
Eur. Phys. J. C (2020) 80:418
https://doi.org/10.1140/epjc/s10052-020-7947-1

Regular Article - Theoretical Physics

Unitary toy qubit transport model for black hole evaporation

Bogusław Brodaa

Department of Theoretical Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Lodz, Poland
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Abstract In a recent paper Osuga and Page have presented
an explicitly unitary toy qubit transport model for transfer-
ring information from a black hole to the outgoing radiation.
Following their idea we propose a unitary toy model which
involves (fermionic) Hawking states.

1 Introduction

The black hole information (loss) paradox/problem/puzzle
concerns difficulties in answering the question: “Is black hole
evaporation unitary?” Various answers and explanations have
been proposed to date, “for” its unitarity as well as “against”
it (for recent reviews see [1–4]). (The latter possibility, i.e.,
loss of unitarity, presumably requires some radical modifica-
tions of quantum mechanics, and presently this option seems
to be less popular, however see [5]). To analyze the issue of
unitarity in the context of black hole evaporation, the idea of
toy qubit models has been proposed, developed and popular-
ized, especially in [6–10], and nicely reviewed in [11]. Toy
qubit models give a possibility to mimic, in a simplified way,
black hole evolution, and to trace, in detail, their (depending
on the model) breaking or maintaining unitarity.

In a recent paper [12], Osuga and Page have proposed
a strikingly simple toy qubit model demonstrating transfer-
ring information from a black hole to the outgoing radiation,
which is explicitly unitary. Characteristic features of their
model, in particular, include: (i) Hilbert spaces (implicitly)
involved in their analysis are actually fixed, though in their
final state |Ψ1〉 some part is dropped; (ii) the model has a sim-
ple (tensor) product structure (no mixing of different modes
“i”); and most noteworthy, (iii) unitarity of their model is
shown in the most direct way, i.e., a corresponding unitary
operator is explicitly constructed.
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In the present paper, we propose another toy qubit trans-
port model for black hole evaporation, which is also explic-
itly unitary. Additional nice characteristic features include:
(i) precisely (fermionic) Hawking states are involved; (ii)
classical shrinking of a black hole, in quantum formalism,
corresponds to transition to a vacuum state (in the black hole
sector); (iii) primary entanglement (in the Hawking states)
between modes inside and outside of the black hole vanishes.

For reader’s convenience, as well as for ours, we follow
conventions and notation of [12] as closely as possible. In
particular, we denote black hole qubits (once the black hole
forms) by ai , where i = 1, 2, . . . , n, whereas qubits for the
infalling radiation and for the outgoing modes, by bi and ci ,
respectively, where i = 1, 2, . . . , N . For technical simplic-
ity, from now on we confine ourselves to a Schwarzschild
black hole, but this restriction is not crucial for our further
considerations.

2 The model

In the beginning, to each black hole mode ai , we associate a
(fermionic) Hawking state |H (Ωi )〉bi ci , i.e., a pair of entan-
gled radiation qubits, bi (infalling) and ci (outgoing), in the
state

|H (Ωi )〉bi ci = cos Ωi |0〉bi |0〉ci + sin Ωi |1〉bi |1〉ci , (1)

which is precisely the fermionic state created by a black hole,
according to the Hawking effect. Alternatively, we could
interpret (1) in terms of a two-term (qualitative) approx-
imation of the bosonic Hawking state (see, e.g., the sec-
ond sentence after Eq. (2.2) in [13]). The parameter Ωi is
a function of Bogoljubov coefficients following from space-
time geometry. From more physical point of view, Ωi is a
i-mode dependent function of gravitational field embodied
(in the Schwarzschild case) by the black hole mass Mbh.
The above association is equivalent to the assumption that
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the black hole modes ai and the Hawking states (1) can
be paired, i.e., N = n. It is true (or even obvious), at
least approximately, i.e. N ∼ n. Indeed, the number of
black hole modes n ∼ SBH = 4πM2

bh, where SBH is the
Bekenstein–Hawking entropy (we have used Planck units
in which h̄ = c = G = kBoltzmann = 1), whereas estimated
number of outgoing radiation modes N ∼ M2

bh (see [14,15]).
Consequently, the initial quantum state of black hole modes
and Hawking radiation is (cf. [12])

|Ψ0〉 =
1∑

q1,q2,...,qn=0

Aq1q2···qn
n∏

i=1

|qi 〉ai
n∏

i=1

|H (Ωi )〉bi ci ,

(2)

where Aq1q2···qn are the amplitudes for the black hole modes
ai .

Let us note that the state |Ψ0〉 is a tensor product of
n + 1 (block-)states, which are, in general, entangled states.
Schematically, we can express it explicitly as |Ψ0〉 = |A〉 ⊗
|H〉1 ⊗ · · · ⊗ |H〉n .

The elementary, i.e., for fixed i , process we propose to
consider is (cf. Eq. (3.3) in [12], and possibly also Eq. (3.3)
in [16])

|qi 〉ai |H (Ωi )〉bi ci �−→ |0〉ai |0〉bi |qi 〉ci . (3)

Obviously, the whole qubit transport process is a (“tensor”)
product of n processes of the type (3) for each mode i . Evi-
dently, the process (3) transports information (which could be
previously scrambled by a unitary evolution of the black hole)
encoded in the (base) qubits |qi 〉 (qi = 0, 1) from the black
hole modes ai to the outgoing radiation modes ci . Moreover,
the mode levels inside the black hole (ai and bi ) become grad-
ually emptied (classically, the black hole gradually shrinks),
and furthermore, the primarily entangled initial state on the
LHS of (3) becomes unentangled on the RHS.

3 Unitarity

To explicitly show unitarity of the qubit transformation (3),
it is sufficient to construct a corresponding unitary operator
performing the required transformation (3). To this end, let us
first define two auxiliary (parameter-dependent) orthonormal
bases in the tensor product Hilbert space Hi = Hai ×Hbi ×
Hci , where we have introduced the three Hilbert spaces (of
complex dimension 2, each) for all types of the involved
modes: ai ∈ Hai , bi ∈ Hbi , ci ∈ Hci (dimCHi = 8). The
total Hilbert space is then H = ⊗n

i=1 Hi .
The first (unprimed) orthonormal base parameterized by

ωi is
{|EΛ (ωi )〉ai bi ci

}7
Λ=0, and it consists of the following

set of states/vectors:

|E0〉ai bi ci = |0〉ai
(
cos ωi |0〉bi |0〉ci + sin ωi |1〉bi |1〉ci

)

|E1〉ai bi ci = |0〉ai |0〉bi |1〉ci
|E2〉ai bi ci = |0〉ai |1〉bi |0〉ci
|E3〉ai bi ci = |0〉ai

(− sin ωi |0〉bi |0〉ci + cos ωi |1〉bi |1〉ci
)

|E4〉ai bi ci = |1〉ai
(
cos ωi |0〉bi |0〉ci + sin ωi |1〉bi |1〉ci

)

|E5〉ai bi ci = |1〉ai |0〉b |1〉ci
|E6〉ai bi ci = |1〉ai |1〉bi |0〉ci
|E7〉ai bi ci = |1〉ai

(− sin ωi |0〉bi |0〉ci + cos ωi |1〉bi |1〉ci
)
.

(4)

The second (primed) orthonormal base parameterized by
θi is

{∣∣E ′
Λ (θi )

〉
ai bi ci

}7
Λ=0, and it is defined as:

∣∣E ′
0

〉
ai bi ci

= |0〉ai |0〉bi |0〉ci
∣∣E ′

1

〉
ai bi ci

= cos
θi

2
|0〉ai |0〉bi |1〉ci − sin

θi

2
|1〉ai |0〉bi |0〉ci

∣∣E ′
2

〉
ai bi ci

= |0〉ai |1〉bi |0〉ci∣∣E ′
3

〉
ai bi ci

= |0〉ai |1〉bi |1〉ci
∣∣E ′

4

〉
ai bi ci

= sin
θi

2
|0〉ai |0〉bi |1〉ci + cos

θi

2
|1〉ai |0〉bi |0〉ci

∣∣E ′
5

〉
ai bi ci

= |1〉ai |0〉b |1〉ci∣∣E ′
6

〉
ai bi ci

= |1〉ai |1〉bi |0〉ci∣∣E ′
7

〉
ai bi ci

= |1〉ai |1〉bi |1〉ci .

(5)

The explicitly unitary transformation Ui (θi ) can now be
constructed from the two bases (4) and (5) in a standard way
as

Ui (θi ) =
7∑

Λ=0

∣∣E ′
Λ (θi )

〉
ai bi ci

〈
EΛ

(
π−1θiΩi

)∣∣∣
ai bi ci

, (6)

where the auxiliary parameter (“time”) θi satisfies: 0 ≤ θi ≤
π (cf. [12]). Evidently, for θi = π , the unitary operator (6)
performs the required transformation (3).

Thus, finally, expressing the total unitary transformation
as a tensor product U (π) = ⊗n

i=1 Ui (π), we can write
U (π) |Ψ0〉 = |Ψ1〉, where the final state |Ψ1〉 assumes the
explicit form

|Ψ1〉 =
n∏

i=1

|0〉ai
n∏

i=1

|0〉bi
1∑

q1,q2,...,qn=0

Aq1q2···qn
n∏

i=1

|qi 〉ci .

(7)

It follows from Eq. (7) that the whole black hole informa-
tion encoded in the amplitudes Aq1q2···qn has been transferred
from the black hole modes ai to the outgoing radiation modes
ci , whereas the black hole modes ai , bi are now in the vacuum
state. Moreover, there is no entanglement between modes
inside and outside of the black hole.
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One could wonder what happens if the final state |Ψ1〉 is
“time-evolved” further. First of all, we should emphasize that
the proposed model is supposed to refer only to a prescribed
period of time. In the assumed units, it is 0 ≤ θ ≤ π . There-
fore, at the end of the time evolution all ai - and bi -modes
are (see (7)) in a vacuum state. But if we, purely formally,
time-evolved the final state further using Eq. (6) outside the
domain of its supposed applicability, due to the presence of
trigonometric functions in (4) and (5), we would observe
(mode-dependent) oscillatory character of the evolution. In
particular, ai - and bi -states could get switched on again.

4 Final remarks

The auxiliary parameter(s) θi can be used in (6) for two
purposes. First of all, one can apply θi to gradually switch-
on the process (3); e.g., θi could be some decreasing func-
tions of a curvature invariant as in [12]. Alternatively, one
could possibly try to extract a corresponding “Hamilto-
nian” H (cf. Eq. (3.4) in [12]) from the “short-time” limit:
U (θ) = I − iθH . However, the latter procedure is highly
non-unique (see the following paragraph).

We would like to draw the reader’s attention to a minor
technical detail. Namely, the unitary operator (6) is intro-
duced in a highly non-unique way, in the sense that there is a
large group of (i-dependent) unitary transformations (which
could be implemented, e.g., in terms of unitary transforma-
tions on some subsets of vectors of the bases) changing the
operator itself but still performing the same transformation
(3) (obviously, the same is true for the operator proposed
by Osuga and Page in [12]). This non-uniqueness follows
from the fact that there is large freedom in determining the
unitary operator – the freedom is only restricted by the con-
dition/process (3) which involves only some very particular
states. The action of the operator on other states is undeter-
mined by (3), and hence it is arbitrary.

Recapitulating, as a final remark, we would like to add
that our idea to use precisely the state (2) as an initial state
(with fermionic Hawking states included), and (7) as a final
state (with vacua for the black hole modes ai and bi ) follows
from the fact that it was our intention to have a possibility
to interpret qubits a little bit more realistically, as possible
fermionic particles, rather than as only purely formal entities.
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