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Abstract The advanced state of cosmological observations
constantly tests the alternative theories of gravity that origi-
nate from Einstein’s theory. However, this is not restricted to
modifications to general relativity. In this sense, we work in
the context of Weyl’s theory, more specifically, on a particu-
lar black hole solution for a charged massive source, which
is confronted with the classical test of the geodetic preces-
sion, to obtain information about the parameters associated
with this theory. To fully assess this spacetime, the complete
geodesic structure for massive test particles is presented.

1 Introduction

Classical physics description of falling particles in gravita-
tional fields, has formed the foundations of general relativity.
In this sense, the famous precessions in planetary orbits were
described in the context of geodesic motion of falling mas-
sive particles in the gravitational fields produced by a central
mass [1,2]. Ever since the advent of general relativity and its
success in responding to solar system tests, a strong attention
to the investigation of the motion of astrophysical objects
in gravitating systems, like stars spiraling into black holes
has been developed. Such theme, i.e. mass and its motion
in general relativity has been also extended to other theo-
ries of gravity. For compact bodies, the methods in this field
of research also cover post-Newtonian frameworks and are
applied for example to spiraling compact binaries, and even
the self-force effects have found their way into the analysis
of motion (for a very good review see Ref. [3]).

Although the general relativistic results have shown to be
in very good compatibility with observations of the gravita-
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tional waves [4–6] and black hole optical appearance [7], the
appeal to alternative theories of gravity has, on the other hand
reasonable sake. In fact, the late 1990s dark matter and dark
energy scenarios, as the most mysterious problems to the
modern cosmology, are supported by the observation of the
flat galactic rotation curves [8], the unexpected gravitational
lensing [9] and the accelerated expansion of the universe
[10–12]. The tremendously weak interactions of dark matter
with baryonic matter, and the impossibility of the detection
of dark energy, have made some scientists to propose that the
dark matter/dark energy scenarios stem from the incomplete
knowledge that general relativity gives us about the behavior
of the gravitational field. It is argued that, by adding particu-
lar components to, or changing the Einstein–Hilbert action,
we can describe the cosmological anomalies by means of the
resultant alternative gravitational theories (see Ref. [13] for
a review), without the necessity of the inclusion of the dark
energy and dark matter.

In the same effort, in 1980s, a relatively old theory, the
Weyl conformal gravity which had been formulated by H.
Weyl in 1918 [14], was revived by Riegert [15]. This theory
was then given an exact spherically symmetric static vacuum
solution by Mannheim and Kazanas [16]. There, the authors
showed that the problem of flat galactic rotation curves, could
be avoided by calculating the radial velocities in the space-
time described by their solution. Therefore, beside Milgrom’s
post Newtonian dynamics (MOND) [17] which had been for-
mulated in the same decade, Weyl conformal gravity was
also proposed as an alternative to dark matter. The theory, as
well, is intended to cover the dark energy related phenomena
[18,19]. According to these interesting features, since the
advent of the Mannheim–Kazanas solution, Weyl conformal
gravity has been studied from several viewpoints [20–48].

In this paper, we also consider Weyl conformal gravity
to study the behavior of geodesic motion of massive parti-
cles near a static charged black hole introduced in Ref. [49].
Recently, this black hole has undergone some classical tests
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in the context of light propagation in its exterior geometry
[50]. Here, we set the same spacetime as the background, to
figure out the orbits of massive particles as they approach
the black hole. In this regard, we can perform more classical
tests on the black hole, in accordance with those tests done
in the early times of general relativity.

The paper is in fact divided into two main segments; the
geodesic motions and a classical relativistic test. We organize
our discussion as follows: for the first part of the paper, in
Sect. 2, we briefly introduce the Weyl field equations and its
vacuum solution and ramify the black hole spacetime that we
intend to study. In Sect. 3 we construct a Lagrangian formal-
ism to have a framework in studying the resultant effective
potential of the black hole and its implied time-like trajecto-
ries. Several types of orbits, including the captures, scattered
and critical trajectories are investigated in Sect. 4. In Sect. 5
same methods are used to discuss other kinds of scattering
and critical motions. In this section we also provide insights
into the relative behaviors of the coordinate and proper time.
For the second part of the paper and in Sect. 6, we talk about
the so-called geodetic effect imposed on the spin vector of
an orbiting gyroscope, by considering a rotating frame on
the background and compare our results with those inferred
from general relativity. We conclude in Sect. 7. In this paper,
we work in geometric units, according to which, the speed of
light and the Newton’s gravitational constant are set to unity
(i.e. G = c = 1). Further discussions and related explana-
tions will be given in appropriate places.

2 The black hole solution

The conformal Weyl theory of gravity is described by the
action

IW = −K
∫

d4x
√−g CμνρλC

μνρλ, (1)

where g = det(gμν), and

Cμνλρ = Rμνλρ − 1

2

(
gμλRνρ − gμρ Rνλ − gνλRμρ + gνρ Rμλ

)

+ R

6

(
gμλgνρ − gμρgνλ

)
(2)

is the Weyl conformal tensor and K is a coupling constant.
The action IW is unchanged under the conformal transfor-
mation gμν(x) = e2α(x)gμν(x), in which 2α(x) is the local
spacetime stretching. Combining Eqs. (1) and (2), we have

IW = −K
∫

d4x
√−g

(
RμνρλRμνρλ − 2RμνRμν + 1

3
R2
)
.

(3)

The Gauss–Bonnet term
√−g (RμνρλRμνρλ − 4RμνRμν +

R2) is a total divergence and does not contribute to the equa-
tion of motion. The simplified action is therefore written as
[16,51]

IW = −2K
∫

d4x
√−g

(
Rαβ Rαβ − 1

3
R2
)
. (4)

Applying δ IW
δgαβ

= 0, leads to the Bach equation Wαβ = 0,
with the Bach tensor defined as

Wαβ = ∇σ∇αRβσ + ∇σ∇β Rασ − �Rαβ − gαβ∇σ∇γ R
σγ

−2Rσβ R
σ
α + 1

2
gαβ Rσγ R

σγ − 1

3

(
2∇α∇β R − 2gαβ�R

−2RRαβ + 1

2
gαβ R

2
)
. (5)

The Mannheim–Kazanas spherically symmetric solution to
the Bach equation is given by the metric

ds2 = −B(r) dt2 + dr2

B(r)
+ r2(dθ2 + sin2 θ dφ2) (6)

in the usual Schwarzschild coordinates (−∞ < t < ∞,
r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π ), where the lapse
function B(r) is defined as [16]

B(r) = 1 − ζ(2 − 3 ζ ρ)

r
− 3 ζ ρ + ρ r − σ r2. (7)

The coefficients ζ , ρ and σ are three-dimensional integration
constants. The above solution reduces to the Schwarzschild–
de Sitter solution for ρ → 0 and therefore, at distances much
smaller than 1/ρ, it recovers general relativity. This solution
has been also assessed for the Reissner–Nordström spacetime
in the presence of a charged source. In this context, the Weyl
field equations become

Wαβ = 1

4K Tαβ, (8)

in which Tαβ is the energy–momentum tensor produced by
the vector potential

Aα =
(q
r
, 0, 0, 0

)
, (9)

with q as the electric charge of the source [52,53]. In the
same manner, in Ref. [49], a reference lapse function of the
form

B(r) = 1 + 1

3

(
c2r + c1r

2
)

(10)

was considered where the specification of the coefficients c1

and c2 was based on the weak field method. Accordingly, the
last two terms of the above function can form a perturbation
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on the Minkowski spacetime, which can constitute the Pois-
son equation ∇2hμν = 8πTμν , with hμν = gμν − ημν , that
has the following 00 component:

∇2h00 = 8πT00 = 8π

(
m̃

4
3π r̃

3
+ 1

8π

q̃

r4

)
, (11)

in which T00 is the scalar part of the energy–momentum
tensor, corresponding to a charged spherically symmetric
massive source of mass m̃, charge q̃ and radius r̃ . Apply-
ing Eq. (11) to the lapse function (10), it is found [49]

c2 = −9 r m̃

r̃3 − 3

2

q̃2

r3 − 3 c1r, (12)

substitution of which in Eq. (10), yields

B(r) = 1 − r2

λ2 − Q2

4r2 , (13)

in which

1

λ2 = 3 m̃

r̃3 + 2 c1

3
, (14)

Q = √
2 q̃. (15)

For λ > Q, this spacetime allows for two horizons; the event
horizon r+ and the cosmological horizon r++, given by (see
Appendix A)

r+ = λ sin

(
1

2
arcsin

(
Q

λ

))
, (16)

r++ = λ cos

(
1

2
arcsin

(
Q

λ

))
. (17)

The extremal black hole, characterized by the unique hori-
zon rex = r+ = r++ = λ/

√
2 is obtained for λ = Q.

For λ < Q the system encounters a naked singularity. Note
that, letting r̃ to be the free radial distance, 3m̃ → 2M
and 2c1 → ±Λ (Λ is the cosmological constant), the lapse
function in Eq. (13) reduces to the Schwarzschild–(Anti-)de
Sitter solution. Furthermore, the Reissner–Nordström–(Anti-
)de Sitter spacetime, is recovered by the imaginary transfor-
mation Q → 2 i Q0, in which Q0 is the total charge of
a spherical massive source. Accordingly, there is no trivial
transition from the charged black hole proposed in Ref. [49]
to the general relativistic spherically symmetric spacetimes.

We begin our study of the time-like geodesics in the next
section, by constructing a Lagrangian formalism in the space-
time under study.

3 The time-like geodesics around the charged Weyl
black hole

The motion of massive particles in the spacetime given in
Eq. (6) can be described by the Lagrangian [54]

2L = 1

2
gμν ẋ

μ ẋν

= 1

2

(
−B(r)ṫ2 + ṙ2

B(r)
+ r2θ̇2 + r2 sin2 θφ̇2

)
, (18)

in which, “dot” stands for differentiation with respect to the
trajectory’s affine parameter τ . We can define the conjugate
momenta

Πα = ∂L
∂ ẋα

, (19)

which according to the symmetries of the spacetime under
consideration, leads to the two constants of motion

Πφ = r2φ̇ = L , and Πt = −B(r) ṫ = −E, (20)

where L is the test particle’s angular momentum (for unit
of mass), and E is an integration constant. Here, E cannot
be regarded as the particles’ energy because the spacetime
is not asymptotically flat. Specifying the time-like geodesics
by 2L = −1 and confining ourselves to motions on the equa-
torial plane (θ = π/2), from Eqs. (18) and (20) we get

ṙ2 = E2 − V (r), (21)

in which the gravitational effective potential of the system is
defined as

V (r) = B(r)

(
1 + L2

r2

)
. (22)

The behavior of this potential for particles with different
angular momentum has been plotted in Fig. 1. As we can
see, the intensity of the potentials’ maximum is rather sensi-
tive to L . The radial and angular motions of the test particles
in this potential, are described by the following equations:
(

dr

dt

)2

= B2(r)

E2

(
E2 − V (r)

)
, (23)

(
dr

dφ

)2

= r4

L2

(
E2 − V (r)

)
. (24)

The effective potential in Eq. (22) is responsible for the deter-
mination of possible orbits around the black hole.

In fact, the most essential feature of such potentials is
their possibility of having any maximums or minimums. In
the case of Fig. 1, the potential expresses an instability at its
maximum. The maximum apex in the potential, therefore,
corresponds to unstable orbits or critical trajectories which
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Fig. 1 The effective potential of the charged Weyl black hole, plotted
for with λ = 10 and Q = 1, specified for particles with different
designations of angular momentum. The larger the angular momentum,
the more unstable is the potential’s apex. The values of the horizons
correspond to r+ � 0.5 and r++ � 10

will be discussed further in this paper. Other regions of the
potential are as well, correspondents to different kinds of
trajectories.

In the next section, we will discuss the possible orbits in
this potential, by presenting direct analytical solutions of the
angular equations of motion.

4 Angular motion

In general, the most common trajectories followed by par-
ticles as they approach the black hole, are angular trajecto-
ries (L 	= 0). Once again, we drag the reader’s attention to
the radial behavior of the effective potential, as illustrated in
Fig. 2. Corresponding to the values of E , the turning points rt
relate to different kinds of orbits and they satisfy E2 = V (rt ).
To determine these points, we should take care of their rel-
evant orbital conditions. In fact, according to Fig. 2, three
turning points are denoted; rt = rU (for unstable circular
orbits), rt = rP (the smallest orbital separation) and rt = rA
(the largest orbital separation).

In the forthcoming subsections, we ramify the relevant
orbital conditions of approaching test particles and determine
the mentioned turning points in accordance with each partic-
ular type of motion. We begin with discussing the potential’s
maximum and its relevant quantities. Afterwards, other kinds
of orbits are studied.

4.1 Unstable circular orbits

According to Fig. 2, the effective potential offers instability in
the motion of approaching particles, at points where V ′(r) =
0 (prime stands for ∂/∂r ). Form Eq. (22), this generates

Fig. 2 The effective potential for test particles with angular momen-
tum. Based on the values of E , several turning points (approaches) are
available. These include the radius of unstable circular orbits rU , and two
other points, rP and rA. At these turning points, we have E2 = V (rt )

L2Q2 −
(

2L2 − Q2

2

)
r2 − 2

λ2 r
6 = 0, (25)

which is an equation of sixth order. Applying the Cardano’s
method, we can obtain three different radii for the unsta-
ble circular orbits, by solving Eq. (25). These read as (see
Appendix B)

rU =
(
Ξ0 sinh

[
1

3
arcsinh(Ξ1)

]) 1
2

, L >
Q

2
(26)

rU =
(
Q4λ2

8

) 1
6

, L = Q

2
(27)

rU =
(
Ξ0 cosh

[
1

3
arccosh(Ξ1)

]) 1
2

, L <
Q

2
(28)

where

Ξ0 = 4λ

√∣∣L2 − Q2/4
∣∣

3
, (29)

Ξ1 = 3Q2L2

8λ

√
3∣∣L2 − Q2/4

∣∣3 . (30)

One can also calculate the period of the above orbits, mea-
sured by the test particles (proper period) and a distant
observer (coordinate period) [54]. Exploiting Eq. (20), we
can obtain the following relations for a long-term circular
orbit:

ΔτU = r2
U

LU
ΔφU , (31)

ΔtU = EU

LU

r2
U

B(rU )
ΔφU . (32)
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For one complete orbit, we have ΔφU = 2π , and we define
the proper and coordinate periods as

Tτ = 2π r2
U

LU
, (33)

Tt = 2π r2
U EU

B(rU )LU
. (34)

The expression for LU is calculated by solving Eq. (25) for
the angular momentum at the fixed circular radius rU . We
have

LU = 1√
2

√√√√4r4
U − Q2λ2

Q2λ2

r2
U

− 2λ2
. (35)

This, together with the condition E2
U = V (rU ) at the distance

rU , provides

Tτ = 2πλ rU

√
4r2

U − 2Q2

Q2λ2 − 4r4
U

, (36)

Tt = 4πλ r2
U√

λ2Q2 − 4r4
U

. (37)

Further in this section, we will discuss the critical trajectories
corresponding to the above radii of unstable orbits. However
for now, let us continue our discussion by studying the hyper-
bolic motions around the black hole.

4.2 Orbits of the first kind and the scattering zone

In the case that, for orbiting test particles, the condition
E < EU is satisfied, they can approach the black hole at two
distinct points. Referring to Fig. 2, these points are deter-
mined by rt = rP and rt = rA, at which dr

dφ |rt = 0 or

E2 = V (rt ). The angular equation of motion in Eq. (24) can
be recast as

(
dr

dφ

)2

= r6 − α r4 − β r2 + γ

L2λ2 ≡ P(r)

L2λ2 , (38)

where

α = λ2(1 − E2)− L2, (39)

β = λ2(L2 − Q2), (40)

γ = λ2L2Q2. (41)

the determination of the turning points rP and rA can be
done by solving P(rt ) = 0 which is again an equation of
sixth order and can be solved by means of the Cardano’s
method (see Appendix C). This results in

rA =
(
ξ0 cos

[
1

3
arccos(ξ1)

]
+ α

3

)1/2

, (42)

rP =
(
ξ0 cos

[
1

3
arccos(ξ1)+ 4π

3

]
+ α

3

)1/2

, (43)

where

ξ0 = 2

√
β

3
+ α2

9
, (44)

ξ1 =
(

8α3

9
+ 4αβ − 12γ

)√
3

(4β + 4α2

3 )3
. (45)

Particles reaching rA can experience a hyperbolic motion
around the black hole and then escape to infinity. This kind
of motion is known as orbit of the first kind (OFK) [54] which
has the significance of scattering. To find the explicit angular
equation of motion for this process, we directly integrate
Eq. (38), which results in (see Appendix D)

r(φ) = rA√
4℘(ϕA − κA φ)+ βr2

A
3γ

, (46)

where ℘(x) ≡ ℘(x; g2, g3) is the ℘-Weierstraß function
with

g2 = r4
A

4

[
β2

3γ 2 + α

γ

]
, (47)

g3 = r6
A

16

[
2β3

27γ 3 + αβ

3γ 2 − 1

γ

]
, (48)

as its Weierstraß coefficients. Additionally,

κA = 2Q

rA
, (49)

ϕA = ß

(
1

4
− βr2

A

12γ

)
(50)

in which, ß(x) ≡ ℘−1(x; g2, g3) is the inverse℘-Weierstraß
function. The hyperbolic motion of particles around the black
hole has been plotted in Fig. 3. Defining the impact parameter
b = L/E , associated with the trajectories, we can see that
the lower b is, the more the trajectories are inclined to the
black hole during their scattering.

4.2.1 The scattering angle

During the scattering process, the particles experience an
escape to the infinity. Let us consider the scheme in Fig. 4.
The particles commence their approach to the black hole at
point e and the scattered particles recede to infinity at point
s, which are characterized respectively by e(re, φe, b) and
s(rs, φs, b). Letting r(φ)|φ=0 = rA, the shortest distance
to the black hole is taken to be rA, at which the scattering
happens.
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Fig. 3 Scattering of particles for different impact parameters b =
1.36, 1.5 and 3.27. It is observed that the scattering process can be
attractive or repulsive, depending on the impact parameter. The plots
have been done for Q = 1 and λ = 10

According to the figure, we have [50]

δ = π −Θ = φe − ψe + |φs | − |ψs |. (51)

Any angle φ(r) observed by the moving particles in this kind
of motion, is obtained by reversing Eq. (46), giving

φ(r) = 1

κA

[
ß

(
1

4
− β r2

A

3γ

)
− ß

(
r2
A

4r2 − βr2
A

12γ

)]
. (52)

Furthermore, according to the figure, it is easily inferred that

ψe = Θ − arcsin

(
b

re

)
, (53)

|ψs | = Θ − arcsin

(
b

rs

)
. (54)

Assuming that the incident particles are coming from infinity
and escaping to infinity, we have ψe = |ψs | = Θ and φe =
|φs | = φ(∞) ≡ φ∞. At this limit we can recast Eq. (51) as
Θ = 2φ∞ − π , for which, applying Eq. (52), we obtain the
scattering angle as

Θ = 2

κA

[
ß

(
1

4
− β r2

A

12γ

)
− ß

(
−β r2

A

12γ

)]
− π. (55)

The evolution of the scattering angle has been plotted in Fig. 5
which has an asymptotic behavior as E → EU .

Fig. 4 A schematic illustration of the scattering phenomena. The short-
est distance to the black hole B, has been taken to be rA, lying on the
φ = 0 line. The incident and the scattered particles are located respec-
tively at e(re, φe, b) and s(rs , φs , b)

Fig. 5 The behavior of Θ in terms of E2, demonstrated for L = 2,
Q = 1 and λ = 10. As it is expected, the scattering angle reaches its
limit as E tends to EU which in this case is around 1.496

4.2.2 The differential cross section

Regarding the spherical symmetry of our problem, the angle
Θ obtained above, indeed measures the deflection angle
between the incident and the scattered beams, that together
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with the azimuth angle φ, can construct the solid angle ele-
ment dΩ = sinΘ dΘ dφ as the differential angular range
of the scattered particles at angle Θ . Furthermore, since the
impact parameter b is perpendicular to the incoming and scat-
tered trajectories, one can define the scattering cross section
as the area covered by the scattered particles in the plane of b,
which has the differential size dσ = b dφ db. The differential
cross section is then defined as

σ(Θ)
.= dσ

dΩ
= b

sinΘ

∣∣∣∣ ∂b∂Θ
∣∣∣∣ . (56)

In fact, from Eq. (55) we have

κA

2
(Θ + π) = ϕA0 + ϕA1 , (57)

in which

ϕA0

.= ß

(
1

4
− β r2

A

12γ

)
, (58)

ϕA1

.= −ß

(
−β r2

A

12γ

)
. (59)

We define

Ψ (L)
.= ℘

(κA
2
(Θ + π)

)
= ℘

(
ϕA0 + ϕA1

)
, (60)

where [55]

Ψ (L) = 1

4

[
℘′(ϕA0)− ℘′(ϕA1)

℘ (ϕA0)− ℘(ϕA1)

]2

− ℘(ϕA0)− ℘(ϕA1),

(61)

in which the differentiation of the Weierstraß function is
defined as

℘′(x) ≡ d

dx
℘(x) = −

√
4℘3(x)− g2℘(x)− g3. (62)

Note that, using the definition in Eq. (61), we can recast
Eq. (56) as

σ(Θ) = b cscΘ

∣∣∣∣∂Ψ∂Θ
∣∣∣∣
∣∣∣∣ ∂b∂Ψ

∣∣∣∣
= κA

4
cscΘ

∣∣∣℘′ (κA
2
(θ + π)

)∣∣∣
∣∣∣∣∂b

2

∂Ψ

∣∣∣∣ , (63)

for which, considering ∂b2

∂Ψ
= ∂b2/∂L

∂Ψ/∂L , we finally obtain

σ(Θ) = κAL

2E2 cscΘ
∣∣∣℘′ (κA

2
(θ + π)

)∣∣∣
∣∣∣∣∂Ψ∂L

∣∣∣∣
−1

. (64)

Fig. 6 The evolution of σ(Θ) in terms of E2, plotted for L = 0.8,
Q = 0.5 and λ = 0.6. For these values, E2

U ≈ 0.54

The complexity of the relation of Ψ (L), makes the resul-
tant expression of σ(Θ) rather large and complicated. We
however, have demonstrated the behavior of this function
in Fig. 6, in terms of the quantity E2. We have considered
smaller values for the constants to be able to generate a more
perceptible plot. Note that, there is an asymptotic behavior
as E → 0, and σ(Θ) tends to zero, soon after E passes EU .

4.2.3 Radial acceleration

The equation of motion for the radial coordinate in Eq. (21),
beside demonstrating the way through which the particles
approach the black hole, can also provide information on the
Newtonian centripetal effective force acting on the particles.
This force is indeed indicated by the radial acceleration ar
which is defined as ar ≡ r̈ in terms of the radial coordinate.
Using Eq. (21) we have

ar = −1

2
V ′(r) = − L2Q2

2r5
+ L2 − Q2/4

r3 + r

λ2 . (65)

Introducing rmax and rmin, respectively as the turning points
where ar reaches its maximum and minimum (by satisfying
∂r ar = 0), we obtain

rmax =
(
η0 cos

[
1

3
arccos(η1)

])1/2

, (66)

rmin =
(
η0 cos

[
1

3
arccos(η1)+ 4π

3

])1/2

, (67)

where

η0 = 2λ

√
L2 − Q2

4
, (68)

η1 = −5L2Q2

4λ

(
L2 − Q2

4

)− 3
2

, (69)
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Fig. 7 The evolution of the radial acceleration ar ≡ r̈ inside the casual
region r+ < r < r++ plotted for Q = 0.2, λ = 1 and three different
values of L . The case of L = 0.2 has two extremums at rmin ≈ 0.21
and rmax ≈ 0.52. The case of rmin = rmax = rL happens for L = 0.14
where rL ≈ 0.31

and are valid only for Q < 2L . These distances have the
identical value rL (corresponding to η1 = ±1), when the
angular momentum approaches the value L0 given by

L0 =
√√√√χ1 + χ2 cosh

[
1

3
arccosh

[
χ3

χ3
2

]]
, (70)

where

χ1 = 9Q2

4
, (71)

χ2 = 20Q

8
√

3 λ
, (72)

χ3 = 25Q4

1024λ2 . (73)

The equality rmax ≡ rmin = rL has been shown in Fig. 7,
where we have plotted ar for three different values of L . In
accordance with the values chosen in the figure, the L =
0.14 curve has only one extremum corresponding to rL ≈
0.31. In this case, the test particles will experience a constant
effective force towards the black hole while traveling on their
trajectories.

In this subsection, we scrutinized the properties of the
hyperbolic trajectories followed by scattered test particles.
However, altering the point of approach from rA, particles of
the same impact parameter may experience a different fate.
This is what we will study in the next subsection.

4.3 Orbits of the second kind

The deflecting trajectories corresponding to the case of E <

EU , can also occur once the approaching point to the black
hole coincides with the turning point rP in Eq. (43) (r+ <

rP < rU ). From this point, the test particles are dragged

Fig. 8 Orbits of the second kind for particles approaching the black
hole at r = rP , for three different impact parameters, b = 1.3, 1.5 and
2.7. As we can see, smaller impact parameters in this kind of orbit result
in larger paths for the orbiting particles before their fall into the event
horizon, and therefore, a more intense change in the shape of orbit in
the final segment. The plots have been done for Q = 1 and λ = 10

into the event horizon and therefore follow an orbit of the
second kind (OSK) [54]. Pursuing the same method, applied
in deriving the equation of motion for the OFK, we obtain

r(φ) = rP√
4℘(ϕP + κPφ)+ βr2

P
3γ

, (74)

with the corresponding Weierstraß coefficients

g22 = r4
P

4

[
β2

3γ 2 + α

γ

]
, (75)

g33 = r6
P

16

[
2β3

27γ 3 + αβ

3γ 2 − 1

γ

]
, (76)

and

κP = 2Q

rP
, (77)

ϕP = ß

(
1

4
− βr2

P

12γ

)
. (78)

In Fig. 8 we have demonstrated the OSK for particles with
three different impact parameters. The larger the impact
parameter is, the more the trajectories need to curve in their
final segment, before their in-fall to the black hole.

Now that the deflecting trajectories have been discussed, in
the next section, we pay attention to the case that the particles’
impact parameter raise to that of unstable circular orbits. This
kind of orbit, corresponds to the critical trajectories.
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4.4 Critical trajectories

In the case of E = EU , the particles can be confined on
unstable circular orbits of the radius rU . This kind of motion
is indeed ramified into two cases; critical trajectories of the
first kind (CFK) in which the particles come from a distant
position R̃ to rU and those of the second kind (CSK) where
the particles start from an initial point R̃0 at the vicinity of
rU and then tend to this radius by spiraling. Applying the
angular equation of motion and pursuing the same methods as
in the case of deflecting trajectories, we obtain the following
equations of motion for the aforementioned trajectories:

rI (φ) = R̃√(
1 + R̃2

r2
U

)
tanh2

(
ϕC1 + κCφ

)− 1

(79)

for the CFK, and

rI I (φ) = R̃0√
(1 + R̃2

0
r2
U
) tanh2

(
ϕC2 + κCφ

)− 1

(80)

for the CSK. Here,

κC =
rU
√
R̃2 + r2

U

λL
, (81)

ϕC1 = arctanh

⎛
⎝ rU√

R̃2 + r2
U

⎞
⎠ , (82)

ϕC2 = arctanh

⎛
⎝rU

√
R̃2 + R̃2

0

R̃0

√
R̃2 + r2

U

⎞
⎠ . (83)

In Fig. 9, the CFK and CSK have been demonstrated in a
single figure to indicate their difference in approach to the
region of the circular orbits.

Note that, if the parameter E of the particles is raised to
values larger than EU , the trajectories can no more maintain
any kinds of stability and they fall into the event horizon.
This kind of motion is discussed in the next subsection.

4.5 Capture zone

In addition to the OSK, terminating orbits can also occur
when the value of E for the approaching particles exceeds
that of unstable circular orbits; i.e. E > EU . If we consider
approaching particles with the same angular momentum, this
corresponds to particles with b < bU , where bU = LU/EU

is the critical impact parameter possessed by particles travel-
ing on the unstable circular orbits. The equation of captured
trajectories is similar to that for the deflecting trajectories

Fig. 9 The critical trajectories rI (φ) (blue) and rI I (φ) (orange) plotted
for Q = 1, λ = 10 and L = 2. For this values, EU ≈ 1.5 and rU ≈ 1.6
and the trajectories have been plotted for R̃ ≈ 7.67 and R̃0 = 1.3

Fig. 10 The captured trajectories for particles approaching from r0 =
5, plotted for Q = 1, λ = 10 and L = 2. Accordingly, the critical
impact parameter is bU ≈ 2 and the trajectories plotted here correspond
to b = 1.18, 1 and 0.67

and is obtained by replacing rA or rP by a constant initial
distance, say r0, as an arbitrary starting point. This kind of
motion, has been plotted in Fig. 10 for three different impact
parameters in the allowed range.

In this section, we studied the possible types of angular
motion for particles with different impact parameters and
calculated analytically, the equations of motion for the cor-
responding trajectories. We showed that the particles can
escape the black hole region and although the effective poten-
tial does not allow for planetary orbits, nevertheless, the test
particles can be confined in circular orbits outside the event
horizon. In all of these cases, the angular momentum plays a
crucial role, without which, any approaching particle will
inevitably fall into the black hole. Although this kind of
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motion does not absorb the interest regarding the types of
orbit (because no orbits are available), however, there are
some interesting relativistic effects according to the concept
of time which are worth discussing. These materials are dealt
with in the next section.

5 Radial trajectories

The study of radial trajectories of falling particles, beside its
historical root in the Newtonian description of gravity, has
numerous advantages in investigating the world-line struc-
ture of black hole spacetimes. For example, one can discuss
the gravitational clock effect for falling observers in gravitat-
ing regions, which is also tightly related to the gravitational
redshift of light rays passing black holes. Another interesting
subject to discuss, is the phenomenon of a frozen star [56]
which is related to the differences in the time measurements,
done by distant observers and falling ones (for text book
reviews, see for example Ref. [57]). In this section, a similar
phenomenon will be studied for radially moving particles in
the exterior geometry of a charged Weyl black hole.

The radial motion of particles is characterized by the con-
dition L = 0, for which the effective potential reduces to

Vr (r) = 1 − r2

λ2 − Q2

4r2 . (84)

which allows a maximum at ru = √
Qλ/2, having the value

Vr (ru) ≡ E2
u = 1 − Q

λ
. (85)

Before going any further, let us ramify the types of possible
radial motions, based on the value of E2 compared with the
above E2

u .

– Frontal scattering: When E < Eu , particles approach-
ing the black hole from a finite distance, are diverted at
ra (or rp) towards the black hole’s horizons. Since no
angular motion is considered for the particles, this kind
of scattering is completely frontal.

– Critical radial motion: For E = Eu , particles can stay on
an unstable radial distance of radius r = ru . Therefore,
particles coming from an initial distance ri or di (ru <

ri < r++ and r+ < di < ru) will ultimately fall on ru .
– Radial capture: If E > Eu , particles coming from a finite

distance ρ0 (r+ < ρ0 < r++), are pulled towards the
horizons from the same distance.

Further in this section, we will study these types of radial
trajectories which are classified in terms of E . For now, let

Fig. 11 The effective potential for radial trajectories plotted for Q = 1
and λ = 10. The radial distances ru , rp and ra have been indicated

us rewrite the radial velocity relations given in Eqs. (21) and
(23) as

(
dr

dτ

)2

= r4 + (E2 − 1)λ2r2 + Q2λ2

4

λ2r2 ≡ p(r)

r2 , (86)

(
dr

dt

)2

= (r2 − r2+)2(r2++ − r2)2 p(r)

E2λ4r6 . (87)

These are the key relations in scrutinizing the radial trajecto-
ries of different kinds. In this section, the possible motions are
studied regarding the time measurements done by observers
comoving with the trajectories (τ ) and distant observers (t).

5.1 Frontal scattering

As we discussed in the previous section, the black hole allows
for scattering of angular geodesics. This also holds for radial
trajectories when the condition E < Eu is satisfied. Simi-
larly, two turning points are available at either sides of ru ,
namely rp < ru < ra (see Fig. 11). Since they are turning
points, these distances are identified by solving p(r) = 0,
from which we obtain

rp = λ
√

1 − E2 sin

(
1

2
arcsin

(
1 − E2

u

1 − E2

))
, (88)

ra =
√

1 − E2 cos

(
1

2
arcsin

(
1 − E2

u

1 − E2

))
. (89)

In the case of E = 0, the above radial distances tend to the
event and cosmological horizons. In Fig. 11, the effective
potential Vr (r) has been plotted, where the extremum ru and
the turning points rp and ra are indicated.

Since these turning points are solutions to p(r) = 0, we
can therefore rewrite Eq. (86) as

(
dr

dτ

)2

= (r2 − r2
a )(r

2 − r2
p)

r2 ≡ ps(r)

λ2r2 , (90)
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which implies p(r) = ps(r)/λ2. The first kind of scattering,
happens when the particles approach at ra . Let us assume
that for comoving and distant observers, the particles are at
r = ra , when τ = t = 0. Accordingly, exploiting Eqs. (90)
and (87), we obtain the following radial dependencies for the
time parameters:

τ(r) = λ

2
ln

∣∣∣∣∣
2
(√

ps(r)+ r2
)− (1 − E2)

2r2
a − (1 − E2)

∣∣∣∣∣ (91)

for the comoving, and

t (r) = λ3E

2(r2++ − r2+)

[
r2++ ln |F1(r)|√

ps(r++)
− r2+ ln |F2(r)|√

ps(r+)

]

(92)

for the distant observers, where

F1(r) = (r2++ − r2
a )

(r2++ − r2)

F++(r)
F++(ra)

, (93)

F2(r) = (r2
a − r2+)

(r2 − r2+)
F+(r)
F+(ra)

, (94)

in which,

F++(r) = 2ps(r++)+ (1 − E2 − 2r2++)(r2++ − r2)

+2
√
ps(r++) P++(r), (95)

F+(r) = 2ps(r+)− (1 − E2 − 2r2+)(r2 − r2+)
+2
√
ps(r+) P+(r), (96)

and

P++(r) = ps(r++)+ (1 − E2 − 2r2++)(r2++ − r2)

+(r2++ − r2)2, (97)

P+(r) = ps(r+)− (1 − E2 − 2r2+)(r2 − r2+)
+(r2 − r2+)2. (98)

To obtain the radial behavior of the time parameters in the
second kind scattering (scattering from rp), it suffices to
exchange ra → rp in the above relations and reverse the
evolution. In Fig. 12, the radial behaviors of t (r) and τ(r)
have been plotted for a specific value of E for the two kinds
of scattering. As we can see, the comoving observers see par-
ticles crossing the horizons, whereas, according to the distant
observers, the particles will never cross the horizons. In this
regard, at the vicinity of the horizons, the particles appear
frozen to the distant observers.

In the next subsection, we consider that particles travel in
the effective potential’s maximum.

Fig. 12 The radial behavior of the proper and coordinate times in the
two kinds of frontal scattering, plotted for Q = 0.2, λ = 1 and E2 =
0.6. After being scattered from ra (or rp), the comoving observers see
a horizon crossing. This is while a distant observer never observe this
(frozen falling particles)

Fig. 13 Plot of the critical radial motion in regions (I ) and (I I ), plotted
for Q = 0.2, λ = 1 and E2 = 0.8. It is assumed ri = 0.6 and di = 0.2.
In both cases, the comoving and distant observers see that the particles
approach ru asymptotically, whereas once again, the horizon crossing
is seen only for comoving observers

5.2 Critical radial motion

Motion of particles with E = Eu , coming from ri > ru
or di < ru (respectively, regions (I ) and (I I ) in Fig. 13),
depends on the initial conditions at these points. According
to Fig. 13, the discontinuity of dτ

dr and dt
dr , at ri and di , tell

us about the final fate of the approaching particles. In this
regard, they can either fall on r = ru or be pulled towards
the horizons. Both fates can be obtained by integrating the
equations of motion for the time parameters. For particles
coming from ri , we derive the following temporal relations
in accordance with the comoving and distant observers:

τI (r) = ±λ

2
ln

∣∣∣∣∣
r2 − r2

u

r2
i − r2

u

∣∣∣∣∣ , (99)
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tI (r) = ±λ3E

2

[
tu(r)− t++(r)− t+(r)

]
, (100)

where

t++(r) = r2++
(r2++ − r2+)(r2++ − r2

u )
ln

∣∣∣∣∣
r2++ − r2

r2++ − r2
i

∣∣∣∣∣ , (101)

t+(r) = r2+
(r2++ − r2+)(r2

u − r2+)
ln

∣∣∣∣∣
r2 − r2+
r2
i − r2+

∣∣∣∣∣ , (102)

tu(r) = r2
u

(r2++ − r2
u )(r

2
u − r2+)

ln

∣∣∣∣∣
r2 − r2

u

r2
i − r2

u

∣∣∣∣∣ . (103)

The corresponding evolution of these coordinates has been
demonstrated in Region (I ) of Fig. 13. The temporal equa-
tions of motion for particles coming from di are similar to
the last ones and are given by considering the exchanges
τI I (r) = −τI (r), tI I (r) = −tI (r) and ri → di . Region (I I )
of Fig. 13, indicates their radial evolution.

The cases stated here, constitute the characteristics of the
critical radial motions around the black hole when the par-
ticles are subjected to the maximum of the radial effective
potential. As it is noticed, when the initial conditions are sat-
isfied, comoving observers see a horizon crossing whereas
for distant observes the particles will never cross the hori-
zons. In the next section, we consider the case in which the
particles travel in a potential which exceeds the mentioned
maximum.

5.3 Radial capture

In the case that E > Eu , the particle trajectories are
inevitably pulled towards the horizons; the particles are cap-
tured. To solve Eq. (86) for the comoving time parameter, we
consider a reference value E = 1+Q/λwhich is in general,
larger than Eu . If we assume that at τ = 0, the particles are
at a finite distance ρ0 (i.e. τ(ρ0) = 0), then the solutions are
classified as

– For E2
u < E2 < 1 + Q

λ
:

τ(r) = ±λ

2

[
arcsinh

(
2r2 + E2 − 1

ηE

)
− k0

]
. (104)

– For E2 = 1 + Q
λ

:

τ(r) = ±λ

2
ln

∣∣∣∣∣
2r2 + Q

2ρ2
0 + Q

∣∣∣∣∣ . (105)

– For E2 > 1 + Q
λ

:

τ(r) = ±λ

2
ln

∣∣∣∣∣
2
√
p(r)+ 2r2 + E2 − 1

2
√
p(r)+ 2ρ2

0 + E2 − 1

∣∣∣∣∣ . (106)

Fig. 14 Plot of the radial capture for particles. With Q = 0.2, λ = 1
and ρ0 = 0.5. The way of the behavior of the time parameters are
similar to those in the radial scattering. The plots have been done for
three different values of E > Eu and are classified as dotted: E2 = 1 <
1 + Q/λ, dashed: E2 = 1.2 = 1 + Q/λ and solid: E2 = 2 > 1 + Q/λ

In above, we have defined

ηE =
√
(E2 − E2

u)(1 + Q

λ
− E2), (107)

k0 = arcsinh

(
2ρ2

0 + E2 − 1

ηE

)
. (108)

The relation of the time parameter for the distant observers
can be considered the same as that in Eq. (92), and we just
need to replace ra → ρ0. In Fig. 14 we have plotted the
behavior of the above coordinates in the radial capture pro-
cess. The behavior is more or less like the radial scattering,
except the fact that in both kinds of trajectories (towards r++
or r+), the trajectories are being captured from the initial
distance ρ0.

In this section, we presented a detailed study of the radial
trajectories and the evolution of the time parameters, and the
concept of horizon crossing was demonstrated by analyzing
different types of motion. So far, the world-line structure of
moving particles around the black hole has been investigated
by calculating the equations of motion in connection with
specific initial conditions. To continue with our discussion
and as the last subject, we discuss a different, yet quite inter-
esting impact of spacetime curvature around massive objects.
In this regard, in the next section, we study a classical test,
according to which, the spacetime effect on the spin vector
of an orbiting gyroscope is discussed.

6 Geodetic precession

In 1916, de Sitter imposed a relativistic correction to the
gyroscopic precession of the Earth-moon system in its orbit-
ing motion in the curved spacetime around the sun [58]. This
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correction, known as geodetic effect (or geodetic precession,
de Sitter precession or de Sitter effect), does not take into
account the rotation of the central mass. The inclusion of
this latter for rotating objects, results in a more general effect,
called the dragging of inertial frames (or the Lense–Thirring
effect) [59]. The geodetic precession effect has had a great
influence in astrophysical observations and in fact consti-
tutes one of the significant tests of general relativity. From
a theoretical viewpoint, however, there are several methods
in the derivation of geodetic precession and frame dragging
(for alternative derivations and reviews see for example Refs.
[60–66]). Here, we pursue a well-known method, consisting
of a transformation to the local frame of an orbiting gyro-
scope in the curved spacetime generated by metric potential
(13). Same method has been employed in Ref. [67] to calcu-
late the geodetic precession in the Mannheim-Kazanas solu-
tion of the conformal Weyl gravity. Other methods, including
the parameterized post-Newtonian (PPN) formalism can be
found extensively in the available literature (see for example
Ref. [1]).

Now we calculate the geodetic precession of the spin vec-
tor S̄ of a gyroscope angular which is orbiting with the angu-
lar velocity ω. To proceed with this, let us identify the local
frame of the gyroscope, by introducing the rotating coordi-
nate system, characterized by the new angular coordinate

dϕ = dφ − ω dt. (109)

This changes the non-rotating metric (6) to that in rotating
coordinates, which for θ = π/2 reads as

ds2 = −
(
B(r)− r2ω2

)(
dt − r2ω

B(r)− r2ω2 dϕ

)2

+ dr2

B(r)
+ r2B(r)

B(r)− r2ω2 dϕ2. (110)

Comparing to the canonical form [68]

ds2 = −e2Φ(dt − S̄idx
i )2 + hi jdx

idx j , (111)

where xi = (r, ϕ), we infer

Φ = 1

2
ln
(
B(r)− r2ω2

)
, (112)

S̄1 = 0, (113)

S̄2 = r2ω

B(r)− r2ω2 , (114)

h11 = 1

B(r)
, (115)

h22 = r2B(r)

B(r)− r2ω2 . (116)

We assume that all the possible non-gravitational forces act-
ing on the gyroscope are applied at its center of mass, so no

torques are available in its rotating rest frame. In this regard,
the spin vector S̄ is Fermi–Walker transported along the gyro-
scope’s world-line. Furthermore, if we consider the orbits are
on a circle of constant radius rg , then it is inferred that

∂Φ

∂r

∣∣∣∣
r=rg

= 0 
⇒ ω2
g = Q2

4r4
g

− 1

λ2 . (117)

This also indicates that the curve r = rg is a geodesic and the
gyroscope is indeed free falling. The above angular velocity
is essentially the Kepler frequency of the orbits. The corre-
sponding rotational rate of the gyroscope in its rest frame is
given by [1,60]

Ω2 = e2Φ

8
hikh jl

[(
∂ S̄i
∂x j

− ∂ S̄ j

∂xi

)(
∂ S̄k
∂xl

− ∂ S̄l
∂xk

)]
,

(118)

which is calculated at r = rg . Therefore, applying Eqs. (112)–
(116) in Eq. (118), we obtain

Ωg = ωg, (119)

as the rotational rate of a gyroscope orbiting in the gravita-
tional field of a charged Weyl black hole. The gyroscope is
at rest in its proper frame, however, a distant observer will
detect a time dilation, which according to Eq. (110) is char-
acterized by

Δτ =
(
B(rg)− r2

gω
2
g

) 1
2
Δt =

(
1 − Q2

2r2
g

) 1
2

Δt. (120)

After a complete revolution, the orientation of the gyro-
scope’s spin vector, relative to its rest frame, is changed by
the angle

α̂rev = ΩgΔτrev = Ωg

(
1 − Q2

2r2
g

) 1
2

Δtrev, (121)

whereΔtrev = 2π/ωg is the coordinate time measured in one
revolution. Hence, the observed precession in the course of
one orbit is calculated as α̂′

rev = 2π− α̂rev, that by exploiting
Eqs. (119) and (121) yields

α̂′
rev = 2π

⎡
⎣1 −

(
1 − Q2

2r2
g

) 1
2
⎤
⎦ . (122)
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In the case that rg � Q, to the first order of approximation,
the precession in Eq. (122) becomes

α̂′
rev ≈ πQ2

2r2
g

(
rad

rev

)
, (123)

where “rad” and “rev” stand for “radians” and “revolution”.
The above relation has been obtained in geometric units. The
value of α̂′

rev is however dimensionless and can be used to
compare with the general relativistic results within proper
conditions.

The general relativistic precession for a gyroscope rotating
a mass m̃ in a circular orbit of radius rg , is given by [68]

α̂′
rev(gen) ≈ 3πm̃

rg

(
rad

rev

)
(124)

in geometric units (for a guide to the change of units see
Appendix E). The period of the gyroscope’s orbit is easily
obtained as

T̃rev(gen) = 2π

√
r3
g

m̃

( m

rev

)
. (125)

Hence, using Eq. (124) and (125) we have

α̂′
rev(gen) ≈ 3m̃

3
2

2r
5
2
g

(
rad

m

)
. (126)

For the earth of mass m̃e ≈ 4.43 × 10−3 m, and radius
Re = 6371 × 103 m [69], if we let rg = Re, then T̃rev(gen) ≈
1.52 × 1012 m, and the gyroscope will have approximately
6.22 × 103 orbits around the earth in 1 year. Using the above
values in Eq. (126) gives α̂′

rev(gen) ≈ 4.32 × 1021 rad/m

≈ 8.41 arcsec1/yr (see Appendix E). In the Gravity Probe B
(GP-B) mission, a satellite containing four gyroscopes, was
set to orbit around the earth at the altitude rh = 642 km. The
general relativistic prediction of the geodetic precession in
the gyroscopic spin is therefore obtained by considering this
altitude, giving

α̂′
rev(gen) ≈ 8.41

[
Re

Re + rh

] 5
2 ≈ 6.62

(
arcsec

yr

)
, (127)

which is equal 6620 mas2/year. This value is confirmed by the
reported value, 6602 ± 18 mas/year, from the GP-B mission
in 2011 [70,71].

1 1 rad = 206265 arcsec.
2 “mas” is an abbreviation for milliarcsec, and 1 mas = 4.848 × 10−9

rad

Turning back to the problem of an orbiting gyroscope
around a charged source in Weyl gravity, it is plausible to
adopt rg ≡ rU , where rU is the radius of circular orbits,
discussed in Sect. 4.1 and derived in Eqs. (26)–(28). Accord-
ingly, the period of the orbits, measured by a distant observer,
is that given in Eq. (34). If we apply these to the precession
in Eq. (123), and re-scale the result, we get

α̂′
rev ≈

(
1.95 × 1024

) Q2bU
4r4

U

|B(rU )|
(

mas

yr

)
, (128)

in which the numerical factor is inferred from the earlier notes
in the general relativistic case and the explanations given in
Appendix E. In this relation, as introduced before, bU is the
impact parameter associated with the circular trajectories.
Exploiting Eq. (35) and the fact that E2

U = V (rU ), yields

bU ≡ LU

EU
=
∣∣∣∣∣∣

ωU

ω2
U + 2

λ2 − 1
r2
U

∣∣∣∣∣∣ (m) , (129)

where we have defined

ω2
U = Q2

4r4
U

− 1

λ2

(
1

m2

)
. (130)

To apply a numerical assessment of α̂′
rev, we need a spheri-

cally symmetric gravitating system with positive net charge.
For this reason, we use the presented data in Ref. [72], where
the authors have considered stability of charged white dwarfs
with masses comparable to that of the sun (M�). To elabo-
rate this, let us consider the gyroscope is rotating such a white
dwarf in a circular orbit of radius rU , given in Eq. (28). In
Table 1, the physical properties of the massive sources have
been given. There, we have also presented the calculated
values of the precession in Eq. (128) for each case. Note
that, the central density ρ̃w has been considered in identi-
fying the parameter λ of the spacetime lapse function and
the value of c1 has been specified in accordance to Ref. [49]
(see Appendix E for more details). As it is expected from
Eq. (128), the precession vanishes for Q = Qw = 0. Adopt-
ing a very small angular momentum (of order ∼ 10−8 m),
we can see rather large precessions when Qw 	= 0.

It is of worth to, once again, discuss the general rela-
tivistic approach. To do that however, we need to consider
static charged sources whose exterior geometry is given by
the Reissner–Nordström (RN) metric with the lapse function
[57]

BRN(r) = 1 − 2m̃

r
+ Q2

0

r2 , (131)

describing spherically symmetric sources with charge Q0. As
mentioned before, the transition between the charged Weyl
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Table 1 The properties of the charged white dwarfs from Ref. [72]
(given in geometric units) and the values of precessions inferred from
Eqs. (128) and (132). For the case of precession in Weyl gravity, we

have let L = 10−7.6 m, and the radius of orbits for the gyroscopes in
the RN geometry has been put rg = Rw + rh for each of the cases

Mw/M� Rw (×103 m) ρ̃w (×10−14 m−2) Qw (m) α̂′
rev (mas/year) α̂′

rev(RN) (mas/year)

1.416 1021 1.71316 0 0 7.86833 × 1013

1.532 1299 2.25971 349.676 1.02422 × 1013 5.48841 × 1013

1.698 1539 2.5664 699.267 2.32618 × 1013 4.49524 × 1013

1.928 1336 4.91076 1053.77 6.70766 × 1013 6.69618 × 1013

2.203 1166 14.4211 1411.64 2.63875 × 1014 1.01421 × 1014

2.203 916.8 29.7037 1774.68 6.83293 × 1014 1.79096 × 1014

and the general relativistic geometries is not trivial. Hence,
we pursue the same method, as introduced earlier in this
section, to obtain the general relativistic precession in the
context of charged sources. Accordingly, one obtains

α̂′
rev(RN) ≈

(
1.95 × 1024

)⎡⎣
√
m̃
(
3m̃rg − Q2

0

)

2r
7
2
g

⎤
⎦
(

mas

year

)
,

(132)

assuming that rg � m̃ and rg � Q0. Supposing that
the gyroscope is orbiting at the altitude rh = 642 km
around the same white dwarfs of the previous case, then
rg = Rw + rh . Taking into account m̃ = Mw, Q0 = Qw

and M� = 1.48 × 103 m [73], the calculated general rel-
ativistic precessions have been given in the last column of
Table 1. One can observe a remarkable conformity with the
results inferred from Weyl gravity for the case of Qw 	= 0.

In this section, we assessed the dynamics of the space-
time under consideration, through a classical test of general
relativity. The results are however much larger than those
obtained from GP-B. This stems from the large density of
macroscopic charged objects, around which we tested both
the Weyl and the RN geometries. The gravitational effect of
net electric charge in astrophysical objects is more signifi-
cant. In the next section, we summarize the results of this
paper.

7 Summary and conclusions

Motion of massive particles in strongly gravitating systems
is, on its own, an interesting topic in relativistic studies. In
fact, such particles can indicate how these systems can con-
struct their surroundings. Regrading the astrophysical phe-
nomena, the particles which constitute the interstellar mate-
rials (like gases and remnants), if captured in the effective
gravitational potential of large massive sources, will pursue
several types of motion towards them. This, if generalized to

numerous objects, leads to the formation of stellar structures
and planetary systems. Same holds for systems which include
a black hole at their center. In fact, lots of galactic structures
are results of the presence of a super-massive black hole
at their center and the study of the orbiting objects around
them, requires enough knowledge on the particle dynam-
ics in the exterior geometry of these celestial masses. This
therefore, highlights the advantage of the study of the time-
like geodesics on which the particles travel at the vicinity
of heavy celestial objects. In this paper, we paid attention
to the dynamics of massive particles that approach a static
black hole with net electric charge, whose exterior geome-
try has been inferred from the Weyl theory of gravity. We
argued that the effective potential generated by this black
hole can make the particles to be deflected or captured by
the black hole. According to the effective potential, no plan-
etary orbits were possible, however, the particles could be
confined to an unstable circular orbit, if the particles gain
specific conditions regarding their constants of motion. Par-
ticularly, we discussed the deflecting trajectories and formu-
lated the scattering process and scrutinized it in terms of its
proper cross-section. This process were further discussed for
particles bounded to purely radial orbits and we indicated
that this kind of motion allows for the so-called frozen par-
ticles, observed by distant observers. In the last section, we
paid attention to a classical test, namely the geodetic preces-
sion, which we used to asses the effects of the under-study
background geometry on the spin orbiting gyroscope. To do
this, after obtaining the reliable mathematical relations, we
employed a set of charged white dwarfs, as the test models.
We also used the same sources to obtain the general relativis-
tic limit of the precession, and the results indicated a good
conformity between the two models.

In conclusion, we mention that, despite the success of
general relativity in passing observational tests, it still seems
fruitful to pay attention to alternative theories. In the case we
studied here, the black hole under consideration could gen-
erate some reliable results. So, continuing studies on alterna-
tive theories, may help us to finally overcome the remaining
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unsolved problems regarding the description of gravitating
systems.
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A The method of solving the quartic equation
x4 − a x2 + b = 0

We are interest in solving a quartic equations of the form

x4 − a x2 + b = 0, (133)

where (a, b) > 0 and 2
√
b ≤ a. For this purpose, we make

the change of variable x = Z sin ϑ , and multiply both sides
of the equation by a scalar α. This yields

α Z4 sin4 ϑ − α a Z2 sin2 ϑ + α b = 0. (134)

Considering the trigonometric identity

4 sin4 ϑ − 4 sin2 ϑ + sin2(2ϑ) = 0, (135)

and comparing Eqs. (134) and (135), we infer

α Z4 = 4, α a Z2 = 4, α b = sin2(2ϑ). (136)

Solving the above equation for Z and ϑ , we obtain

Z = √
a, and θn = 1

2
arcsin

(
2
√
b

a

)
+ nπ

2
, (137)

where the period of the trigonometric function is nπ . There-
fore, the roots of Eq. (135) are obtained by replacingn = 0, 1,
giving

x0 = √
a sin

(
1

2
arcsin

(
2
√
b

a

))
, (138)

x1 = √
a sin

(
1

2
arcsin

(
2
√
b

a

)
+ π

2

)

= √
a cos

(
1

2
arcsin

(
2
√
b

a

))
, (139)

x2 = −x0, (140)

x3 = −x1. (141)

The above method enables us to determine the black hole
horizons.

B Solving Eq. (25) using the Cardano’s method

Equation (25) can be reduced into an equation of the third
order, by applying the change of variable X

.= r2. Accord-
ingly, the reduced equation becomes

4X3 + a1X − a2 = 0, (142)

in which we have used

a1 = 4λ2
(
L2 − Q2

4

)
, (143)

a2 = 2λ2L2Q2. (144)

For a1 = 0 (i.e. L = Q/2), the equation is easily solved as
X3 = a2/4 and we get the value in Eq. (27). Since always
a2 > 0, the general form of the equation only varies depend-
ing on the sign of a1. Accordingly, we compare Eq. (142) by
two hyperbolic identities

4 sinh3 ϑ + 3 sinh ϑ − sinh(3ϑ) = 0, (145)

4 cosh3 ϑ − 3 cosh ϑ − cosh(3ϑ) = 0. (146)

The following two cases are available:

– For L > Q/2: Since (a1, a2) > 0, then defining X
.=

Ξ0 sinh ϑ , we recast Eq. (142) as

!Ξ3
0 sinh3 ϑ + a1!Ξ0 sinh ϑ − a2 ! = 0, (147)

in which, ! is a Legendre coefficient. Comparing Eqs. (147)
and (145), we get

! = 4

Ξ3
0

, (148)

Ξ0 =
√

4a1

3
, (149)

sinh(3ϑ) =
√

27a2
2

4a3
1

.= Ξ1. (150)
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It is therefore inferred that ϑ = 1
3 sinh−1 Ξ1, resulting in

X = Ξ0 sinh

(
1

3
arcsinh(Ξ1)

)
, (151)

and the value in Eq. (26) is followed for the unstable
orbits in the case of L > Q/2.

– For L < Q/2: This time, since a1 < 0 and a2 > 0,
the comparison is made to Eq. (146), by means of the
definition X

.= Ξ0 cosh ϑ . Pursuing the same procedure
as the previous case, we obtain

X = Ξ0 cosh

(
1

3
arccosh(Ξ1)

)
, (152)

and we get the radius in Eq. (28).

C The method of obtaining rP and rA

The method is similar to that used in appendix B. The equa-
tion P(r) = 0 produces

X3 − αX2 − βX + γ = 0 (X = r2), (153)

which by performing the Tschirnhaus transformation S =
X − α/3, gives

S3 − ā1S − ā2 = 0, (154)

in which

ā1 = 4

3

(
α2 + 3β

)
, (155)

ā2 = 4

(
2α3

27
+ αβ

3
− γ

)
. (156)

Considering the trigonometric identity

4 cos3 ϑ − 3 cosϑ − cos(3ϑ) = 0, (157)

we define S = ξ0 cosϑ and recast Eq. (154) as

! ξ3
0 cos3 ϑ − ! ā1ξ0 cosϑ − ! ā2 = 0. (158)

As in the previous cases, comparing the above equations, we
obtain

ξ0 = 2

√
β

3
+ α2

9
, (159)

ξ1 =
(

8α3

9
+ 4αβ − 12γ

)√
3

(4β + 4α2

3 )3
, (160)

where 2nπ indicates the periodic symmetry of the cosine
function. Accordingly, and using the reverse transformations,
the solutions to P(r) can be given as

rn =
[
ξ0 cos

(
1

3
arccos(ξ1)+ 2nπ

3

)
+ α

3

] 1
2

. (161)

The above solution results in positive values for n = 0, 2
and is periodically repeated as n → n + 3. We can therefore
take two different values as physically meaningful solutions
to our equation, by designating rA = rn=0 and rP = rn=2

which is in agreement with rA > rP .

D Solving the angular equation of motion

The change of variables applied in solving P(r) = 0 can
not make a simple reduction of order to solve the differen-
tial equation in Eq. (38). In fact, this kind of definition pro-
vides a fourth order elliptic integral equation which, although
doable, is hard to solve. We therefore propose a more effi-
cient method for this particular case (for a good introduction
to the methods of reducing fourth order elliptic integrals well-
defined solutions, see Ref. [74]). Since the scattering happens
at rP , we instead, define the following non-linear change of
variable:

x
.=
(rA
r

)2
, (162)

producing dr = −rA
(

dx
2x3/2

)
which reduces Eq. (38) to

dφ = ±Lλ
−rA dx

2
√
γ P̃(x)

, (163)

in which

γ P̃(x) ≡ x3P(x) = γ
(
x3 − α̃x2 − β̃x + γ̃

)
, (164)

where

α̃ = β r2
A

γ
, (165)

β̃ = α r4
A

γ
, (166)

γ̃ = rA
γ
. (167)

A further change of variable

u
.= 1

4

(
x − α̃

3

)
, (168)
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leads to the following reduced integral form of Eq. (163):

∫ φ

φ0

dφ′ = ± 2
√
γ

Lλ rA

∫ u

uA

−du′
√
P(u′)

, (169)

in which uA = 1
4 (1 − β r2

A
3γ ), and

P(u) = 4u3 − g2u − g3, (170)

where

g2 = 1

4

(
α̃

3
+ β̃

)
, (171)

g3 = 1

16

(
2α̃3

27
+ α̃ β̃

3
− γ̃

)
, (172)

are the Weierstraß coefficients, associated with the third order
polynomial P(u). Recasting Eq. (169), we have

± 2
√
γ

Lλ rA
(φ − φ0) = −

{∫ ∞

uA

du′
√
P(u′)

−
∫ ∞

u

du′
√
P(u′)

}

= −{ß(uA)− ß(u)} , (173)

in which have used the definition

ß(u) ≡ ℘−1 (u; g2, g3) =
∫ ∞

u

du′√
4u′3 − g2u′ − g3

(174)

of the inverse℘-Weierstraß function [55]. Accordingly, using
the values of γ̃ and γ , and defining ϕA = ß(uA), from
Eq. (173) we deduce

u(φ) = 1

4

(
r2
A

r2(φ)
− β r2

A

3γ

)
= ℘

(
± 2

√
γ

Lλ rA
(φ0 − φ)+ ϕA

)
,

(175)

which for φ0 = 0 results in the solution

r(φ) = rA√
4℘
(
ϕA ∓ 2

√
γ

Lλ rA
φ
)

+ β r2
A

3γ

. (176)

E Switching the values of spacetime coefficients and
dynamical quantities between the geometric and SI
units

The values of the Newton’s gravitational constant and the
speed of light are [75,76]

G = 6.67430 × 10−11 (m3 kg−1 s−2), (177)

c = 299792458 (m s−1). (178)

The mass of earth is me = 5.97237 × 1024 kg [69] which in
geometric units becomes

m̃e = me × G

c2 = 4.4347 × 103 (m). (179)

In the geometric units, the value of time is also given in
meters by applying τ̄ (m) = τ × c (s). For example, 1 year
is about 3.1536 × 107 s, which in meters is equivalent to
1 year = 9.45 × 1015 m.

The change of units from Coulomb (C) to meters for the
electric charge Q, is also done as bellow:

[Q (m)] = [Q (C)] ×
√

G

4πε0c4 , (180)

in which ε0 = 8.854×10−12 C2

Nm2 is the vacuum permittivity
[77]. This way,

[Q (C)] =
(

1.15964 × 1017
)

[Q (m)]. (181)

So, for example, 1 meter electric charge is approximately
1017 C, which is equivalent to the charge of 7×1035 protons
(Qp = 1.602 × 10−19 C [78]).

Furthermore, the factor 1/λ2 in Eq. (14) is a density of
dimensions m−2. In fact λ is given by

λ =
[

3ρ̃c + 2

3
c1

]− 1
2

(m), (182)

in which ρ̃w is the density of a spherically symmetric charged
massive source. Here, we let c1 = 2.08 × 10−54 m−2, as
given in Ref. [49] and is comparable to the value of the cos-
mological constant Λ0 = 1.1056 × 10−52 m−2 [79].

In geometric units, the dimension of angular momen-
tum is square meters, which is transformed to the SI units
[kg m2 s−1] by applying a c3/G multiply. However, since we
have ignored the mass of the orbiting objects, the value of the
constant of motion L , in geometric units, is given in meters
which is in conformity with the other dynamical quantities.

Taking into account the above notes and working in the
geometric units, the value of precession will be the same as
that in the SI units.
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