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Abstract We construct a leading-order effective field the-
ory for both scalar and axial-vector heavy diquarks, and con-
sider its power expansion in the heavy diquark limit. By
assuming the transition from QCD to diquark effective the-
ory, we derive the most general form for the effective diquark
transition currents based on the heavy diquark symmetry. The
short-distance coefficients between QCD and heavy diquark
effective field theory are also obtained by a tree level match-
ing. With the effective currents in the heavy diquark limit,
we perform a reduction of the form factors for semi-leptonic
decays of doubly heavy baryons, and find that only one non-
perturbative function is remaining. It is shown that this soft
function can be related to the Isgur–Wise function in heavy
meson transitions. As a phenomenological application, we
take a single pole structure for the reduced form factor, and
use it to calculate the semi-leptonic decay widths of dou-
bly heavy baryons. The obtained results are consistent with
others given in the literature, and can be tested in the future.

1 Introduction

In the past, the conventional quark model has successfully
explained structures of numerous hadronic states observed
in a large number of experiments. However, not all predicted
particles by the quark model have been experimentally estab-
lished. In particular, doubly heavy baryons, that is baryonic
states made of two heavy quarks, are of this type. After pur-
suing the �cc for many years, the LHCb collaboration finally
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announced in 2017 the observation of �++
cc , a lowest-lying

doubly-charmed baryon whose mass is give as [1]

m�++
cc

= (3621.40 ± 0.72 ± 0.27 ± 0.14) MeV. (1)

This inspiring observation follows an earlier prediction Ref.
[2], where the �++

cc is expected to be reconstructed from the
decay channel �++

cc → �+
c K

−π+π+. One year later, LHCb
has also successfully measured the �++

cc ’s lifetime [3], and
reconstructed this resonance from the �+

c π+ final state [4].
Thus, the existence of the�++

cc is unambiguously established.
We believe that through continuous experimental efforts [5–
7], other heavier doubly heavy baryons could be discovered
in the future. In addition, there have been numerous theoret-
ical studies aiming to understand the dynamical and spec-
troscopical properties of the doubly-heavy baryon states, see
e.g. Refs. [8–42]. However, a comprehensive description of
the decay mechanism of doubly heavy baryons is not estab-
lished yet.

Generally, an ideal platform for studying hadrons is
through semi-leptonic weak decays. The main advantage of
a semi-leptonic process is its naturalness in separating the
QCD relevant and the QCD irrelevant dynamics in the weak
decays. All the QCD dynamics is encapsulated in the hadron
transition matrix element, which is independent from the lep-
tonic part and can be parametrized by several form factors.
However, as a three-body system, a doubly heavy baryon
possess a much more complicated dynamics than a heavy
meson.

A straightforward way to consider this problem is to
reduce a doubly heavy baryon into a two-body system, where
two of the three quarks are treated as a point-like diquarks.
Generally, each two quarks in a baryon form a color antitriplet
so that they might be bound by an attractive potential. How-
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ever, for a doubly heavy baryon, it is more reasonable to
treat the two heavy quarks behave as static color sources
and thus as a diquark. According to Refs. [36,37,43], there
are three different momentum scales display in the dynam-
ics of a doubly heavy baryon: the heavy quark mass mQ ,
its typical 3-momentum mQv in the rest frame of baryon,
and its typical kinetic energy mQv2. The spatial size of the
two heavy quarks can be estimated to be rQQ ∼ 1/mQv,
while the distance between one of the heavy quarks and the
light quark is approximately rQq ∼ 1/�QCD . As argued
by Ref. [44], when mQ is heavy enough the heavy quark
velocity v is proportional to the running coupling constant
αs(mQ) ∼ 1/log(mQ). Thus, for doubly bottom baryons,
one can deduce that vb � 1 and mbv

2
b � mbvb � mb. Par-

ticularly, quark potential model calculations indicate that for
charm quark v2

c ∼ 0.3 and for bottom quark v2
b ∼ 0.1 [45].

This implies that mbv
2
b ∼ mcv

2
c ∼ �QCD ∼ 350 − 500

MeV, while mbvb ∼ 1.5 GeV and mcvc ∼ 800 MeV.
Thus, rbb/rbq ∼ 1/mbvb � 1 is perfectly satisfied and
rcc/rcq ∼ 1/mcvc is also suppressed. Accordingly, one can
conclude that in a doubly bottom baryon, the two bottom
quarks can be safely combined to be a point-like diquark,
while the same treatment for the two charm quarks in a doubly
charmed baryon is approximately reasonable. In the heavy
diquark limit, the heavy diquark is a static color source in the
3̄ representation, just like a heavy anti-quark. Some earlier
papers [46–49] have used the heavy quark-diquark symmetry
to simplify the transition form factors.

In this work, we will try to develop a heavy diquark effec-
tive theory (HDiET), whose Lagrangian is expanded in pow-
ers of rQQ/rQq . At leading-order, the diquark appears as a
point-like scalar or axial-vector particle described by a scalar
or axial-vector field in the color 3̄ representation. The scalar
HDiET has been developed in [50], where the leading order
(LO) effective Lagrangian coupling two scalar diquarks and
two light quarks was obtained. In this work, we will first
construct HDiET for both scalar and axial-vector diquarks.
For the transition form factors we will assume the applicabil-
ity of HDiET, and by assuming the diquark to be a point-like
particle, we can construct the weak and electromagnetic tran-
sition currents of the diquarks according to the SU(2) heavy
flavor symmetry and U(1) symmetry. On the other hand, in
the large recoil region, the diquark currents will be derived
through the matching between QCD and HDiET at tree level.
We then show that the six transition form factors of doubly
heavy baryon semi-leptonic decay can be reduced into only
one soft function. Furthermore, it will be shown that this soft
function is an universal quantity which is nothing but the
well known Isgur–Wise function in HQET for heavy meson
decays. These results can be used in the phenomenology stud-
ies.

This article is organized as follows: In Sect. 2, we construct
the LO diquark effective theory (DiET) Lagrangian includ-

ing the kinetic part as well as the terms coupling with weak
and electromagnetic fields. The DiET is also transformed to
HDiET in the heavy diquark limit. In Sect. 3, we derive the
diquark transition currents both from symmetry and tree level
matching. Section 4 focuses on the semi-leptonic decays of
doubly heavy baryons. We perform a reduction of the tran-
sition matrix element, where a universal soft function is fac-
torized out and the q2 distributions of all the six form factors
are completely determined from it. The resulting form factors
are used to predict the semi-leptonic decay widths. Section
5 contains our conclusions.

2 Heavy diquark effective theory

2.1 Effective Lagrangian for scalar and axial-vector diquark

In this section we will construct the DiET at leading
order. The first step is to write down the diquark effective
Lagrangian. We denote the scalar and axial-vector diquark
field as Si and Xi

μ, where i is the 3̄ color index. The free
scalar diquark Lagrangian is simply

LS = 1

2
∂μS

i†∂μSi − 1

2
m2

X S
i†Si . (2)

Here we have assumed that both the scalar and axial-vector
diquark have the same mass mX . On the other hand, to con-
struct the axial-vector diquark Lagrangian, one should be
aware of that Xi

μ is a matter field in the color fundamental
representation 3̄, instead of the adjoint representation which
belongs to the standard gauge fields. Therefore, the axial-
vector diquark field is not required to couple with any con-
served current, and it seems not necessary to construct the
effective Lagrangian with the building blocks of the strength
tensor Fi

μν = ∂μXi
ν −∂νXi

μ as is done for Yang-Mills theory.
Instead, one can write down a general form

LX = a ∂μX
i
ν∂

μXν
i + b ∂μX

i
ν∂

νXμ
i + c Xi

μX
μ
i . (3)

However, note that Xμ has four components while a spin-1
particle has only three physical degrees of freedom. Accord-
ing to the canonical theory, one needs to introduce two
second-class constraints for the Hamiltonian to remove one
redundant canonical variable as well as its conjugate momen-
tum. As a result, one still arrives at a gauge-field-like
Lagrangian

LX = −1

4
Fi†

μνF
μνi + 1

2
m2

X X
i†
μ Xμi , (4)

with an on-shell constraint condition ∂μXiμ = 0.
Since the diquark is composed of two flavored heavy

quarks, it is natural to dress the diquark fields with cer-
tain representation in the flavor space. Notice that in QCD,
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heavy quarks include bottom and charm. If we approximately
assume mb ∼ mc → ∞, the mass matrix for (b, c)T is
almost diagonal so that there exists a flavor SU(2) symmetry
for the heavy quark sector of the QCD Lagrangian. Further-
more, in HQET, the leading power Lagrangian Q̄viv · DQv

is exactly invariant under the flavor SU(2) transformation.
Such a transformation on a multiplet Q = (b, c)T is denoted
as Q = (b, c)T , Q → UQ, U ∈ SU(2). Besides the
SU(2) flavor symmetry, there is also a U(1) symmetry which
corresponds to the electromagnetic (EM) interaction, Q →
UcQ, Uc ∈ U(1), where

Uc = exp [iQ θ ] ∈ U(1), Q =
(−1/3 0

0 2/3

)
. (5)

As an effective theory of QCD, DiET should also reflect
the SU(2) × U(1) symmetry. In the flavor space, a diquark
field can be considered to have the structure qiq j , where
i, j = b or c are flavor indexes. Thus a diquark field should
be represented by a 2 × 2 matrix

S =
(

0 Sbc
−Sbc 0

)
, Xμ =

(
Xbbμ Xbcμ

Xbcμ Xccμ

)
. (6)

Note that the representation for a scalar diquark is anti-
symmetric while the representation for an axial-vector
diquark is symmetric. Under SU(2) × U(1), they transform
as

S → U(c)SU
T
(c), Xμ → U(c)XμU

T
(c),

U(c) ∈ SU(2) or U(1). (7)

With these matrixes as basic building blocks, one can con-
struct a SU(2)×U(1) invariant diquark Lagrangian. An effi-
cient way to realize these symmetries is to apply the spinor
representation for the diquark fields. Following Ref. [51],
one firstly combines the spin-1 and spin-0 diquarks to be a
multiplet, which is described by a bilinear spinor field 	

	 = (Xμγ μ + Sγ5)C, (8)

whereC is the charge conjugating matrix. A reason to choose
such form is due to the Lorentz covariance. Under a general
Lorentz transformation Xμ → �

μ
ν Xν , one can show that 	

does transform in the expected manner, 	 → �1/2 	 �T
1/2.

In addition, in momentum space the equation of motion of
the two constituent heavy quarks yakes the form /vd 	 =
	 /vTd = 	. Note that since the diquark is treated as a point-
like particle, both the two constituent heavy quarks and the
diquark itself share a common velocity vd , so that it is rea-
sonable to operate with the same slash /vd on the both sides
of 	. Therefore, we can define 	′

	′(vd) = 1 + /vd

2
	(vd)

1 + /vTd

2

= 1 + /vd

2

[
Xμ(vd)γ

μ + S(vd)γ5
]
C

= 1 + /vd

2
	(vd). (9)

To obtain the second equality we have used the on-shell con-
straint vd · X (vd) = 0. After transforming 	′(vd) into coor-
dinates space, we can define a multiplet field K (x) as

K (x) = i /∂ + mX

2mX
	(x),

K̄ (x) = γ 0K †(x)γ 0 = 	̄(x)
−i

←−
/∂ + mX

2mX
, (10)

where 	̄(x) = γ 0	†(x)γ 0. According to Eq. (7), under
SU(2) × U(1) transformation, K and K̄ transform in the
same manner as S, Xμ and S†, Xμ†. Therefore the kinematic
Lagrangian of DiET is just the simplest globally SU(2) ×
U(1) invariant Lagrangian constructed by K , K̄ , mX and
one derivative operator

Lkin
Di ET = 1

2
mXTr

[
K̄ (i /∂ − mX )K

]
, (11)

where the trace acts in both flavor and spinor spaces.
Expressed in terms of Xμ and S, the kinematic Lagrangian
takes the form of a combination of a spin-1 part and a spin-0
part

Lkin
Di ET = −1

2
Tr f

[
∂νX

†
μ∂νXμ − m2

X X
†
μX

μ
]

+ 1

2
Tr f

[
∂μS

†∂μS − m2
X S

†S
]
, (12)

where Tr f only acts in the flavor space. Compared with
Eq. (4), this equation has no ∂μX†

ν∂
νXμ term. The reason

is that in the heavy quark limit, the diquark field is a very
massive field, which is approximately on shell and satisfies
the constraint ∂μXμ = 0.

Next, let us consider how the diquark field couples to exter-
nal sources. At the quark level, the weak and the EM coupling
come from the coupling terms in QCD

Lcou
QCD = Q̄ j

[
Vμγμ(1 − γ5) + Aμγμ

]
j i Qi = Tr

[
QQ̄ J

]
,

(13)

where i, j = b or c are flavor indexes, Vμ = V a
μT

a ,
Aμ = Aem

μ Q and Ji j = Vμ
i j γμ(1−γ5)+ Aμ

i jγμ = Li j + Ai j .
The trace acts in both flavor and spinor spaces. Note that this
coupling term is invariant under SU(2) × U(1) transforma-
tions if J is assumed to transform as J → U(c) JU

†
(c). There-

fore, at the diquark level, the simplest global SU(2) × U(1)

invariant coupling terms with external source J transforming
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in this way are

Lcou
Di ET = λ1

2
mXTr[K̄ J K ] + λ2

2
mXTr[K̄ K J T ]. (14)

Here, λ1 and λ2 are two independent coupling constants.
After being expressed in terms of Xμ and S, the coupling
Lagrangians of the X-J-X, S-J-X, X-J-S and S-J-S types are
given by

LX J X = −i Tr f
[
F†

νμ〈Jμ, Xν〉+ − X†
ν〈Jμ, Fνμ〉+

+i F̃†
μν〈Vμ, Xν〉+ − i X†

ν〈Vμ, F̃νμ〉+
]
, (15)

LSJ X = 1

mX
Tr f

[
∂νS

†〈Vμ, Fνμ〉−
+i ∂νS

†〈Jμ, F̃νμ〉− + m2
X S

†〈Vμ, Xμ〉−
]
, (16)

LX J S = 1

mX
Tr f

[
F†

νμ〈Vμ, ∂νS〉−
−i F̃†

μν〈Jμ, ∂νS〉− + m2
X X

†μ〈Vμ, S〉−
]
, (17)

LSJ S = −i Tr f
[
∂μS

†〈Jμ, S〉+ − S†〈Jμ, ∂μS〉+
]
, (18)

Lcou
Di ET = LX J X + LSJ X + LX J S + LSJ S, (19)

where Tr f only acts in the flavor space and Jμ = Vμ + Aμ.
F̃μν = 1

2εμναβFαβ is the dual field strength tensor. We have
also defined two kinds of commutators in the flavor space

〈A, B〉± = λ1

2
A B ± λ2

2
B AT . (20)

2.2 Heavy diquark effective theory (HDiET)

A diquark in the color 3̄ representation interacts with gluons
in a similar way as a an anti-quark. Replacing the ordinary
derivatives in Eqs. (2) and (4) with covariant derivatives, one
can introduce the coupling of a diquark and a gluon

LS = 1

2
(DμS)i†(DμS)i − 1

2
m2

X S
i†Si , (21)

LX = −1

2

[
(DμXν)

i†(DμXν)i − (DμXν)
i†(DνXμ)i

]

+ 1

2
m2

X X
i†
μ Xμi , (22)

where Dμ = ∂μ − igd Aa
μ t̄

a , gd is the effective coupling
constant between the diquark and the gluon. In the heavy
diquark limit, to expand the Lagrangian in power of 1/m2

X ,
one has to separate the diquark field into a static part and a
residual part as is done in with the heavy quark in HQET.

For the case of scalar diquark, the 1/m2
X expansion

is trivial. By factorizing out an exponential phase S =
exp[−imXv · x]Sv , with v the four velocity of the baryon,

Eq. (21) becomes

LS = imX S
†
vv · DSv − 1

2
S†
v D

2Sv. (23)

Note that each covariant derivative scales as �QCD . Thus in
the heavy diquark limit, the second term in Eq. (23) is sup-
pressed by �QCD/mX compared with the first term. Further-
more, at the leading order, Sv is massless and its propagator
is simply

DS(k) = i

mXv · k . (24)

In case of an axial-vector diquark, just factorizing out an
exponential phase is not enough. In the heavy diquark limit,
one has to separate Xμ into a static part exp[−imXv · x]Xμ

v

which satisfies v · Xv = 0 instead of vd · Xv = 0, as well
as a residual part exp[−imXv · x]Yμ

v , which is suppressed
as Yμ

v ∼ (�QCD/mX )Xμ
v . Also note that both Xμ

v and Yμ
v

are dominated by the small momentum k ∼ �QCD . Let us
introduce two projection operators Pμ

ν and Tμ
ν ,

Pμ
ν = δμ

ν − vμvν, Tμ
ν = vμvν,

Pμ
ν + Tμ

ν = δμ
ν, Pμ

ν P
ν
σ = Pμ

σ , Tμ
ν T

ν
σ = Tμ

σ ,

Pμ
νT

ν
σ = vμP

μ
ν = 0. (25)

Using the projection operators, one can project out the static
part Xμ

v and the residual part Yμ
v of the heavy axial-vector

diquark field Xμ

Xμ
v = eimX v·x Pμ

ν X
ν, Yμ

v = eimX v·x Tμ
ν X

ν, (26)

which satisfy v · Xv = 0 and (· · · Xμ
v )†(· · · Yvμ) =

(· · · Yμ
v )†(· · · Xvμ) = 0, where the dots represent any possi-

ble insertion of covariant derivatives. Then the full diquark
field can be separated as

Xμ = e−imX v·x (Xμ
v + Yμ

v ). (27)

Inserting Eq. (27) into Eq. (22), and using integration by part←−
D = −D to make all the covariant derivatives act on the
X,Y fields instead of the X†,Y † fields, one finally arrives at

LX = −imX X†
vμv · DXμ

v

+ 1

2
X†

vμ

(
D2gμν − DνDμ

)
Xvν − imXY

†
vμ

[
gμν(v · D)

− 1

2

(
vνDμ + vμDν − imXvμvν

)

+ i

2mX

(
D2gμν − DνDμ

)]
Yvν

+ i

2
mX X†

vν

(
vμDν + i

mX
DμDν

)
Yvμ

+ i

2
mXY

†
vν

(
vνDμ + i

mX
DμDν

)
Xvμ. (28)
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From the Lagrangian Eq. (28), one finds that Xμ
v is a massless

field, while Yμ
v is massive due to the non-diagonal mass term

−(m2
X/2)vμvνY †

vμYvν . To obtain an effective theory contain-
ing only the massless field Xμ

v , one needs to integrate out the
heavy degree of freedom Yμ

v . One way to realize this is to
use the saddle point approximation, where one first solves
the equation of motion of the heavier field Yμ

v while keeping
Xμ

v fixed. The solution is

[
gμν(v · D) − 1

2

(
vνDμ + vμDν − imXvμvν

)

+ i

2mX
(D2gμν − DνDμ)

]
Yvν

= 1

2

(
vμDν + i

mX
DνDμ

)
Xvν. (29)

It is not simple to solve this matrix equation directly. To
simplify it, we can multiply with vμ on both sides of the
equation

[
ivμ + vμ(v · D) − Dμ

mX
+ i

D2vμ − Dμ(v · D)

m2
X

]
Yvμ

=
[
Dμ

mX
+ i

Dμ(v · D)

m2
X

]
Xvμ, (30)

and introduce a power counting scheme to solve this equation
perturbatively. Note that each covariant derivative D scales
as �QCD which is small compared to mX . So by counting
the number of κ = D/mX , we can conclude that

vμ ∼ O(1); vμ(v · D) − Dμ

mX
,
Dμ

mX
∼ O(κ);

D2vμ − Dμ(v · D)

m2
X

,
Dμ(v · D)

m2
X

∼ O(κ2). (31)

Since Yμ
v is orthogonal to Xμ

v , Yμ
v cannot involve a term like

const × Xμ
v . The solution of Eq. (30) up to O(κ3) is given

as:

Yμ
v = − i

mX
vμDνX

ν
v + 1

m2
X

DνD
μXν

v + O(κ3). (32)

After inserting this solution ofYμ
v back to Eq. (28), one finally

obtains the effective Lagrangian in the form of a power expan-
sion

LX = −imX X
†
vμv · DXμ

v + 1

2
X†

vμD
2Xμ

v + i

2
gd X

†
vμḠ

μνXvν

+ i

2mX
X†

vμ

{
DμDν, v · D}

Xvν + O (
1/m2

X

)
, (33)

where Ḡμν = Ga
μν t̄

a is the gluon tensor. In the Eq. (33),
the second term represents the heavy diquark kinetic energy

while the third term corresponds to the chromomagnetic cou-
pling. These two terms are consistent with those given in
Refs. [43,52–54], where a non-relativistic approach is used.
The propagator of the massless heavy axial-vector diquark is

Dμν
X (k) = −i

mXv · k (gμν − vμvν). (34)

The heavy diquark can only couple to soft gluons. Through
the following field redefinition, one can decouple the diquark
field from gluon field:

Xvμ = P
{

exp
[
ig

∫ v·x
−∞

ds v · A(s)
]}

X̃vμ = W
[ x
v

]
X̃vμ,

Sv = W
[ x
v

]
S̃v. (35)

(v · D)Xμ
v = W

[ x
v

]
(v · ∂)X̃μ

v , (v · D)Sv = W
[ x
v

]
(v · ∂)S̃v.

(36)

Using the decoupling transformation, one can replace all
the covariant derivatives in Eq. (33) by ordinary derivatives,
while the X field should be replaced by the dressed field X̃ .

3 Heavy to heavy baryonic transitions

3.1 Diquark transition currents from symmetry

When using DiET to study doubly heavy baryon decays
BbQ → BcQlν, for instance when the bb diquark turns into
the bc diquark through the V − A current c̄γμ(1 − γ5)b, or
electromagnetic transitions BQ1Q2 → BQ1Q2γ

∗ induced by
the vector current Q̄γμQ, one needs to express the corre-
sponding currents in terms of the diquark fields instead of
the heavy quark fields. Particularly, if we approximate the
diquark as a point like particle, we require the four most
general kinds of diquark currents

X†
α�αβ

μ [←−∂ , ∂]Xβ, S†�β
μ[←−∂ , ∂]Xβ,

X†
β�β

μ[←−∂ , ∂]S and S†�μ[←−∂ , ∂]S, (37)

which correspond to pure axial-vector, axial-vector to scalar,
scalar to axial-vector and pure scalar transitions. Note that
�

αβ
μ , �

β
μ and �μ depend on the momentum of the initial and

final diquarks. In the heavy diquark limit we can simply
replace the

←−
∂ , ∂ with the four-velocities of the final and

initial baryons imXv2, −imXv1, with w = v1 · v2 close to 1
for the low recoil region.

Consider first the case of V − A weak current c̄γμ(1 −
γ5)b. According to Eq. (13), it is just a current coupling to
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the external source V 1
μ + iV 2

μ , which can be found from the
expansion

Tr
[
QQ̄L

] = c̄γ μ(1 − γ5)b (V 1
μ + iV 2

μ)

+ b̄γ μ(1 − γ5)c (V 1
μ − iV 2

μ)

+ [
b̄γ μ(1 − γ5)b − c̄γ μ(1 − γ5)c

]
V 3

μ. (38)

Straightforwardly, one can conclude that the c̄γμ(1 − γ5)b
current can be produced by operating with a derivative on the
part of the Lagrangian of QCD that contains the couplings to
the external fields

c̄γμ(1 − γ5)b = ∂

∂(Vμ
1 + iVμ

2 )
Lcoup
QCD . (39)

On the other hand, on the diquark level, if one performs the
same derivative operation on the DiET Lagrangian Eq. (15–
19), one arrives at the V − A currents in the DiET form

J Transi tionμ = ∂

∂(Vμ
1 + iVμ

2 )
[LX J X + LSJ X + LX J S + LSJ S] .

(40)

Explicitly for X → X , X → S and S → S transitions, one
has

J X→X
μ = −1

2
(λ1 + λ2)

[
i
(
∂νX

†
bcμX

ν
bb − ∂μX

†
bcνX

ν
bb

−X†
bcν∂

νXbbμ + X†
bcν∂μX

ν
bb

)

− εαβμρ

(
∂ρX†α

bc X
β
bb − X†α

bc ∂ρXβ
bb

)
+ (bc → cc)

]
,

(41)

J X→S
μ = − 1

2mX
(λ1 + λ2)

(
∂νS

†
bc∂

νXbbμ

−∂νS
†
bc∂μX

ν
bb + m2

X S
†
bcXbbμ

)

+ i

2mX
(λ1 + λ2)ερμσβ∂ρS†

bc∂
σ Xβ

bb, (42)

J S→X
μ = − 1

2mX
(λ1 + λ2)

(
∂μX

†
ccν∂

νSbc

−∂νX
†
ccμ∂νSbc − m2

X X
†
ccμSbc

)

− i

2mX
(λ1 + λ2)εαρμσ ∂ρX†α

cc ∂σ Sbc. (43)

Note that the antisymmetric S has only one non-vanishing
component Sbc, for flavor changing processes b → c there is
no S → S transition. Similarly, the electromagnetic currents
ITransition
μ can be derived by acting with a derivative on Aμ

em ,

ITransition
μ = ∂

∂Aμ
em

[LX J X + LSJ X + LX J S + LSJ S] , (44)

I X→X
μ = − i

4
CX (λ1 + λ2)

(
∂†νXμXν − ∂μX

†
νX

ν

−X†
ν∂

νXμ + X†
ν∂μX

ν
)

, (45)

I X→S
μ = − i

2mX
ερμαβ(λ1 + λ2)∂

ρS†
bc∂

αXβ
bc, (46)

I S→V
μ = − i

2mX
εαρμβ(λ1 + λ2)∂

ρX†α
bc ∂β Sbc, (47)

I S→S
μ = − i

6
(λ1 + λ2)

(
∂μS

†
bcSbc − S†

bc∂μSbc
)

, (48)

where CX is the total electric charge of X . It should be
mentioned that all the currents in Eqs. (41–43, 45–48) are
expressed by the full diquark fields. These expressions are
simpler in the heavy diquark limit. According to Eqs. (27)
and (32), the full diquark fields X, S are related with the
effective ones Xv, Sv in HDiET as

S = e−imX v·x Sv, Xμ = e−imX v·x
(
Xμ

v − i

mX
vμDνX

ν
v

)
.

(49)

Inserting Eq. (49) into Eqs. (41–43, 45–48), at leading order,
all the derivative operators are simply replaced by the corre-
sponding four velocities

J X→X
μ = � X†α

(v)cQ

[
gμαv2β + v1αgμβ − (v1μ + v2μ)gαβ

+iεαβμρ(v
ρ
2 + v

ρ
1 )

]
Xβ

(v)bQ, (50)

J X→S
μ = −� S†

(v)bc

[
(1 + w)gμβ

−v1μv2β − iερμσβv
ρ
2 vσ

1

]
Xβ

(v)bb, (51)

J S→X
μ = −� X†α

(v)cc

[−(1 + w)gμα + v2μv1α

−iερμσαv
ρ
2 vσ

1

]
S(v)bc, (52)

I X→X
μ = 1

2
CX� X†α

(v)

[
gμαv2β − v2μgαβ

+v1αgμβ − v1μgαβ

]
Xβ

(v), (53)

I X→S
μ = � S†

(v)bc

[−iερμσβv
ρ
2 vσ

1

]
Xβ

(v)bc, (54)

I S→X
μ = � X†α

(v)bc

[
iερμσαv

ρ
2 vσ

1

]
S(v)bc, (55)

I S→S
μ = 1

3
� S†

(v)bc

[
v2μ + v1μ

]
S(v)bc, (56)

where � = (λ1 + λ2)mX . Similarly one can obtain the cur-
rents at next-to-leading order if the second expansion term
of Xμ in Eq. (49) is used, but the results will not be shown
explicitly here.

It should be mentioned that like the chromomagnetic cou-
pling in the Eq. (33), one can also introduce the magnetic
couplings of the axial-vector diquark as those given in Ref.
[43] by NRQCD. Such a term will contribute an extra EM
current suppressed by 1/mX in Eqs. (53–56).
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k

l
Vµ mcv2mbv1

mQv1 mQv2

(a, i)

(c,m)

(b, j)

(d, n)

Vµ mcv2mbv1

mQv2mQv1

(a) (b)

Fig. 1 Diquark transition at the quark level. Single gluon exchanges between the two heavy quarks are explicitly shown, with the quantum numbers
of the quarks are denoted as (spinor index, color index)

3.2 Diquark transition currents from matching

When the recoil is small, to derive the diquark transition cur-
rents from symmetries we can assume the diquark as a point-
like particle without any internal structure. Therefore, the
currents we get in Eqs. (41–43, 45–48) are only proportional
to the constant couplings λ1, λ2. On the other hand, if the
recoil is large, we should consider finite sized diquarks where
the transition is dominated by hard internal gluon exchange
which can be factorized into short distance coefficients. One
way to obtain these short distance coefficients is to perform a
matching between DiET and QCD in the large recoil region,
where at the quark level one may factorize out a hard ker-
nel, with its tree level form shown in Fig. 1. A hard gluon is
exchanged between the two heavy quarks so that the recoil
is large, q2 close to zero, and Vμ = γμ or γμγ5 is the current
vertex.

The calculation of the two diagrams in Fig. 1 is straight-
forward. However, although at tree level we can set the initial
and final quarks to be free, the two quark spins are coupled
so that the total spin should match with the corresponding
diquark spin. Particularly, to match with a scalar or axial-
vector diquark, the spinor indexes of the two quarks should be
symmetrical or anti-symmetrical. Consider first the X → X
transition. By equating the velocities of the initial and final
two quarks to be v1 and v2 respectively, the amplitude of the
two diagrams in Fig. 1 reads

MQCD = −g2
d t

A
i j t

A
mn

1

4m3
c(1 − w)2 ū

{a
(c)[i ū

c}
(Q)m]

{ [Vμ

(
/v1

−ξ1/v2 + 1 − ξ1
)
γ ν

]
ab (γν)cd

+ [
γ ν

(
/v2 − ξ2/v1 + 1 − ξ2

)Vμ

]
ab(γν)cd

}
u{b

(b)[ j u
d}
(Q)n],

(57)

where a, b, c, d are spinor indices, and i, j,m, n are color
indices. Further, ξ1 = mQ/(mQ +mb) and ξ2 = mQ/(mQ +
mc). For the finite-sized diquark, the corresponding weak
transition amplitude is

MDiET = X†
α(v2)�

αβ
μ [v1, v2] Xβ(v1). (58)

Here, X†(v2), X (v1) should be treated as the polarization
vectors of the final and initial diquarks, and �

αβ
μ [v1, v2] rep-

resents the hard kernel. Explicitly, the diquark wave function
can be composed of two heavy quark spinors as

Si (v) = NSε
i jk Q1 jβ(v)Q2kγ (v)[Cγ5(1 + /v)]βγ ,

Xi
μ(v) = NXεi jk Q1 jβ(v)Q2kγ (v)[Cγμ(1 + /v)]βγ ,

where i, j, k and β, γ are color and spinor indices, respec-
tively, and NS, NX are normalization factors. Inserting
Eq. (59) into Eq. (58) and factorizing an independent color
factor C δkl , one arrives at

MDiET = NXc NXb ū
i{a
(c) ū

c} j
(Q)εi jk[(1 + /v2)γαC]ac

×
(
�αβ

μ × C δkl

)
[Cγβ(1 + /v1)]bdεlmnu{b

(b)mu
d}
(Q)n .

(59)

The tree level matching demands the equivalence of the
amplitudes at the quark and the diquark level MQCD =
MDiET, thus we can determine the hard kernel as

�αβ
μ = g2

d

32NXbQ NXcQm
3
Q(1 − w)2

×
{

tr
[
γ αVμ

(
/v1 − ξ1/v2 + 1 − ξ1

)
γ β

]

+ tr
[
γ α

(
/v2 − ξ2/v1 + 1 − ξ2

)Vμγ β
] }

, (60)

and the color factor is C = −1/3. Similarly, for X → S and
S → X transitions, we have

�β
μ[X → S] = g2

d

32NXbQ NScQm
3
Q(1 − w)2

×
{

tr
[
γ5Vμ

(
/v1 − ξ1/v2 + 1 − ξ1

)
γ β

]

+ tr
[
γ5

(
/v2 − ξ2/v1 + 1 − ξ2

)Vμγ β
] }

,

(61)
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�α
μ[S → X ] = g2

d

32NSbQ NXcQm
3
Q(1 − w)2

×
{

tr
[
γ αVμ

(
/v1 − ξ1/v2 + 1 − ξ1

)
γ5

]

+ tr
[
γ α

(
/v2 − ξ2/v1 + 1 − ξ2

)Vμγ5
] }

.

(62)

Particularly, for the V − A currents, where Vμ = γμ or γμγ5,
the hard kernels are

�
αβ

μ(V ) = − g2
d

8NXbQ NXcQm
3
Q(1 − w)2

[
(ξ1 + 1)v

β
2 g

α
μ

+ (ξ1 − 1)v2μg
αβ − (ξ1 + 1)vα

2 g
β
μ

− (ξ2 + 1)v
β
1 g

α
μ + (ξ2 − 1)v1μg

αβ + (ξ2 + 1)vα
1 g

β
μ

]
,

(63)

�
αβ

μ(A) = − g2
d

8NXbQ NXcQm
3
Q(1 − w)2

iεαβ
μσ

× [
(ξ1 − 1)vσ

2 + (ξ2 − 1)vσ
1

]
, (64)

�
β

μ(V )[X → S] = �
β

μ(V )[S → X ] = 0, (65)

�
β

μ(A)[X → S]

= − g2
d

8NXbQ NScQm
3
Q(1 − w)2

(2 − ξ1 − ξ2) g
β
μ, (66)

�
β

μ(A)[S → X ]

= g2
d

8NSbQ NXcQm
3
Q(1 − w)2

(2 − ξ1 − ξ2) g
α
μ. (67)

For the EM currents, the X → X , X → S and S → X
currents have the same hard kernel as those of the V − A
currents except for the replacements mb → mQ′ ,mc →
mQ′ . However, the S → S EM current is

�μ(EM)[S → S] = − g2
d

8NSbQ NScQm
3
Q(1 − w)2

× [
(ξ1 − 1)v2μ + (ξ2 − 1)v1μ

]
. (68)

Note that the structures shown in Eqs. (63–68) are different
from those in Eqs. (41–48). Such differences can be under-
stood because the singular point w = 1 appearing in the
Eqs. (63–68) implies that they are only valid in the large
recoil region w → wmax .

4 Semi-leptonic decays of doubly heavy baryons

4.1 Interpolating fields

In this section we will focus on semi-leptonic decays of dou-
bly heavy baryons, BbQ → BcQ�ν̄. The transition matrix
element of the doubly heavy baryon can be calculated by the
reduction formula

〈BcQ(Pc)|Jμ(0)|BbQ(Pb)〉 = L(Pb, Pc)

×
∫

d4xd4y ei Pc·xe−i Pb·y〈0|T�cQ(x)Jμ(0)�
†
bQ(y)|0〉,

(69)

where Jμ is the current inducing the weak decay. L(Pb, Pc) is
the operator to pick out the initial and final mass pole residues

L(Pb, Pc) = lim
P2
b →M2

b

(P2
b − M2

b ) lim
P2
c →M2

c

(P2
c − M2

c ). (70)

�cQ(x) and �bQ(x) are the interpolating fields of the final
and initial baryon. Equation (69) can be expressed both at
the quark level and the diquark level. At the quark level,
Jμ = c̄γμ(1 − γ5)b, and

�Q1Q2(x) = NQ1Q2ε
i jk χ̄αβγ qiα(x)Q1 jβ(x)Q2kγ (x),

�
†
Q1Q2

(x) = NQ1Q2εi jkχαβγ Q̄
iγ
2 (x)Q̄ jβ

1 (x)q̄kα(x), (71)

where χ are the Bargmann-Wigner wave functions [55],
where the total spin contributed by the two heavy quarks is
j . For a spin-1/2 doubly heavy baryon with j = 0 or j = 1,
and a spin-3/2 baryon with j = 1, they are

χ
1/2(0)
αβγ = χ

1/2(0)
α{βγ } = 1

2
uα[(1 + /v)γ5C]βγ ,

χ
1/2(1)
αβγ = χ

1/2(1)
α{βγ } = 1

2
[(γ μ + vμ)γ5u]α[(1 + /v)γμC]βγ ,

χ
3/2
αβγ = χ

3/2
{αβγ } = uμ

α [(1 + /v)γμC]βγ . (72)

The symmetry indices β, γ project out the spin-1 configura-
tion of the two heavy quarks. The conjugate forms are defined
as χ̄αβγ = (γ0)

αα′
(γ0)

ββ ′
(γ0)

γ γ ′
χαβγ . χαβγ satisfies

(/v − 1)α
′

α χα′βγ = (/v − 1)
β ′
β χαβ ′γ = (/v − 1)γ

′
γ χαβγ ′ = 0,

χ
1/2
α{βγ } + χ

1/2
β{γα} + χ

1/2
γ {αβ} = 0. (73)

On the other hand, we can equivalently express Eq. (69) at
diquark level, with the assumption that the spin-0 and spin-1
heavy diquark field is composed of two heavy quark fields

Si (x) = NSQ1Q2
εi jk Q1 jβ(x)Q2kγ (x)[Cγ5(1 + /v)]βγ ,

(74)
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Xi
μ(x) = NXQ1Q2

εi jk Q1 jβ(x)Q2kγ (x)[Cγμ(1 + /v)]βγ .

(75)

Thus the interpolating field of a doubly heavy baryon can be
expressed by the combination of a diquark field and a light
quark field

�
1/2(0)
Q1Q2

(x) = N 1/2(0)
Q1Q2

NSQ1Q2

1

2
ūαqiα(x)Si (x), (76)

�
1/2(1)
Q1Q2

(x) = N 1/2(1)
Q1Q2

NXQ1Q2

1

2
[ūγ5(γ

μ + vμ)]αqiα(x)Xi
μ(x),

(77)

�
3/2
Q1Q2

(x) = N 3/2
Q1Q2

NXQ1Q2

ūμ,αqiα(x)Xi
μ(x). (78)

In fact, these normalization factors are related by the heavy
flavor symmetry, which leads to

N 1/2(1)
Q1Q2

→ N 1/2(1), N 1/2(0)
Q1Q2

→ N 1/2(0), N 3/2
Q1Q2

→ N 3/2,

NXQ1Q2
→ NX , NSQ1Q2

→ NS . (79)

However, the relation between NX and NS as well as the rela-
tion among N 1/2, N 1/2(0) and N 3/2 are not obvious. Accord-
ing to Eqs. (74) and (75), we can write the spinor structure
of the scalar and axial-vector diquarks in momentum space
as

Sss
′
(v) = NSu

s
1β(v)us

′
2γ (v)[Cγ5(1 + /v)]βγ ,

Xss′
μ (v) = NXu

s
1β(v)us

′
2γ (v)[Cγμ(1 + /v)]βγ . (80)

Here, we have omitted the color indices. s, s′ denote the helic-
ity of the spinors u1, u2, in order. Since Xss′

μ has three inde-

pendent degrees of freedom, while Sss
′

has only one degree
of freedom, we can derive the following relation
∑
ss′

S†ss′(v)Sss
′
(v) = 1

3

∑
ss′

gμνX†ss′
μ (v)Xss′

ν (v), (81)

where the sum of all the helicity indices is equivalent to
counting the total degrees of freedom. The relations among
N 1/2(1), N 1/2(0) and N 3/2 can be determined by a similar
approach. We transform Eqs. (76–78) into the spinor struc-
ture in momentum space

�
1/2(0)

rlss′ (v) = N 1/2(0)

NS

1

2
ūr (v)ul(v)Sss

′
(v), (82)

�
1/2(1)

rlss′ (v) = N 1/2(1)

NX

1

2
ūr (v)γ5(γ

μ + vμ)ql(v)Xss′
μ (v),

(83)

�
3/2
rlss′(v) = N 3/2

NX
ūμ,r (v)ul(v)Xss′

μ (v), (84)

where r, l, s, s′ denote the helicities. Since a spin-1/2 particle
has two degrees of freedom while a spin-3/2 particle has four,
we require the following relations∑
rlss′

�
1/2(0)†
rlss′ (v)�

1/2(0)

rlss′ (v) =
∑
rlss′

�
1/2†
rlss′(v)�

1/2
rlss′(v)

= 1

2

∑
rlss′

�
3/2†
rlss′(v)�

3/2
rlss′(v).

(85)

Finally, according to Eqs. (81) and (85) we arrive at

NS = √
2NX , N 1/2(0) = √

6N 1/2(1),

N 3/2 =
√

3

2
N 1/2(1), (86)

where the following properties have been used

/v u = u, /v uμ = uμ, vμu
μ = 0,∑

l

ul ūl = 1 + /v,
∑
r

ūμ,r urμ = 2
∑
r

ūr ur . (87)

It should be mentioned that the spinors used here are rescaled
from the standard ones as

√
mQu = uQCD. However, as long

as we also choose rescaled states as
√
mQ | · · · 〉 = | · · · 〉QCD,

this will never affect our calculations.

4.2 Transition matrix element

With DiET, the transition matrix element defined in Eq. (69)
can be calculated at the diquark level. Further, in the heavy
diquark limit, utilizing the technique given in Ref. [56], we
can reduce the transition matrix element so that it will depend
on less unknown form factors. Consider first the case of
B1/2(1)
bQ → B1/2(1)

cQ . The flavor changing current is

Jb→c
μ = X†(c)

ρ, j [�ρσ
μ (

←−
∂ , ∂)] jk X (b)k

σ , (88)

where j, k are color indices. [�ρσ
μ ] jk can be factorized as

�
ρσ
μ × Cδ

j
k , and C = −1/3 is given in the last section from

matching. To leading power of 1/m2
X , one can approximate

the Xμ field as Xvμ, so that the
←−
∂ , ∂ in Eq. (88) can be

replaced with imXv2, −imXv1. According to the reduction
formula Eq. (69), the transition matrix element in DiET is

〈B1/2(1)
cQ (Pc)|Jb→c

μ (0)|B1/2(1)
bQ (Pb)〉

= (N 1/2(1))2

N 2
X

L(Pb, Pc)
∫

d4xd4y ei(Pc−mXc v2)·x e−i(Pb−mXb v1)·y

× χ̄ (c)
α,aχ

(b)
β,bC〈0|T {

Xα,i
v2(c)(x)q

a
i (x)

X†(c)
v2ρ, j (0)�ρσ

μ X (b) j
v1σ (0) X†β

v1(b)l(y)q̄
l,b(y)

}|0〉, (89)
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where a, b are Dirac indices, while i, j, k, l are color
indices. v1 and v2 are is four-velocity of the initial and the
final baryon, respectively. Using the decoupling transforma-
tion defined in Eq. (35), and noting that the X̃vμ fields are
totally decoupled from the soft gluons and also the light
quarks, one can factorize the time-ordered matrix element
in Eq. (89) to be

〈0|T
{
W

[ x
v2

]i
i ′
W−1

[ 0
v2

] j ′

j
W

[ 0
v1

] j

k′W
−1

[ y
v1

]l ′
l
qai (x)q̄l,b(y)

}
|0〉

× 〈0|T {
X̃α,i ′

v2(c)(x)X̃
†(c)
v2ρ, j ′ (0)

}|0〉�ρσ
μ 〈0|T {

X̃ k′
v1σ(b)(0)X̃†β(b)

v1l ′ (y)
}|0〉.

(90)

The last two matrix elements in Eq. (90) can be calculated
directly from the free diquark propagator Eq. (34). Using the
fact that χ̄

(c)
α,av

α
2 = χ

(b)
β,bv

β
1 = 0, one has

〈BcQ(Pc)
1/2(1)|Jb→c

μ (0)|B1/2(1)
bQ (Pb)〉

= −C
(N 1/2(1))2

N 2
X

1

4mXcmXb

L(Pb, Pc)
∫

d4kd4q[ūγ5(γα

+ v2α)]a�αβ
μ [(γβ + v1β)γ5u]b

× M(k, q; v2, v1)
ab 1

v2 · (Pc − mXv2 − k)

× 1

v1 · (Pb − mXv1 + q)
. (91)

The dynamics of the light degrees of freedom is completely
encapsulated in the following Fourier transformed soft func-
tion

M(k, q; v2, v1)
ab =

∫
d4k

(2π)4

d4q

(2π)4 e
−ik·x e−iq·y

×
〈
0|T

{
W

[ x
v2

]i
i ′
W−1

[ 0
v2

]i ′
j
W

[ 0
v1

] j

k′W
−1

[ y
v1

]k′

l
qai (x)q̄l,b(y)

}
|0

〉
.

(92)

Next, we need to extract the residues of the mass poles
by applying the operator L(Pb, Pc) on the correlation func-
tion. Near the mass shell, the external momenta PQ can be
parameterized as

PQ = MQ(1 + εQ)vQ + MQε⊥, (ε⊥ · vQ = 0)

L(PQ) = lim
ε→0

(P2
Q − M2

Q) = lim
ε→0

(2εQ + ε2⊥)M2
Q . (93)

Although the decoupling transformation Eq. (35) realizes
the factorization as shown in Eq. (90), there still exist non-
perturbative interactions between the heavy and light degrees
of freedom due to confinement. Such effects have been
absorbed into the momentum distribution of M(k, q; v2, v1).
In other words, the light particles in the baryon always
“know” that they are bound with a heavy diquark. To reflect

the confinement, M(k, q; v2, v1) is assumed to peak at
v2 · k = �̄c, v1 · q = −�̄b, where �̄Q = MQ − mXQ .
Operating with L(PQ) on the denominators, taking the limit
εQ, ε⊥ → 0, and noting that there are no poles of 1/ε2⊥, one
gets

L(Pc)
1

v2 · (Pc − mXcv2 − k)
= 2Mc,

L(Pb)
1

v1 · (Pb − mXbv1 + q)
= 2Mb. (94)

On the other hand, the soft function can be generally
parametrized as∫

d4kd4qM(k, q; v2, v1)
ab = [A(w) + B(w)/v1

+C(w)/v2 + D(w)/v2/v1]ab.
(95)

However, the B(w), C(w), D(w) form factors can be totally
absorbed into the the form factor A(w) since ūcγ5(γα +
v2α)/v2 = ūcγ5(γα + v2α) and /v1(γβ + v1β)γ5u = (γβ +
v1β)γ5u, which leaves only one w-dependent form factor
denoted as A′(w). Explicitly they are related by A′(w) =
F[A(w), B(w),C(w), D(w)]. Thus we have

〈B1/2(1)
cQ (Pc)|Jb→c

μ (0)|B1/2(1)
bQ (Pb)〉

= −C
(N 1/2(1))2M2

N 2
Xm

2
X

× A′(w)[ūγ5(γα + v2α)]�αβ
μ [(γβ + v1β)γ5u], (96)

where the masses are blind to the flavors so that Mb = Mc =
M and mXb = mXc = mX . Similarly, for the 1/2(1) →
1/2(0), 1/2(0) → 1/2(1) and 1/2(1) → 3/2(1) transitions, we
have

〈B1/2(0)
cQ (Pc)|Jb→vcc

μ (0)|B1/2(1)
bQ (Pb)〉

= √
3C

(N 1/2(1))2M2

N 2
Xm

2
X

A′(w) ū�β
μ(γβ + v1β)γ5u, (97)

〈B1/2(1)
cQ (Pc)|Jb→c

μ (0)|B1/2(0)
bQ (Pb)〉

= √
3C

(N 1/2(1))2M2

N 2
Xm

2
X

A′(w) ūγ5(γα + v2α)�α
μu, (98)

〈B3/2(1)
cQ (Pc)|Jb→c

μ (0)|B1/2(1)
bQ (Pb)〉

= −√
3C

(N 1/2(1))2M2

N 2
Xm

2
X

A′(w) ūα�αβ
μ (γβ + v1β)γ5u,

(99)

where Eq. (86) has been used. The unknown function A′(w)

contains all the dynamics of light degrees of freedom, and it
describes the response of the light particles to the changing of
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heavy diquark velocity. Furthermore, A′(w) is totally deter-
mined by the soft function Eq. (92). In fact, this soft function
is a universal quantity which also appears in the HQET anal-
ysis of B → D transition [56], where the Isgur–Wise func-
tion ξ(w) is derived from it in the same way as done here for
A′(w). Explicitly, ξ(w) ∝ F[A(w), B(w),C(w), D(w)].
Thus one can conclude that A′(w) is related to ξ(w) up to
some constant coefficients.

4.3 Phenomenological results for reduced form factors

Generally, the doubly heavy baryon transition matrix element
induced by the V − A current is parametrized by several
independent form factors. For B1/2

bQ → B1/2
cQ it reads

〈B1/2
cQ (Pc)|

(
J Vμ (0) − J A

μ (0)
)

|B1/2
bQ (Pb)〉

= ūcQ(Pc)

[
F1(q

2)γ μ + F2(q
2)Pμ

c + F3(q
2)Pμ

b

]
ubQ(Pb)

−ūcQ(Pc)

[
G1(q

2)γ μ + G2(q
2)Pμ

c + G3(q
2)Pμ

b

]
γ5ubQ(Pb),

(100)

while for B1/2
bQ → B3/2

cQ the parametrization takes the form

〈B3/2
cQ (Pc)|

(
JVμ (0) − J Aμ (0)

)
|B1/2

bQ (Pb)〉

= ūα
cQ(Pc)

[
f ′
1(q2)

Mb
γ μPbα

+ f ′
2(q2)

M2
b

PbαPbμ + f ′
3(q2)

MbMc
PbαPcμ

+ f ′
4(q2)gμα

]
γ5ubQ(Pb) − ūα

cQ(Pc)

[
g′

1(q2)

Mb
γ μPbα

+ g′
2(q2)

M2
b

PbαPbμ + g′
3(q2)

MbMc
PbαPcμ + g′

4(q2)gμα

]
ubQ(Pb).

(101)

However, if we treat such process by HDiET considering
also the heavy flavor symmetry, the number of independent
form factors can be greatly reduced. Especially, by combin-
ing Eqs. (41–43) and Eqs. (96–99), one arrives at

〈B1/2(1)
cQ |J Vμ (0)|B1/2(1)

bQ 〉
= η(w)ū

[
2(1 + w)γμ + vbμ + vcμ

]
u, (102)

〈B1/2(1)
cQ |J A

μ (0)|B1/2(1)
bQ 〉

= η(w)ū
[
2(1 + w)γμ

]
γ5u, (103)

〈B1/2(0)
cQ |J Vμ (0)|B1/2(1)

bQ 〉
= −√

3η(w)ū
[
(1 + w)γμ − vbμ − vcμ

]
u, (104)

〈B1/2(0)
cQ |J A

μ (0)|B1/2(1)
bQ 〉

= √
3η(w)ū

[
(1 + w)γμ

]
γ5u, (105)

〈B1/2(1)
cQ |J Vμ (0)|B1/2(0)

bQ 〉
= √

3η(w)ū
[
(1 + w)γμ − vbμ − vcμ

]
u, (106)

〈B1/2(1)
cQ |J A

μ (0)|B1/2(0)
bQ 〉

= √
3η(w)ū

[
(1 + w)γμ

]
γ5u, (107)

〈B3/2(1)
cQ |J Vμ (0)|B1/2(1)

bQ 〉
= −√

3η(w)ūα

[
(1 + w)gα

μ − vcμvα
b + γμvα

b

]
γ5u,

(108)

〈B3/2(1)
cQ |J A

μ (0)|B1/2(1)
bQ 〉

= √
3η(w)ūα

[
(1 + w)gα

μ − vcμvα
b

]
u, (109)

where only one form factor η(w) is left. This is shared by all
the six matrix elements and η(w) is proportional to the soft
function A′(w)

η(w) = C�
(N 1/2)2M2

N 2
Xm

2
X

A′(w). (110)

The vector transition shown in Eq. (102) is exactly the same
as that given in [47], where the transition matrix element was
derived based on heavy quark-diquark symmetry. However,
Ref. [47] did not give the result for the axial-current transi-
tion. In terms of the complicated factors in Eq. (110), this
is determined through the normalization at the zero-recoil
point w = 1. From Eq. (41), one can find that the vector
current J X→X

μ(V ) is conserved ∂μ J X→X
μ(V ) = 0. This implies the

conservation of diquark number. Thus we can conclude that

〈BcQ(v)|
∫

d3 �x J X→X
0(V ) (�x)|BbQ(v)〉

= 〈BcQ(v)|1|BbQ(v)〉 = 2v0(2π)3δ3(0), (111)

where 1means the diquark number is one. On the other hand,
using Eq. (102), and choosing the rest-frame of BbQ(v), v =
(1, �0), the same matrix element becomes

〈BcQ(v)|
∫

d3 �x J X→X
0(V ) (�x)|BbQ(v)〉

= (2π)3δ3(0)η(1)ū(v)
[
4γ0 + 2v0

]
u(v)

= 12η(1)v0(2π)3δ3(0), (112)

where we have used γ0 = /v and /vu = u. Comparing the
above two equations, one can conclude that η(1) = 1/6.
At the end of last subsection, we have argued that A′(w) ∝
ξ(w). Since ξ(1) = 1, it thus follows that η(1) = (1/6)ξ(1).

However, it is necessary to point out that the reduced
matrix elements Eqs. (102–109) are only applicable in the
region w ∼ 1 or equivalently q2 ∼ q2

max = (Mb − Mc)
2.

In the smaller-q2 region, the large recoil may invalidate the
static dynamics of HDiET. As a result, one cannot argue that
for any w we have η(w) = (1/6)ξ(w), and an appropriate
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extension of the form factors from q2 = q2
max to q2 = 0 is

necessary. Since the transition matrix elements Eqs. (102–
109) are expected to have a lowest-q2 pole at the mass of Bc

meson, it is appropriate to multiply η(w) with single pole
function B(w) with a suitable normalization B(1) = 1,

B

(
w = M2

b + M2
c − q2

2MbMc

)
= 1 − q2

max/m
2
Bc

1 − q2/m2
Bc

. (113)

Finally, we arrive at an explicit expression of the η function

η(q2) = 1

6
ξ

(
M2

b + M2
c − q2

2MbMc

)
1 − q2

max/m
2
Bc

1 − q2/m2
Bc

. (114)

Note that for the practical calculation we have to distinguish
between the different masses Mb, Mc. The Isgur–Wise func-
tion was calculated e.g. in Ref. [57], which has the expression

ξ(w) =
β0/w∫
0

dρ exp

(
�̄ − ρw

τ

)

×
[ 1

2w
φB−(ρ) + (

1 − 1

2w

)
φB+(ρ)

]
, (115)

sD0 = κ2m2
Q + 2κmQβ0, M2 = 2κmQτ, (116)

where �̄ = mB−mb,mQ = mb, κ = mc/mb, sD0 = 6 GeV2

is the effective threshold, while M2 = 3 − 6 GeV2 is the
Borel parameter. In this work, we simply use its center value

M2 = 4.5 GeV2. φB± are the B meson light-cone distribution
amplitudes, which have the form

φB+(ω) = ω

ω2
0

e
− ω

ω0 , φB−(ω) = 1

ω0
e
− ω

ω0 , (117)

where ω0 = (2/3)�̄ [58]. The mass parameters are set as
mb = 4.18 GeV, mc = 1.27 GeV, mB = 5.279 GeV,
mD = 1.869 GeV and mBc = 6.275 GeV. Fig. 2 shows
q2-dependence of the B1/2(1)

bQ → B1/2(1)
cQ ,B1/2(0)

cQ form fac-
tors, where we have redefined the six form factors as

〈BcQ(Pc)|
(
J Vμ (0) − J A

μ (0)
)

|BbQ(Pb)〉

= ūcQ(Pc)

[
γ μ f1(q

2) + iσμν qν

Mb
f2(q

2)

+ qμ

Mb
f3(q

2)

]
ubQ(Pb)

−ūcQ(Pc)

[
γ μg1(q

2) + iσμν qν

Mb
g2(q

2)

+ qμ

Mb
g3(q

2)

]
γ5ub(Pb), (118)

with qμ = Pμ
b − Pμ

c the transferred momentum. The fi and
gi are related to the Fi and Gi as

f1(q
2) = F1(q

2) + 1

2
(Mb + Mc)(F2(q

2) + F3(q
2)),

Fig. 2 q2-dependence of the B1/2
bQ → B1/2

cQ form factors, where Q = b, c
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Fig. 3 q2-dependence of the B1/2(1)
bQ → B3/2(1)

cQ form factors, where Q = b, c

f2(q
2) = 1

2
Mb(F2(q

2) + F3(q
2)),

f3(q
2) = 1

2
Mb(F3(q

2) − F2(q
2)),

g1(q
2) = G1(q

2) − 1

2
(Mb − Mc)(G2(q

2) + G3(q
2)),

g2(q
2) = 1

2
Mb(G2(q

2) + G3(q
2)),

g3(q
2) = 1

2
Mb(G3(q

2) − G2(q
2)), (119)

and here we have g2(q2) = g3(q2) = 0. The masses of
the baryons are mBbb = 10.143 GeV, mB1/2

bc
= 6.943 GeV,

mB3/2
bc

= 6.985 GeV, mB1/2
cc

= 3.621 GeV and mB3/2
cc

=
3.69 GeV. Figure 3 shows theq2-dependence of theB1/2(1)

bQ →
B3/2(1)
cQ form factors, where f ′

2(q
2) = g′

1(q
2) = g′

2(q
2) = 0.

4.4 Semi-leptonic decay widths

Next, using the form factors given in the last section, we
will calculate the semi-leptonic decay widths of B1/2(1)

bQ →
B1/2(1)
cQ ,B1/2(0)

cQ and B3/2(1)
cQ . For the case of B1/2(1)

bQ →
B1/2(1)
cQ ,B1/2(0)

cQ , the formula of the differential decay width
is given in [9,34]

d�L

dq2 = G2
F |VCKM|2q2 p (1 − m̂2

l )
2

384π3M2
1

×
(
(2 + m̂2

l )(|H− 1
2 ,0|2 + |H 1

2 ,0|2)
+3m̂2

l (|H− 1
2 ,t |2 + |H 1

2 ,t |2)
)

, (120)

d�T

dq2 = G2
F |VCKM|2q2 p(1 − m̂2

l )
2(2 + m̂2

l )

384π3M2
1

× (|H 1
2 ,1|2 + |H− 1

2 ,−1|2), (121)

with the helicity amplitudes given as Hλ2,λW = HV
λ2,λW

−
H A

λ2,λW
,

HV
1
2 ,0

= −i

√
Q−√
q2

(
(M1 + M2) f1 − q2

M1
f2

)
,

H A
1
2 ,0

= −i

√
Q+√
q2

(
(M1 − M2)g1 + q2

M1
g2

)
,

HV
1
2 ,1

= i
√

2Q−
(

− f1 + M1 + M2

M1
f2

)
,

H A
1
2 ,1

= i
√

2Q+
(

−g1 − M1 − M2

M1
g2

)
,

HV
1
2 ,t

= −i

√
Q+√
q2

(
(M1 − M2) f1 + q2

M1
f3

)
,

H A
1
2 ,t

= −i

√
Q−√
q2

(
(M1 + M2)g1 − q2

M1
g3

)
,

HV−λ2,−λW
= HV

λ2,λW
,

H A−λ2,−λW
= −H A

λ2,λW
, and Q± = (M1 ± M2)

2 − q2,

(122)

where p = M2
√

w2 − 1 withw = (M2
1 +M2

2 −q2)/2M1M2,
while M1(M2) is the initial(final) baryon mass, m̂l ≡
ml/

√
q2 andml is the lepton mass. For the case ofB1/2(1)

bQ →
B3/2(1)
cQ , the formula for the differential decay width is given

in [23]

d�T

dw
= G2

F

(2π)3 |VCKM|2 q
2M ′2

1

√
w2 − 1

12M

×
(
|H̄ 1

2 ,1|2 + |H̄− 1
2 ,−1|2 + |H̄ 3

2 ,1|2 + |H̄− 3
2 ,−1|2

)
,

(123)

d�L

dw
= G2

F

(2π)3 |VCKM|2 q
2M ′2

1

√
w2 − 1

12M

×
(
|H̄ 1

2 ,0|2 + |H̄− 1
2 ,0|2

)
, (124)
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Table 1 Decay widths of Bbb → Bbc(l/τ)ν. Comparison between the results in this work and those derived in Ref. [9] using the LFQM

Channel �[GeV] (this work) �L/�T (this work) �[GeV] (LFQM) �L/�T (LFQM)

B1/2(1)
bb → B1/2(1)

bc lν 4.1 × 10−14 2.54 3.3 × 10−14 2.32

B1/2(1)
bb → B1/2(1)

bc τν 1.0 × 10−14 2.12

B1/2(1)
bc → B1/2(1)

cc lν 3.2 × 10−14 2.47 4.5 × 10−14 2.48

B1/2(1)
bc → B1/2(1)

cc τν 0.9 × 10−14 2.13

B1/2(1)
bb → B1/2(0)

bc lν 1.8 × 10−14 1.12 1.5 × 10−14 0.91

B1/2(1)
bb → B1/2(0)

bc τν 4.4 × 10−15 0.82

B1/2(0)
bc → B1/2(1)

bb lν 1.4 × 10−14 1.08 1.9 × 10−14 0.95

B1/2(0)
bc → B1/2(1)

bb τν 4.0 × 10−15 0.82

B1/2(1)
bb → B3/2(1)

bc lν 1.2 × 10−14 0.89 6.4 × 10−15 1.43

B1/2(1)
bc → B3/2(1)

cc lν 9.1 × 10−15 0.92 9.0 × 10−15 1.18

with the helicity amplitudes given as

H̄ V,A
3/2,1 = ∓i

√
2M1M2(w ∓ 1) f ′V,A

4 , (125)

H̄ V,A
1/2,1 = i

√
2

3

√
M1M2(w ∓ 1)

[
f ′V,A
4 − 2(w ± 1) f ′V,A

1

]
,

(126)

H̄ V,A
1/2,0 = ±i

1√
q2

2√
3

√
M1M2(w ∓ 1)

×
[
(M1w − M2) f

′V,A
4 ∓ (M1 ∓ M2)(w ± 1) f ′V,A

1

+M ′(w2 − 1) f ′V,A
2 + M(w2 − 1) f ′V,A

3

]
, (127)

where the upper (lower) sign denotes V (A), f Vi = fi ( f Ai =
gi ). The total decay width is the sum of the longitudinal and
the transversal parts

� =
∫ (M1−M2)

2

m2
l

dq2
(
d�L

dq2 + d�T

dq2

)
. (128)

The masses of e, μ are neglected here and mτ = 1.78 GeV.
Table 1 gives the resulting decay widths and also a compar-
ison with those derived in Ref. [9] within light-front quark
model (LFQM). It appears that the two sets of decay width
results are consistent.

5 Conclusions

In summary, we have constructed a heavy diquark effec-
tive theory (HDiET), which satisfies the global heavy quark
flavor SU(2) symmetry and electromagnetic U(1) symme-
try. Imposing these symmetries, we constructed the coupling
terms where the diquark fields interact with the external weak
and electromagnetic sources. Such coupling terms enable us
to obtain the effective diquark transition currents in the small

recoil region. On the other hand, for large recoil, the diquark
transition currents are derived from the matching between
QCD and DiET at tree level. Furthermore, we simpilfied
DiET as HDiET in the heavy diquark limit, from which we
reduced the form factors of the doubly heavy baryon transi-
tion to only one function η(w). The reduced vector matrix
element is the same as those derived by heavy quark-diquark
symmetry in earlier works. In addition, we pointed out that
η(w) is related with the universal soft function which is pro-
portional to the Isgur-Wise function of heavy meson decays.
Thus we obtained the q2-dependence of η(q2) by assum-
ing a monopole structure. Finally, the obtained form factors
are used to predict the semi-leptonic decay widths of dou-
bly heavy baryons, and the results are consistent with those
derived by LFQM in the earlier works.
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