(1 + 6 log rh). (74)

So,

∂rδg
[2]
t y (r) = hty

{
B2 log r

r5
− 8r4

h

r5
W (2)

T (r)

− 1

6r5
B2(1 + 6 log rh)

}
. (75)

The equation for δ Ã[2]
z is

0 = ∂r

[
(r3 − r4

h/r)∂rδ Ã
[2]
z

]
+ αH1(r)

+ α2λH2(r) + λH3(r), (76)

where

H1(r) = hty

(
−4B2

r3 − 8B2 log(rh/r)

r3

)
,

H2(r) = hty

[
−512B2r4

h

r7 + 512B2(12 log 2 − 5)

3r3

−1024B2

r3 log

(
1 + r2

h

r2

)]
,

H3(r) = hty

{
−80B2r4

h

3r7 + 16B2r2
h

3r3(r2 + r2
h )

+64r2
h (r

4
h − r4

p)

r(r2 + r2
h )

(
1

r2 + r2
h

+ 1

r2

)

+
[

32B2r2
h

3r(r2 + r2
h )

2
+ 32B2r2

h

3r3(r2 + r2
h )

− 48B2r4
h

r7

]

log
rh
r

− 768r8
hW

(2)
T

r7

+32r2
hW

(2)′
T

[
7r2

h (r
6
h − r6)

r6 + 4(r4
h − r4)

r2(r2 + r2
h )

]}
.

(77)

The solution and the near-boundary expansion for δ Ã[2]
z are

δ Ã[2]
z (r) =

∫ ∞

r

dx

x3 − r4
h/x

×
∫ x

rh

[
αH1(y) + α2λH2(y) + λH3(y)

]
dy

r→∞−−−→ −4λhty(B2 − 6r4
h + 6r4

p)

3r2
hr

2
+ O(r−3).

(78)

Up to O(B2), the vector charge density and axial current
on the boundary are

J t =
[

64

3
(12 log 2 − 5)αλ − log rh − 1

2

]
Biqhty + · · · ,

J z5 = 32λr2
h iqhty − 8λ

3r2
h

(
B2 − 6r4

h + 6r4
p

)
iqhty + · · · .

(79)

The transport coefficients ξ and σ are

ξ = 128

3
(12 log 2 − 5)αλ − 2 log rh − 1 + O(B/T 2),

σ = r2
h

[
64λ − 32λB

3r2
h

+ O(B2/T 4)

]
, (80)

where we have substituted the perturbative expression (116)
for rp.

The transport coefficient ξ contains both non-anomalous
contribution and anomalous contribution proportional to
αλ. The non-anomalous contribution is consistent with the
prediction of the non-anomalous magnetohydrodynamics
(MHD) [33], which for a neutral plasma has2

�J t = 2
(
M�,μ

�B · �� − 2p,B2 �B · ��
)

, (81)

with M� ≡ ∂F
∂(B·�)

being the magneto-vortical susceptibility

and 2p,B2 ≡ 2 ∂p
∂(B2)

being the magnetic susceptibility. Here
p is the pressure and F is the free energy density [33]. Note
that in (81) we ignored terms nonlinear in �. Both suscep-
tibilities M� and 2p,B2 can be calculated independently. In
the weak B field limit, the magnetic susceptibility 2p,B2 can
be calculated from the perturbative background we already
obtain in Appendix A. While the magneto-vortical suscep-
tibility M� vanishes for a neutral plasma by charge conju-
gation symmetry, M�,μ ≡ ∂M�/∂μ does not. The quantity
M�,μ can even be calculated in a charged plasma at B = 0.

2 In comparison with [33], we have included an overall factor 2 given
that the fluid’s vorticity defined in (41) is half of that of [33].
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In Appendix C, we calculate both susceptibilities with the
following results:

2p,B2 = log rh, M�,μ = −1

2
. (82)

The negative value of M�,μ is consistent with the fact that
spin–vorticity coupling lowers/raises energy of particle/anti-
particle. Clearly, (81) and (82) are in perfect agreement with
(79).

The dependence log rh may look odd at the first sight.
To restore units, we should use the replacement log rh →
log(rh L). In fact, this transport coefficient is scheme depen-
dent. The appearance of the AdS radius L comes from the
fact that we use 1/L as our renormalization scale [34]. Other
physically significant renormalization scales could be used,
which could alter this term [34]. It is also interesting to note
that the scheme dependence is related conformal anomaly. In
fact, a different scheme would correspond to adding a finite
counter-term as

�Sc.t. = − 1

2κ2

∫
d4x

√−γ

(
a

4

(
FV

)
μν

(
FV

)μν
)

. (83)

Such a counter-term would give the following contribution
to the vector current:

�Jμ = − a

2κ2

√−γ∇νF
μν. (84)

In the presence of hty(x), we can easily obtain �J t ∼ a �B · ��.
Therefore the combination M�,μ − 2p,B2 can be shifted by
a constant. Note that the scheme dependence of the vector
charge density is absent in a free theory.

The anomalous contribution is proportional to λαB. The
EOM (60) suggests the following chain of responses: δAz ∼
O(λ) is induced in response to vorticity and then backreac-
tion of δAz to δV t gives J t ∼ O(λαB). This corresponds to
the backreaction of J z5 generated by CVE to J t on the field
theory side. A possible α2B2-term would emerge at the next
order O(B2). In this case, (60) suggests the following chain
of responses: a non-anomalous contribution to J t is gener-
ated by magneto-vortical coupling. Then J z5 is induced by
CSE. The backreaction of J z5 to J t would give the O(α2B2)

contribution. However, the above reasoning is not quite accu-
rate. As we show below, in fact CSE is not generated in the
presence of J t . Nevertheless the bulk profile of δAz does
backreact to δVt to give α2B2 correction to J t .

In contrast to ξ , the transport coefficient σ is scheme inde-
pendent. We can add an analogous counter-term as (83). It
would not contribute to J z5 in the absence of a background
axial gauge field. The structure of σ is relatively simple.
Aside from the T 2-correction to the CVE (i.e., the first piece
in σ ), σ encodes the correction to chiral vortical coefficient
from B. However, there is no contribution proportional to α.

In other words, no CSE is seen despite the generation of J t .
This is in contrast to the naive expectation from CSE

J z5 = 8αB
J t

χ
, (85)

with χ being the vector charge susceptibility. In fact, from
the holographic model, the absence of CSE holds more gen-
erally: if we integrate (57) from the horizon to an arbitrary
r , we obtain (with λ = 0)

e2WT −WL f ∂rδ Ãz + 8αBδṼt (r) = 0, (86)

where the horizon boundary conditions (58) have been uti-
lized to fix the integration constant. Taking r → ∞ and
noting Ṽt (r → ∞) = 0, we have

J z5 = 0, when λ = 0. (87)

Following [35], we should identify the difference of δVt on
the boundary and on the horizon as the vector chemical poten-
tial

μ = δVt (r = ∞) − δVt (r = rh). (88)

It then follows naturally from (86) that J z5 = 8αBμ. In our
case, we have μ = 0 but J t �= 0.

To understand the physical difference between J t and μ,
we note μ (−μ) is the extra energy cost to create one unit
of particle (anti-particle), but J t depends on actual distribu-
tion of particles and anti-particles. In our case μ = 0 implies
that it costs the same energy to create both particle and anti-
particle. Indeed, we can view δVt as a zero mode as it vanishes
both on the horizon and on the boundary, which supports the
picture of vanishing energy cost for creating a particle. Since
the state is obtained by the adiabatic limit, it means J t is
generated dynamically3. The CSE seems to be only sensi-
tive to the energy difference μ, not the charge density. The
absence of CSE can also been understood from the scheme
independence J z5 : unlike J t , J z5 is unaffected by the choice
of scheme from (63). This makes natural for J z5 to depend on
μ, rather than on J t .

4.2 Generic magnetic field: a numerical study

For generic values of B, we will solve the fluctuation EOMs
(60) through the shooting technique. First, we find the near-
horizon solution:

3 Interestingly, similar situations have been found for the equilibrium
state [36,37].
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Fig. 1 The correlator 〈J t T ty〉/(iq) = J t/∂x hty in units of r2
h (left) and the transport coefficient ξ (right) as a function of B/T 2 when α = λ = 0

δgty = δg1
t y(r − rh) + δg2

t y(r − rh)
2 + · · · ,

δṼt = δṼ 1
t (r − rh) + δṼ 2

t (r − rh)
2 + · · · ,

δ Ãz = δ Ã0
z + δ Ã1

z (r − rh) + δ Ã2
z (r − rh)

2 + · · · , (89)

where, thanks to the horizon condition (58), only δg1
t y , δṼ 1

t

and δ Ã0
z are undetermined. Then we will choose a reasonable

value of δg1
t y (this corresponds to turning on a specific source

hty) and fine-tune δṼ 1
t , δ Ã0

z until δṼt (r = ∞) = δ Ãz(r =
∞) = 0 are satisfied. From the numerical solution, we can
read off the expectation values of J t and J z5 , as responses to
the source hty only. In practical numerics, we set the horizon
data δg1

t y = −1.
However, there is one problem in the procedure mentioned

above. Since we intend to solve the background EOMs (32)–
(34) using the initial conditions (122) and (124), we should be
careful in solving the fluctuation EOMs (60). More precisely,
the correct solutions are

δgty = δg∗
t y√

v(b)
, δVt = δV ∗

t , δAz = δA∗
z√

w(b)
, (90)

where the starred functions δg∗
t y , δV ∗

t and δA∗
z are solved

from (60) using the “incorrect” numerical background metric
functions, as discussed in Appendix A. Adapted to the tilde
variables, we have

δṼt
B

= δVt
iqB

= v3/2(b)δṼ ∗
t ,

Ãz ≡ δAz

iq
=

√
v(b)

w(b)
δ Ã∗

z . (91)

Here, for the sake of numerical calculation, we have further
re-scaled the term δṼt of (60) by a factor of B.

For convenience, we set rh = 1 in our numerical calcu-
lations. So, the dimensionful quantities (J t , J z5 etc.) to be
plotted in Sects. 4.2.1 and 4.2.2 should be understood as in
units of proper powers of rh .

Fig. 2 In the strong B limit, the numerical result of ξ (dots) is fitted
by the function (92) when α = λ = 0

4.2.1 Non-anomalous effects: α = λ = 0

When the chiral anomaly and gravitational anomaly are
turned off (i.e., α = λ = 0), the transport properties of the
magnetized plasma get non-anomalous contributions from
the medium only. The medium effects are not covered by
the study of [17] since the calculations therein are essen-
tially based on the vacuum state. In this situation, as we dis-
cussed in the previous section we only see a dynamically
generated vector charge density J t , whereas the correlator
〈J z5 T ty〉/(iq) (and thus J z5 ) vanishes identically as seen from
(87). In Fig. 1, we show the correlator 〈J t T ty〉/(iq) and
the transport coefficient ξ as a function of B/T 2. For the
purpose of probing the strong magnetic field limit, we have
improved our numerical calculations and generate plots up
to B/T 2 ∼ 3000.

From the left panel of Fig. 1, it seemingly implies a quasi-
linear growth for 〈J t T ty〉/(iq) as B/T 2 is increased, which
as we will show is inaccurate. The right panel of Fig. 1 reveals
more information: −ξ approaches 1 from above. In Fig. 2,
we fit our numerical result for ξ in the strong magnetic field
limit by the following function:

−ξ 
 1.0001779 + 32.692107
log(B/T 2)

B/T 2 + 124.89109

B/T 2 . (92)
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Fig. 3 Left: the CVE conductivity σ in units of r2
h (with anomaly coef-

ficient λ factorized out) as a function of B/T 2. Right: Bσ/λ in unit of r4
h ,

demonstrating the asymptotic behavior for σ at strong magnetic field.

Here, in each plot the three curves (dashed orange, solid blue, dotted
green) corresponding to the different choice in (93) perfectly collapse
into a single one

Fig. 4 The anomalous correction 〈δ J t T ty〉/(iq) in unit of r2
h as a function of B/T 2: α = 1/20, λ = 1/50 for dashed curve and α = 1/20, λ = 1/20

for solid one

It is tempting to conclude that −ξ → 1 asymptotically. The
correction in (92) can be understood as the v2

t term in the gen-
eral expression (65) by noting that rh = 1 in our numerical
results.

4.2.2 Anomalous effects: λ �= 0

We now turn attention to the anomalous contributions to the
transport properties of the magnetized plasma. While the two
anomaly coefficients, α, λ, are fixed for a specific QFT on the
boundary, we here take a phenomenological viewpoint and
think of α, λ as free parameters. First of all, taking λ = 0 will
kill J z5 completely, as seen from the bulk EOMs (60). Thus,
our representative choices for the anomaly coefficients are

(α, λ) = (0, 1/50), (1/20, 1/50), (1/20, 1/20). (93)

We begin with the fate of the CVE conductivity σ . First,
the last equation of (60) could be formally integrated from
the horizon to the AdS boundary, yielding

J z5 = σ� + 8αμB, (94)

where μ is defined in (88). Here, we stress that the CVE con-
ductivity σ depends on λ linearly and is independent of α.
In the left panel of Fig. 3, we plot the CVE conductivity σ

as a function of B/T 2, taking all choices for α, λ from (93).
From the plot, we obviously see perfect overlapping of differ-
ent curves, confirming our claim that σ linearly depends on λ

only. Intriguingly, the magneto-vortical coupling effect tends
to suppress the CVE conductivity and eventually renders it
vanishing at large magnetic field. Asymptotically, σ ∼ B−1

as demonstrated in the right panel of Fig. 3. Similar sup-
pression effects due to the quark mass [38,39] and spacetime
curvature [40] are seen. Our findings are in contrast to the
proposal of [17] that the magneto-vortical coupling (through
the chiral anomaly) generates a term to σ linear in B when
B/T 2 becomes very large.

Next, we consider anomalous contributions to the gen-
eration of the vector charge density J t and the transport
coefficient ξ . Given that J t always gets a non-anomalous
contribution, we find it more transparent to consider

δ J t ≡ J t − J t |α=λ=0, δξ ≡ ξ − ξ |α=λ=0. (95)

In accord with the different choices for α, λ as made in (93),
we show anomalous corrections 〈δ J t T ty〉/(iq) and δξ in
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Fig. 5 The anomalous correction δξ as a function of B/T 2: α = 1/20, λ = 1/50 for the dashed curve and α = 1/20, λ = 1/20 for the solid one

Fig. 6 The anomalous correction 〈δ J t T ty〉/(iq) in unit of r2
h as a func-

tion of log(B/T 2): α = 1/20, λ = 1/50 for the squared points and
α = 1/20, λ = 1/20 for the circled points

Figs. 4 and 5, respectively. From the second equation of (60),
it is clear that taking α = 0 makes anomalous contributions
δ J t and δξ to be zero. So, for each panel of Figs. 4 and 5, we
have only two non-trivial curves.

From Fig. 4, we read that the anomalous contribution to the
vector charge δ J t has opposite sign to their non-anomalous
counterpart for a weak magnetic field. As the magnetic field
becomes stronger, δ J t changes sign and continues to grow
mildly at large B/T 2. More precisely, the numerical results
at large B imply the following asymptotic behaviors for the
anomalous corrections:

δ J t 
 log B, δξ 
 log B

B
, (96)

which are clearly confirmed by the plots of Fig. 6. It is worth
noting that from (92) and (96) the large B limit of ξ is dom-
inated by the non-anomalous medium contribution.

5 Thermal Hall effect and thermal axial magnetic effect

In the previous section, we have obtained the following trans-
port coefficients:

J t = ξ(B, T )( �B · ��),

J z5 = σ(B, T )�, (97)

which can be viewed as responses of J t and J z5 to hty (cf.
(61)):

J t (q) = 〈J t (q)T ty(−q)〉Bhty(q) = iqξ(B, T )B

2
hty(q),

J z5 (q) = 〈J z5 (q)T ty(−q)〉Bhty(q) = iqσ(B, T )

2
hty(q),

(98)

where we have substituted the expression for � in (41). The
correlators in (98) give the following transposed correlators
by the Onsager relation:

〈T ty(−q)J t (q)〉−B = 1

2
iqξ(B, T )B,

〈T ty(−q)J z5 (q)〉−B = 1

2
iqσ(B, T ). (99)

The subscript indicates the expectation values are taken with
−B. We can then obtain the response of T ty to both At and
A5
z using (99) with the signs of both q and B flipped

T ty(q) = 〈T ty(q)J t (−q)〉B At (q) = 1

2
ξ(−B, T )Ex (q)B,

T ty(q) = 〈T ty(q)J z5 (−q)〉B A5
z (q) = 1

2
σ(−B, T )B5y(q),

(100)

where we have used Ex (q) = −iq At (q) and B5y(q) =
−iq A5

z (q). In a neutral plasma, (100) corresponds to the
generation of thermal current by transverse electric field and
transverse axial magnetic field, which we coin the thermal
Hall effect and the thermal axial magnetic effect, respec-
tively. Below we will derive (100) more rigorously using the
time-reversal symmetry. We start with the following correla-
tors for the responses to hty :

〈J t (q)T ty(−q)〉 = iqξ B

2
,
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〈J z5 (q)T ty(−q)〉 = iqσ

2
, (101)

with the correlators in (101) being the limit ω → 0 of the
following retarded correlator:

〈Oa(ω, q)Ob(−ω,−q)〉=
∫

dtd3x

(2π)4 e
−iωt+i �q·�xGR

ab(t, x, B)

=
∫

dtd3x

(2π)4 (−i)e−iωt+i �q·�xθ(t)〈[Oa(t, x), Ob(0)]〉.
(102)

By time-reversal symmetry, we can obtain the transposed
correlators by [41]

GR
ab(t, x, B) = γaγbG

R
ba(t,−x,−B)

⇒ 〈Oa(ω, q)Ob(−ω,−q)〉B
= γaγb〈Ob(ω,−q)Oa(−ω, q)〉−B (103)

with γa = ±1 corresponding to eigenvalues of operator
Oa under time-reversal. Note that B flips sign under time-
reversal, which we indicate in the subscript. For the oper-
ators of our interest T ty, J t , J z5 , we have γ = −,+,+,

respectively. Therefore, (101) and (103) give the following
transposed correlators (with the direction of B reversed and
ω = 0):

〈T ty(−q)J t (q)〉−B = −1

2
iqξ(B)B,

〈T ty(−q)J z5 (q)〉−B = −1

2
iqσ(B). (104)

Note that J t (q) and J z5 (q) couple to sources Vt (−q) and
Az(−q), respectively. We can rewrite (104) in a more intu-
itive way:

〈T ty(−q)〉−B = 1

2
ξ(B)BEx (−q),

〈T ty(−q)〉−B = 1

2
σ(B)B5y(−q). (105)

The thermal Hall effect contains both non-anomalous and
anomalous contributions, where the non-anomalous contri-
bution can be understood from non-anomalous MHD [33].
Naively, turning on Ex necessarily induces a steady flow
along vy due to the Lorentz force acting on positive and neg-
ative charge carriers. However, this is not true for a stationary
state. The stationary state can be obtained simply by setting
ω = 0 in (47) through (53). In this case, the dynamics of
the fields δgty, δVt , δAz decouple from δVx , δgxy . We can
thus consistently set δVx and δgxy to zero, leading to vanish-
ing J x and T xy . This strongly constrains the hydrodynamic
analysis. Note that both J x and T xy contain the dissipative
terms as follows:

J x = σ
(
Ex − ∂xμ + vy B

)
,

T xy = η∂xvy + · · · .

The shear contribution in T xy cannot be canceled by other
terms. The only possibility for T xy to vanish is to have vy =
0. This implies that an inhomogeneous vector charge density
is needed for the stationary state: Ex − ∂xμ = 0. Indeed,
this is consistent with the holographic analysis if we identify
μ = Vt (r = ∞) − Vt (r = rh). With vy = 0, the non-
anomalous contribution to the thermal current is given by
[33,42–44])

T ty = −Ex B
(
2p,B2 − M�,μ

)
. (106)

The first term can be identified as −ExM by noting
2p,B2 B = M . The second term can be interpreted as −Px B
if we identify ExM�,μ as an effective polarization Px .
Apart from the non-anomalous contribution, we also obtain
an anomalous contribution that requires at least the chiral
anomaly to exist. This can be seen from the middle equation
in (60). When α = 0, the dynamics of δAz decouples from
that of δVt , leaving only a non-anomalous contribution. On
the contrary, the thermal axial magnetic effect contains only
an anomalous effect. Its existence relies on the gravitational
anomaly.

6 Conclusion

In this work, based on a holographic model, we considered
the effects of the magneto-vortical coupling on the transport
properties of a strongly coupled plasma. First of all, even
when the chiral and gravitational anomalies are turned off,
the coupling of a magnetic field and a weak fluid’s vortic-
ity dynamically generate a contribution to the vector charge
density J t , which we refer to as a non-anomalous medium
contribution. The non-anomalous medium contribution in J t

grows linearly in B and the relevant transport ξ approaches a
constant in the strong magnetic field limit. However, a simi-
lar non-anomalous contribution is not observed for the axial
current.

Secondly, the magneto-vortical coupling also generates
anomalous contributions to the vector charge density J t and
axial current J z5 . Thanks to the absence of a background for
the vector chemical potential, the anomalous contribution to
J z5 is completely induced by the gravitational anomaly (i.e.,
insensitive to the chiral anomaly). In this sense, it would be
more natural to interpret the anomalous contribution to J z5 as
a CVE contribution [27], rather than a CSE contribution. The
corresponding chiral vortical conductivity receives a correc-
tion at finite B. In particular, in the strong magnetic field limit,
the magneto-vortical coupling renders the CVE conductiv-
ity vanishing asymptotically. This is quantitatively different
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from the conclusion of [17]. In contrast to that of J z5 , the
anomalous contribution to J t requires the chiral anomaly
to exist. The presence of a gravitational anomaly can also
affect the generation of J t . Thus, the anomalous contribu-
tion to J t would contain more fruitful physics. Particularly,
in the strong magnetic field limit, the anomalous part of J t

seemingly grows logarithmically as a function of B. This is
to be compared with the results of [17] where a term linear
in B was generated in J t by the chiral anomaly.

Our findings summarized above would necessitate the for-
mulating of a consistent/complete anomalous magnetohy-
drodynamics. This requires one to consistently add novel
transport phenomena induced by anomalies into the non-
anomalous magnetohydrodynamics [33,42]. While our study
treated the magentic field as external, the case with a dynami-
cal electromagnetic field is also interesting. The correspond-
ing anomalous MHD has been initially considered in [45] by
assuming a small chiral anomaly coefficient. In fact, holo-
graphic models corresponding to a dynamical electromag-
netic field have been proposed in [46,47]. Including anoma-
lies in the model would allow us to study anomalous MHD
without further assumptions on the anomaly coefficients. We
leave this for future work.

Last but not least, the transport phenomena we discussed
are dissipationless. It is possible to derive them by including
anomalies in the partition function approach [48]. This would
allow us to obtain more complete dissipationless transport
phenomena. We hope to address this in the future.
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Appendix A: Details of solving the background metric
functions

In this appendix, we collect calculational details of solving
the background metric functions.

When the magnetic field is weak (i.e. B/T 2 � 1), we
construct the bulk metric functions perturbatively [49]:

f (r) = r2 − r4
h

r2 + ε2 f (2)(r) + ε4 f (4)(r) + · · · ,

WT (r) = log r + ε2W (2)
T (r) + ε4W (4)

T (r) + · · · ,

WL(r) = log r + ε2W (2)
L (r) + ε4W (4)

L (r) + · · · , (107)

where a formal parameter ε ∼ B/T 2 is introduced to mark
the perturbative expansion. f (n)(r), W (n)

T (r) and W (n)
L (r) are

solved from the bulk equations. We are interested in n = 2.
At O(ε2), the constraint equation (31) yields

W (2)
L + 2W (2)

T = c1 + c2

r
, (108)

where the integration constant c1 should be set to zero due
to asymptotic AdS requirement (37). By redefinition of the
radial coordinate r , we could also set c2 = 0. Thus,

W (2)
L + 2W (2)

T = 0. (109)

Then the dynamical equation (32) is solved as

r3∂2
r f (2) + 3r2∂r f

(2)

= B2

3r
⇒ f (2) = c1

f + c2
f

r2 − B2 log r

6r2 . (110)

Substituting (109) and (110) into the dynamical equations
(33) and (34), we obtain

0 =
(
r5 − rr4

h

)
W (2)′′

T (r) +
(

5r4 − r4
h

)
W (2)′

T (r) + B2

6r
+ 2c1

f r,

0 =
(
r5 − rr4

h

)
W (2)′′

L (r) +
(

5r4 − r4
h

)
W (2)′

L (r) − B2

3r
+ 2c1

f r.

(111)

Obviously, in order to be consistent with (109), one has to set
c1
f = 0. The integration constant c2

f is fixed by the location
of the horizon, which will be presumably shifted due to the
presence of a magnetic field,

(
r2 − r4

h

r2 + f (2)(r)

) ∣∣∣∣
r=r (2)

p

= 0 ⇒ c2
f

= −
(
(r (2)

p )4 − r4
h

)
+ B2 log r (2)

p

6(r (2)
p )2

,

(112)
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where r (2)
p represents the location of the event horizon at

O(ε2). Then

f (2) = − (r (2)
p )4 − r4

h

r2 + B2

6r2 log
r (2)
p

r
. (113)

From (33), W (2)
T is solved as

∂r

[
r(r4 − r4

h )∂rW
(2)
T (r)

]
+ B2

6r
= 0

⇒ W (2)
T = B2

6

∫ ∞

r

log(x/rh)

x(x4 − r4
h )

dx

= B2

6

∫ ∞

r

log(x/r (2)
p )

x(x4 − (r (2)
p )4)

dx

= B2

288r4
h

{
π2 − 24 log2 rh

r
log

(
1 − r4

h

r4

)

+12iπ log
r

rh
− 3Li2

(
r4

r4
h

)}
, (114)

where in the last equality of the second line we have made
use of the fact that the difference between r (2)

p and rh is of
O(B2). At O(ε2), the relation between the location of the
event horizon and the Hawking temperature becomes

r (2)
p − B2

24(r (2)
p )3

+ O(B4) = πT, (115)

which is solved as

r (2)
p = rh + B2

24r3
h

+ O(B4), with rh = πT . (116)

When the value of B is generic, we have to solve the metric
functions numerically. We find it more convenient to make
the change of variables

f (r) → r2U (r), WT (r) → log r + 1

2
log V (r),

WL(r) → log r + 1

2
log W (r), (117)

followed by

u = rh
r

∈ [0, 1]. (118)

Then the dynamical bulk equations (32)–(34) turn into

0 = U ′′(u) +U ′(u)

(
V ′(u)

V (u)
+ W ′(u)

2W (u)
− 5

u

)

+U (u)

(
8

u2 − 2V ′(u)

uV (u)
− W ′(u)

uW (u)

)

− B2u2

3V (u)2 − 8

u2 ,

0 =V ′′(u) + V ′(u)

(
U ′(u)

U (u)
+ W ′(u)

2W (u)
− 5

u

)

+ V (u)

(
− 8

u2U (u)
+ 8

u2 − 2U ′(u)

uU (u)

− W ′(u)

uW (u)

)
+ 2B2u2

3U (u)V (u)
,

0 =W ′′(u) + W ′(u)

(
U ′(u)

U (u)
+ V ′(u)

V (u)
− 4

u

)

− W ′(u)2

2W (u)
+ W (u)

⎛
⎝− B2u2

3V (u)2 − 8
u2

U (u)

+ 8

u2 − 2U ′(u)

uU (u)
− 2V ′(u)

uV (u)

)
, (119)

where, since we have set rh = 1 above, B should be under-
stood as B/r2

h .
Near the AdS boundary u = 0, the metric functions

U, V,W are expanded as

U (u → 0) = 1 +U 1
b u + 1

4
(U 1

b )2u2

+ B2

6(V 0
b )2

u4 log u +U 4
b u

4 + · · · ,

V (u → 0) = V 0
b + V 0

b U
1
b u + 1

4
V 0
b (U 1

b )2u2

− B2

12V 0
b

u4 log u + V 4
b u

4 + · · · ,

W (u → 0) = W 0
b + W 0

bU
1
b u + 1

4
W 0

b (U 1
b )2u2

+ W 0
b B

2

6(V 0
b )2

u4 log u + W 4
b u

4 · · · , (120)

where we have made use of the constraint equation (31).
Obviously, the asymptotic boundary conditions only give rise
to “two” effective requirements! The regularity requirements
will yield another three conditions. Just as in the fixing of c2,
we can utilize the freedom of redefining the radial coordinate
u and set U 1

b = 0.
To summarize, the boundary conditions at u = 0 (the AdS

boundary) are

U ′(u = 0) = 0, V (u = 0) = W (u = 0) = 1, (121)

while at the event horizon u = 1

U (u = 1) = 0,

U ′(1)V ′(1) − 8V (1) − 2U ′(1)V (1) + 2B2

3V (1)
= 0,
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U ′(1)W ′(1) − 2W (1)U ′(1) − 8W (1) − B2W (1)

3V (1)2 = 0.

(122)

To find the numeric solutions, one can proceed in two dif-
ferent ways. The first approach would be to directly solve
(119) under the boundary conditions (121) and (122). A sec-
ond approach would be to replace the boundary conditions
(121) by the following conditions at the horizon:

U (u → 1) = 0 +U 1
h (u − 1) +U 2

h (u − 1)2 + · · · ,

V (u → 1) = V 0
h + V 1

h (u − 1) + · · · ,

W (u → 1) = W 0
h + W 1

h (u − 1) + · · · , (123)

where

U 1
h = −4, V 0

h = 1, W 0
h = 1. (124)

Note that the choice ofU 1
h will set πT = 1. However, solving

(119) under the initial conditions (122) and (124), near the
boundary u = 0 the solution will behave as

U (u → 0) → 1, V (u → 0) → v(b),

W (u → 0) → w(b). (125)

Then the correct solution would be obtained by a further
rescaling of the boundary coordinates,

x → √
v(b)x, y → √

v(b)y, z → √
w(b)z. (126)

Due to the “incorrect” asymptotic boundary behavior (125),
we have relabeled the magnetic field by b in (125) and (126).
When solving the EOMs (119) under the initial conditions
(122) and (124), the same relabeling should be made. Recall-
ing the definition of the magnetic field FV = bdx ∧ dy, the
physical magnetic field B (in units of r2

h ) should be

B = b

v(b)
. (127)

Finally, we would like to point out that the background solu-
tion obtained with conditions (122) and (124) does not nec-
essarily satisfy U 1

b = 0 (cf. (120)).

Appendix B: Horizon boundary conditions from match-
ing

We first seek solutions to (47) through (53) near the horizon
with ingoing boundary conditions. We obtain the following
series solutions:

δAz = a0(r − rh)
β + a1(r − rh)

β+1 + · · · ,

δVx = b0(r − rh)
β + b1(r − rh)

β+1 + · · · ,

δgty = c1(r − rh)
β+1 + c2(r − rh)

β+2 + · · · ,

δVt = d1(r − rh)
β+1 + d2(r − rh)

β+2 + · · · ,

δgxy = e0(r − rh)
β + e1(r − rh)

β+1 + · · · , (128)

with β = − iω
f ′(rh) . Here, a0, b0 and e0 are free parameters,

while all the rest coefficients are completely determined by
them. For instance, c1 and d1 are

c1 = i f ′(rh)
f ′(rh) − iω

×
{
−i Be−4WT (rh)b0 − 4λB2e−WL (rh)−6WT (rh)qa0

+e−WL (rh)−2WT (rh)q

×
[
eWL (rh)e0 + 4λ f ′(rh)

(
W ′

L(rh) + 2W ′
T (rh)

)
a0

]}
,

d1 = i f ′(rh)
f ′(rh)−iω

e−WL (rh)−2WT (rh)
[
eWL (rh)qb0+8i Bαa0

]
.

(129)

The three parameters a0, b0 and e0 do not match the five
sources to the fields δAz , δVx , δgty , δVt and δgxy . The remain-
ing two parameters come from pure gauge solutions, which
are by gauge transformation of the trivial solution

δVx = −BC1, δgty = −iωC1, δgxy = iqC1,

others = 0;
δVt = −iωC2, δVx = iqC2, others = 0. (130)

The horizon solutions are to be matched with the lowest order
solutions in (54) near the horizon region. Since the horizon
solutions also contain δVx and δgxy , we also need the lowest
order solutions to them. To the lowest order in ω, the EOMs
of δVx and δgxy decouple:

1

2
iq∂rδgxy + 1

2
Be−2WT ∂rδVx = 0,

∂r

(
eWL+2WT f ∂rδgxy

)
= 0,

∂r

(
eWL f ∂rδVx

)
= 0. (131)

They are clearly solved by constant solutions. Matching with
the horizon solutions, we simply have

δVx = b0, δgxy = e0. (132)

Note that we can set the above two solutions to zero by adding
pure gauge solutions. In the limit ω → 0, the pure gauge
solutions do not change the horizon values of δgty , δVt and
δAz :

δgty(r = rh) = 0, δVt (r = rh) = 0,
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δAz(r = rh) = constant. (133)

The ω → 0 limit of (129) determines the horizon derivative
of δgty and δVt . For the decoupled EOMs (55) through (57),
we can take the horizon derivatives of δgty and δVt , and
horizon value of δAz as free parameters.

Appendix C:Magnetic andmagneto-vortical susceptibil-
ities

In this appendix, we calculate the magnetic susceptibility
2p,B2 and magneto-vortical susceptibility M� independently
as a confirmation to our claim in (82).

Let us begin with the magnetic susceptibility 2p,B2 and the
magnetization M . For the equilibrium state (corresponding
to the magnetic brane background), the stress tensor for the
boundary theory is computed as

T tt = lim
r→∞

{
−2r6

[
− 3

f (r)
+ W ′

L + 2W ′
T√

f (r)
− B2e−4WT r6 log r

2 f (r)

]}
,

T xx = T yy = lim
r→∞

{
−2r6

[
3e−2WT − e−2WT f ′(r)

2
√

f (r)

−√
f (r)e−2WT (W ′

L + W ′
T )

]
− 1

2
B2e−6WT r6 log r

}
,

T zz = lim
r→∞

{
−2r6

[
3e−2WL − e−2WL f ′(r)

2
√

f (r)
− 2e−2WL

√
f (r)W ′

T

]

+ 1

2
B2e−2WL−4WT r6 log r

}
. (134)

With the analytical solution presented in Appendix A, it is
straightforward to compute the various components of Tμν :

T tt = 3r4
h + 3(r4

p − r4
h ) − 1

2
B2 log rh + O(B3),

T xx = T yy =r4
h +(r4

p−r4
h )−

1

6
B2− 1

2
B2 log rh+O(B3),

T zz = r4
h + (r4

p − r4
h ) − 1

6
B2 + 1

2
B2 log rh + O(B3).

(135)

To extract the energy density, pressure and magnetization,
we compare (135) with the MHD formalism [43] (see Eq. 14
there). Here, we would like to point out that the AdS/CFT
computations give rise to the medium contributions (denoted
as Tμν

F0 in [43]). Consequently,

ε = T tt , p⊥ = T xx = T yy, p‖ = T zz . (136)

The pressure p is identified as p‖

p = p‖ = 1

2
B2 log rh + O(B3) �⇒ 2p,B2 = log rh,

(137)

where we used the perturbative expression for rp in (116).
The magnetization M could be computed as

p⊥ = p‖ − MB �⇒ M = B log rh + O(B2). (138)

Now we move on to the calculation of the magneto-
vortical susceptibility M�. In the zero magnetic field situa-
tion, we calculate M� based on the following Kubo formula
[33]:

M� = − lim
qx ,qy→0

〈T ty J x 〉
qyqx

. (139)

Since M� is C-odd, we need to consider the finite density
RN-AdS5 background:

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dx2 + dy2 + dz2),

V =
(
Q

r2
h

− Q

r2

)
dt, A = 0, (140)

where

f (r) = r2

(
1 − r4

h

r4 + Q2

3r6 − Q2

3r2
hr

4

)
. (141)

For consistency, we turn on the following fluctuations on
top of (140):

δ(ds2) = 2r2 [
δgtx (r, x, y)dtdx + δgty(r, x, y)dtdy

]
,

δV = δVx (r, x, y)dx + δVy(r, x, y)dy. (142)

We turn attention to the Fourier space by assuming a plane
wave ansatz for the fluctuations,

δgtx (r, x, y) ∼ eiqx x+iqy yδgtx (r),

δgty(r, x, y) ∼ eiqx x+iqy yδgty(r),

δVx (r, x, y) ∼ eiqx x+iqy yδVx (r),

δVy(r, x, y) ∼ eiqx x+iqy yδVy(r). (143)

To proceed, we collect the EOMs for the fluctuations in (142).
The constraint equations Ert = 0 and EV r = 0 give rise to

r−2 f (r)∂r
(
qxδgtx + qyδgty

)

−
(
r−2 f (r)

)′ (
qxδgtx + qyδgty

) = 0, (144)

r f (r)∂r (qxδVx + qyδVy) + 2Q(qxδgtx + qyδgty) = 0.

(145)
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The dynamical components of the Einstein equations Etx =
Ety = 0 are

∂r (r
5∂r δgtx ) + 2Q∂r δVx + r3

f (r)

×
(
qxqyδgty − q2

yδgtx
)

= 0, (146)

∂r (r
5∂r δgty) + 2Q∂r δVy + r3

f (r)

(
qxqyδgtx − q2

x δgty
) = 0.

(147)

The dynamical components of the vector Maxwell equations
EV x = EV y = 0 are

∂r [r f (r)∂r δVx ] + 2Q∂r δgtx + 1

r

(
qxqyδVy − q2

yδVx

)
= 0,

(148)

∂r
[
r f (r)∂r δVy

] + 2Q∂r δgty + 1

r

(
qxqyδVx − q2

x δVy
) = 0.

(149)

Near the AdS boundary, we impose

δVx
r→∞−−−→ vx , others

r→∞−−−→ 0, (150)

while at the horizon we have

δgtx , δgty
r→rh−−−→ 0, δVx , δVy are regualr at r = rh . (151)

Given (139), we solve (146)–(149) in the small momenta
limit. The fluctuation modes could be expanded as

δgtx = δg(0)
t x + ε δg(1)

t x + ε2δg(2)
t x ,

δgty = δg(0)
t y + ε δg(1)

t y + ε2δg(2)
t y ,

δVx = δV (0)
x + ε δV (1)

x + ε2δV (2)
x ,

δVy = δV (0)
y + ε δV (1)

y + ε2δV (2)
y , (152)

where ε ∼ qx , qy .
At the lowest order O(ε0), the solutions are simply given

by

δV (0)
x = vx , δg(0)

t x = δg(0)
t y = δV (0)

y = 0. (153)

At the first order O(ε1), there are no non-trivial solutions,

δg(1)
t x = δg(1)

t x = δV (1)
y = δV (1)

y = 0. (154)

At the second order O(ε2), the equations we need are

∂r (r
5∂rδg

(2)
t y ) + 2Q∂rδV

(2)
y = 0, (155)

∂r

[
r f (r)∂rδV

(2)
y

]
+ 2Q∂rδg

(2)
t y + qxqy

r
δV (0)

x = 0. (156)

In δg(2)
t y , we will track the term linear in Q (∼ μ) only. There-

fore, the Q-term in (156) could be discarded. Furthermore,
we can simply take f (r) → r2(1 − r4

h/r
4). Equation (156)

is solved as

δV (2)
y = −qxqyvx

∫ ∞

r

log(rh/x)

x3(1 − r4
h/x

4)
dx . (157)

Finally, Eq. (155) is solved as

δg(2)
t y = 2Qqxqyvx

∫ ∞

r

dx

x5

∫ x

rh

log(rh/y)

y3(1 − r4
h/y

4)
dy + C0

r4 ,

(158)

where the integration constant C0 is fixed as

2Qqxqyvx

∫ ∞

rh

dx

x5

∫ x

rh

log(rh/y)

y3(1 − r4
h/y

4)
dy + C0

r4
h

= 0 ⇒ C0 = π2 − 8

64r2
h

Qqxqyvx . (159)

Near the AdS boundary,

δg(2)
t y

r→∞−−−→ −Qqxqyvx
8r2

hr
4

+ O(r−5), (160)

which is translated to

T ty = Q

2r2
h

qxqyvx ⇒ M� = − Q

2r2
h

= −1

2
μ. (161)
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