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Abstract We analyze theoretically the D+ → νe+ρ K̄ and
D+ → νe+ K̄ ∗π decays to see the feasibility to check the
double pole nature of the axial-vector resonance K1(1270)

predicted by the unitary extensions of chiral perturbation
theory (UChPT). Indeed, within UChPT the K1(1270) is
dynamically generated from the interaction of a vector and a
pseudoscalar meson, and two poles are obtained for the quan-
tum numbers of this resonance. The lower mass pole couples
dominantly to K ∗π and the higher mass pole to ρK , therefore
we can expect that different reactions weighing differently
these channels in the production mechanisms enhance one or
the other pole. We show that the different final V P channels
in D+ → νe+V P weigh differently both poles, and this is
reflected in the shape of the final vector-pseudoscalar invari-
ant mass distributions. Therefore, we conclude that these
decays are suitable to distinguish experimentally the pre-
dicted double pole of the K1(1270) resonance.

1 Introduction

Semileptonic B and D meson decays have been for long
considered as a good source to learn about non perturbative
strong interactions, given the good knowledge of the weak
vertex [1–3]. Refined methods have become available more
recently [4–6] and the reactions are looked upon with inter-
est to even learn about physics beyond the standard model
[7,8]. Explicit calculations correlating a vast amount of data
with the help of some selected pieces of experimental infor-
mation are also available [9]. One of the relevant cases of
these reactions consist on D meson decays leading to res-
onances in the final state, rather than the ordinary ground
state of mesons, usually studied. In particular, semileptonic
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decays of hadrons where the final hadron is a resonance are
specially interesting. In this sense, the B and Bs semilep-
tonic decays leading to D∗

0(2400) and D∗
s0(2317) resonances

were studied in Ref. [10]. Similarly, the D decays into the
scalar mesons f0(500), K ∗

0 (800), f0(980) and a0(980) were
addressed in Ref. [11], with relevant results concerning the
nature of these scalar mesons. A review of these and related
reactions can be seen in Ref. [12]. In this direction, the recent
observation of the D+ → νe+ K̄ 0

1 (1270) reaction measured
by the BESIII collaboration [13] offers a new opportunity to
study the properties and nature of the K1(1270) axial-vector
resonance. Prior to this measurement the CLEO collabora-
tion presented results on the D+ → νe+ K̄ 0

1 (1270) [14], but
the quality of data is much improved in the BESIII mea-
surements. Interestingly there are theoretical results on these
reactions in Refs. [1,2] using quark models, in Ref. [15] using
QCD sum rules and factorization approach, in Ref. [16] using
a covariant light front quark model and in Ref. [17] using
light cone sum rules. The branching ratios obtained, within
10−2 − 10−3, agree qualitatively with the one measured by
BESIII of about 2.3 × 10−3.

Our interest in this reaction stems from the findings of
Refs. [18,19] that there are two K1(1270) resonances instead
of one. The idea of the present work is to see which are the
particular measurements in the BESIII reaction that could
show evidence of these two states, for which we do theoret-
ical calculations looking into particular final channels. The
standard quark model picture for mesons and baryons [20–
25] has the great value to correlate a great amount of data
on hadron spectroscopy, but the axial vector meson states
are systematically not so well reproduced as the vector ones
[20,25]. With this perspective it is not surprising that other
pictures have been proposed to explain these states. The chi-
ral unitary approach (UChPT) [26,27] was applied to the
study of the pseudoscalar-vector meson interaction, using
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the chiral Lagrangian of Ref. [28] and it was shown that
the interaction, unitarized in coupled channels, gave rise to
bound states or resonances which could be identified with the
low lying axial-vector resonances [18,29,30]. An appealing
feature of these dynamically generated resonances is that the
reaction mechanisms producing them proceed in a differ-
ent way than ordinary mechanisms that produce resonances.
Indeed, one does not produce the resonances directly, rather
one produces the meson-meson components of the different
coupled channels, which upon final state interaction among
themselves generate the resonances. This allows one to per-
form calculations and relate many production channels, and
often leads to particular features in the invariant mass distri-
butions [12]. Concerning axial-vector meson production in
different reactions, work has been done recently in the study
of the J/ψ → η(η′)h1(1380) reaction [31], τ− → ντ P A
with P = π, K and A = b1(1235), h1(1170), h1(1380),
a1(1260), f1(1285) [32] and χcJ decay to φh1(1380) [33],
among others quoted in those works.

In Refs. [18,19] it was shown that there were two
K1(1270) states, which coupled differently to the coupled
channels. One state appears at 1195 MeV and couples mostly
to K ∗π . The other state appears at 1284 MeV coupling
mostly to ρK . In Ref. [19] some reactions disclosing these
final states were studied and it was shown that they peaked
at different energies, and the state of higher mass had a
smaller width. The existence of the two K1(1270) is directly
linked to the chiral dynamics of the problem and is similar
to the appearance of the two 
(1405) states in the baryon
strange sector [34–36] (see the review “Pole structure of the

(1405) region” in the PDG [37]). With this picture in mind
some reactions have been proposed to provide extra evidence
of the existence of these two K1(1270) states. In Ref. [32]
the τ− → ντ K −K1(1270) reaction is proposed looking at
the ρK and K ∗π final decay products of the K1(1270) and
two distinct peaks are seen in the results. In Ref. [38] the
D0 → π+ρ K̄ and D0 → π+π K̄ ∗ reactions are also sug-
gested in order to see the two peaks corresponding to the two
K1(1270) resonances.

In the present work, taking advantage of the recent BESIII
measurement [13], we look at the D+ → νe+ K̄ 0

1 (1270)

reaction, evaluating explicitly the decays K̄1(1270) → ρ K̄
and K̄1(1270) → π K̄ ∗, showing that these final channels
give different weights to the two K1(1270) resonances and
lead to invariant mass distributions that differ in the position
and the shape. In view of the results obtained here we can only
encourage the BESIII collaboration to perform the analysis
that we suggest here, which should shed valuable light on the
issue of the two K1(1270) states and the nature of the low
lying axial-vector resonances.

2 Formalism

As explained in the introduction, within the UChPT of
Refs. [18,19], the axial-vector resonances are generated
dynamically by the non-linear chiral dynamics involved in
the unitarization procedure of the elementary V P scattering
potential in s-wave, and there is no need to include them as
explicit degrees of freedom (by means of Breit–Wigner like
amplitudes or similar). (We refer to Ref. [18] for the semi-
nal work on the UChPT approach for the axial-vector reso-
nances, and to Refs. [19,38–40] for brief but illustrative sum-
maries). In particular, for the strangeness S = 1 and isospin
I = 1/2 channels two poles were found in Refs. [18,19],
which were associated to two K1(1270) resonances, looking
at unphysical Riemann sheets of the unitarized V P scatter-
ing amplitudes. The poles are located at (1195 − i123) MeV
and (1284 − i73) MeV, where we can identify the real part
with the mass and the imaginary part with half the width. In
Table IV of Ref. [19] the values of the different couplings to
the different V P channels can be seen. The main observation
is that the lower mass pole couples dominantly to K ∗π and
the higher mass pole to ρK , but the couplings to the other
V P channels are not negligible, and are actually considered.
Following this philosophy, the way to produce a dynamically
generated K1(1270) resonance in a particular reaction is to
create first all possible V P pairs and then implement their
final state interaction. This later issue will be addressed in
the second part of this section but first we need to discuss the
calculation of the elementary production of the V P states,
and its depiction, at the quark level, can be seen in Fig. 1.
First the c quark produces an s quark through the Cabibbo
favored vertex W cs and then hadronization into a final vector
and a pseudoscalar meson is implemented by producing an
extra q̄q with the 3 P0 model [41–43].

We should note here, concerning the UChPT used in
Refs. [18,19], that it is based on a dispersion relation for
the inverse of the scattering amplitude, which explicitly
neglects the left-hand cut contribution. This might appear
as a handicap but we should first warn that the contribution
of the left-hand cut is usually small, only relevant in cases
at small energy. The left-hand cut is explicitly considered in
approaches like Roy equations [44–46] and other approaches

D+
uu + dd + ss

W

d d

sc

s
e+

P, V

V, P

ν

Fig. 1 Elementary D+ → νe+V P process at the quark level
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[47]. In Ref. [44] it is found that for the amplitudes of the
f0(500) resonance the contribution of the left-hand cut is
of the order of 15% and it is smaller in other cases where
the masses of the particles involved are bigger [34,48]. Yet,
contrary to what it might look, the UChPT takes this con-
tribution into account rather accurately, because when the
left-hand cut is relatively far away from the physical energy,
as in the present case, the contribution of the left-hand cut is
rather energy independent and the UChPT introduces a sub-
traction constant in the dispersion relation which is tuned to
some experimental magnitude. What is lost in the approach is
only the weak energy dependence of a small quantity, which
is approximated by a constant, and this is what makes the
UChPT a rather accurate tool.

We are mostly interested in evaluating the relative weight
and momentum dependence of the different channels modulo
a global arbitrary normalization factor. The different weights
among the allowed V P channels can be obtained from the
following SU (3) reasoning.

The flavor state of the final hadronic part after the q̄q is
produced in the hadronization is

|H〉 ≡ |s (ūu + d̄d + s̄s) d̄〉, (1)

which can be written as

|H〉 =
3∑

i=1

|M3i qi d̄〉 =
3∑

i=1

|M3i Mi2〉 = |(M2)32〉, (2)

where we have defined

q ≡
⎛

⎝
u
d
s

⎞

⎠ and M ≡ qq̄ᵀ =
⎛

⎝
uū ud̄ us̄
dū dd̄ ds̄
sū sd̄ ss̄

⎞

⎠ . (3)

The hadronic states can be identified with the physical
mesons associating the M matrix with the usual SU (3) matri-
ces containing the pseudoscalar and vector mesons:

M ⇒ P ≡

⎛

⎜⎜⎝

π0√
2

+ η√
3

+ η′√
6

π+ K +

π− − 1√
2
π0 + η√

3
+ η′√

6
K 0

K − K̄ 0 − η√
3

+ 2η′√
6

⎞

⎟⎟⎠ ,

M ⇒ V ≡
⎛

⎜⎝

1√
2
ρ0 + 1√

2
ω ρ+ K ∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K ∗0

K ∗− K̄ ∗0 φ

⎞

⎟⎠ , (4)

where the usual mixing between the singlet and octet to give
η and η′ [49] has been used in the P matrix. Also in the V
matrix, ideal ω1-ω8 mixing has been considered to produce
ω and φ, to agree with the quark content of M in Eq. (3).

Since the M2 in Eq. (2) can refer either to V P or PV , we
need to evaluate the contribution

(V P)32 + (PV )32 = ρ+K − − 1√
2
ρ0 K̄ 0 + K ∗−

π+

− 1√
2

K̄ ∗0π0 + 1√
2
ωK̄ 0 + φ K̄ 0 (5)

where we see that the K̄ ∗0η channel has been cancelled math-
ematically and the η′ is neglected because of its large mass as
done in the original work of the V P interaction that generated
the axial-vector K1(1270) [18]. The numerical coefficients
in Eq. (5) in front of each V P channel provide the relative
strengths of the different V P channels.

The momentum structure of the amplitude corresponding
to the mechanism in Fig. 1 can be evaluated in a similar way
to what was done in Refs. [10,11]. Indeed, the amplitude, T ,
for the process of Fig. 1 can be factorized into the weak part
and the hadronization part, and then it will be proportional
to

LμQν VHad (6)

where global constant factors are omitted since we will
perform the calculations up to a global normalization. In
Eq. (6) Lμ = ūνγ

μ(1 − γ5)vl is the leptonic current and
Qμ = ūsγμ(1 − γ5)uc the quark current. The hadronization
part VHad will be discussed later on.

When evaluating the D decay width of this process, we
will need to square the amplitude and sum over the quark
polarizations which gives (see Ref. [11] for explicit details
and calculation)

1

2

∑

pol

|T |2 = 4|Vhad|2
mlmνm D MVP

(pl · pD)(pν · pVP), (7)

where pi are the four-momenta of the corresponding parti-
cles, mi the masses, and the VP label refers to the final V P
pair, which will eventually account for the K1(1270) reso-
nance.

The final expression for the V P invariant mass, MVP,
distribution of the D+ → νe+V P decay can be obtained in
the same way as in Ref. [11] (see the derivation leading to
Eq. (23) of Ref. [11]) and gives

d


d MVP
= 2

(2π)5m3
D MVP

∫
d Meν M2

eν | pVP| | p̃ν | | p̃V |

×
(

ẼD ẼVP − 1

3
| p̃D|2

)
|VHad|2 (8)

where Meν is the eν invariant mass and

| pVP| = 1

2m D
λ1/2(m2

D, M2
eν, M2

VP)θ(m D − Meν − MVP),
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Fig. 2 V P final state interaction

| p̃V | = 1

2MVP
λ1/2(M2

VP, m2
V , m2

P )θ(MVP − mV − m P ),

| p̃ν | = Meν

2
,

ẼD = m2
D + M2

eν − M2
VP

2Meν
,

ẼR = m2
D − M2

eν − M2
VP

2Meν
, (9)

with λ and θ standing for the Källén and step functions
respectively and we have neglected the positron mass.

One of the main ingredients in the calculation of the
hadronic part is the implementation of the final state interac-
tion of the V P pairs produced in the mechanism of Fig. 1,
which is depicted in Fig. 2. Note that, since the K1(1270)

resonance is generated dynamically within our approach, it
is not produced directly but, instead, the different V P pairs
are produced and then rescatter infinitely many times which
is accounted for by the unitarized V P scattering amplitude.

Taking into account the six different possible intermediate
V P pairs, (K ∗−π+, ρ+K −, K̄ ∗0π0, ρ0 K̄ 0, ωK̄ 0 and φ K̄ 0)
the hadronic part of the amplitude for the decay into the i−th
final V P channel can be written as

VHad(D+ → νe+Vi Pi ) = Vp

⎛

⎝hi +
6∑

j=1

h j G j T
I=1/2
j,i

⎞

⎠

(10)

where Vp is an arbitrary global normalization factor, and
includes the weak coupling constant among other factors
stemming from the quark matrix elements, hi are the numer-
ical coefficients in front of each V P channel in Eq. (5), G j is

the vector-pseudoscalar loop function [19] and T I=1/2
j,i is the

unitarized (V P) j → (V P)i scattering amplitude in isospin
1/2 from Ref. [19]. These are the amplitudes that manifest the
double pole structure in the complex energy plane associated
to the K1(1270). Note that in Ref. [19] the V P states are in
isospin basis and here we are working with explicit charge
basis, but we can easily transform from one to the other basis
using that

|ρ K̄ 〉I= 1
2 ,I3= 1

2
=

√
2

3
|ρ+K −〉 − 1√

3
|ρ0 K̄ 0〉,

|K̄ ∗π〉I= 1
2 ,I3= 1

2
= −

√
2

3
|K ∗−π+〉 + 1√

3
|K̄ ∗0π0〉. (11)

We should note that we are taking VP constant, while it
should be a form factor that depends on q2 [4–6]. Yet, in
the range of energies where our peaks emerge, these form
factors are rather soft and, given the fact that the peaks fall
down in about 200 MeV, the effects of these form factors
would only show up in the region where our amplitudes are
already rather small, thus not changing the structure of the
peaks discussed. Certainly, the ratio of the mass distributions
obtained is independent of VP and hence it is rid of the form
factors.

On the other hand, note that these unitarized V P scatter-
ing amplitudes do not necessarily have a Breit–Wigner shape
in the real axis (see explicit plots in Refs. [19,38]). They actu-
ally contain the information of the whole V P dynamics and
not only the resonant structure. However, in a actual experi-
ment one would typically try to fit Breit–Wigner like shapes
and therefore we will also compare in the results section the
results using for the scattering amplitudes

Ti j = gi g j

s − sp
, (12)

where sp is the pole position which can be identified with the
mass and width of the generated resonances

√
sp 	 MR −

i
R/2 and gi are the couplings of the resonance to the i-th
V P channel which can be obtained from the residues of the
amplitudes at the pole positions and can be found in Table
IV of Ref. [19].

The usual procedure to evaluate the decay width for this
process is to compute the width for some known D+ →
νe+V P reaction, which allows us to determine the coef-
ficient VP in Eq. (10), and then determine the widths for
each of the cases that we study. This is what is done for
instance in Ref. [38]. This is unnecessary here since the reac-
tion that we study has already been measured, so its exper-
imental feasibility is out of question. Yet, in the measured
reaction D → K1(1270)eν → Kππeν, the final state mea-
sured is Kππ , and has not been separated in K ∗π and ρK ,
which is what we suggest to be done here. This requires extra
experimental efforts, and definitely it would be easier with
much better statistics, which if not with the present facilities,
will become available in future updates of these facilities or
planned ones as the Super Charm-Tau factory [50,51].
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3 Results

We first show in the left panels of Fig. 3 the different
contributions to the V P invariant mass distribution for the
D+ → νe+K ∗−π+ and D+ → νe+ρ+K −. The absolute
normalization is arbitrary, but the relative strength between
the different curves and the different channels are absolute
(There is only a global normalization constant, the same for
all the channels, see Eq. (10)). The label “unitarized” stands
for the results using for the V P → V P amplitudes, T I=1/2

i j ,
the unitarized model from Ref. [19], as explained above.
These curves are compared to the results using, instead, the
explicit Breit–Wigner like shapes of Eq. (12), labeled as
“BW poles” and also considering the contribution of only
the lower mass pole (A) or the higher mass pole (B). The
“tree level” curve represents the result removing the final
V P state interaction, i.e. only the mechanism of Fig. 2a),
which is accounted for by considering only the first hi term
in Eq. (10). We have also implemented a convolution with

the final vector meson spectral function, in the same way as
in Ref. [38], in order to take into account the final vector
meson widths. This is specially relevant for the ρ K̄ case due
to the large width of the ρ meson and the fact that the ρK
threshold lies around the K1(1270) energy region.

We see that the invariant mass distributions in these D+
decays are clearly dominated by the K1(1270) resonant con-
tribution but the curves are clearly different in shape and
position of the peaks for the two final channels consid-
ered. Actually in the K ∗−π+ channel the peak of the dis-
tribution is located around 1160–1180 MeV, depending on
whether we use the unitarized or the Breit–Wigner ampli-
tudes for the V P scattering. However, for the ρ+K − dis-
tribution the curve peaks at around 1250-1270 MeV and
is considerable narrower. This is a clear manifestation of
the different weight that the two K1(1270) poles have in
both channels. Indeed, for the K ∗−π+ final channel, the
distribution is clearly dominated by the lower mass pole,
the one at

√
sp = (1195 − i123) MeV. This is a conse-
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Fig. 3 V P invariant mass distributions for D+ → νe+K ∗−π+ and D+ → νe+ρ+K −. Left panels, a, c including the interaction with the tree
level mechanism of Fig. 1. Right panels, b, d without the interference with the tree level contribution
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quence of the large coupling of this pole to K̄ ∗π . In the
ρ+K − channel the individual poles have a more compara-
ble strength among themselves but the higher mass pole, the
one at (1284 − i73) MeV, shifts the final strength to higher
energies and narrows the distribution.

It is also worth noting, however, that there is an important
interference effect between different mechanisms, particu-
larly with the tree level contribution. This is clearly seen
by comparing to the right panels, which have been evalu-
ated removing the tree level terms, i.e. considering only the
mechanisms in Fig. 2b). This is what one would obtain if the
background, non-resonant terms could be ideally removed. In
this later case the distributions would more clearly manifest
the effect of the individual poles.

We should make some comments concerning the possi-
ble contribution of the K1(1400) state, which we have not
considered. In the UChPT of Refs. [18,19] two K1 states
are obtained, as we have discussed previously, but none of
these states was associated to the K1(1400) state, which then
remains as a state of a different nature, but which can also
contribute to the mass distributions discussed above. In quark
models it is customary to talk about two states, K1A, K1B ,
and then there are two physical states which are mixture of
these two states, the K1(1270) and K1(1400) [16,52]. Our
picture is quite different from this one since the two K1 states
that we get are not from qq̄ nature. Then, we have three K1

states rather than two. This means that in addition to the con-
tribution of the two states that we have considered we should
expect a contribution from the K1(1400) which we have not
evaluated, and our model cannot provide. In Ref. [19] an
analysis of some reactions was done and the K1(1400) con-
tribution was added as an explicit resonance propagator. The
good finding of Ref. [19] concerning this discussion is that
the contribution of the K1(1400) was always smaller than
the one of the other two states and it could be separated from
them. We expect a similar situation here.

There is also another issue that we can raise at this point.
In Eq. (2) we have introduced the hadronization by creating
the q̄q pairs with equal weight for u, d, s quarks. This is an
SU (3) singlet and we are implicitly assuming that we have
SU (3) symmetry. One may worry about a possible SU (3)

breaking. At this point it is worth noting that SU (3) is sup-
posed to be a good symmetry but only in Lagrangians or
elementary vertices. This is the case for instance of the chiral
Lagrangians. Violations of SU (3) appear, and some times
are not small, as a consequence of the different masses of
particles belonging to the same SU (3) multiplets, when for
instance final state interaction is done to implement unita-
rization of amplitudes. One can implement SU (3) breaking
in our approach by putting a different weight to the s̄s com-
ponent in that equation than to ūu and d̄d, which can have
the same weight to implement isospin symmetry. Something
like this is hinted in the approach to the J/ψ → φ(ω)ππ

reaction done in Ref. [53]. However, in Ref. [31] it is shown
that this is not an SU (3) breaking, but the consequence that
there are several SU (3) invariant structures to accommo-
date the production of one vector and two pseudoscalars,
and the apparent SU (3) breaking in Ref. [53] actually comes
from a combination of two of these SU (3) invariant struc-
tures, 〈V P P〉 and 〈V 〉〈P P〉. Following these observations
we think that the ūu + d̄d + s̄s combination, normally used
in these type of studies, is accurate. Yet, it is still interesting
to make some estimates of what a moderate SU (3) breaking
in this structure produces in the present case. Let us for this
purpose assume that the s̄s component in Eq. (1) has a weight
1 − α rather than 1, i.e. we consider now

|H〉 ≡ |s (ūu + d̄d + (1 − α)s̄s) d̄〉. (13)

This implies that Eq. (5) is changed with two extra terms:
α ηK̄ ∗0/

√
3 − α φ K̄ 0. Assuming for instance α of the order

of 20%, taking into account the value of the couplings of
ηK̄ ∗ and φ K̄ to the two K1 resonances [19] and the fact that
both channels are quite above the resonance masses, which
makes the size of the G functions appreciable smaller, we
have estimated that the contribution of these new terms to
the amplitudes that we have evaluated is below 5%.

4 Summary

We show theoretically that the semileptonic decays of the D+
meson into νe+K ∗−π+ and νe+ρ+K − allow to distinguish
the two different poles associated to the K1(1270) resonance
as predicted by the UChPT [18,19]. Using as only input the
lowest order chiral perturbation theory Lagrangian account-
ing for the tree level interaction of a vector and a pseudoscalar
meson, the implementation of unitarity in coupled channels
allows to obtain the full V P scattering amplitude which
dynamically develops two poles associated to the K1(1270)

resonance, without including them as explicit degrees of free-
dom. The poles show up naturally from the highly non-linear
dynamics implied in the unitarization. Each pole has differ-
ent features which could allow them to be distinguished in
specifically devoted reactions, like those considered in the
present work. Indeed, each pole couples differently to differ-
ent V P channels: the lower mass pole is wider and couples
mostly to K ∗π and the higher mass pole is narrower and
couples predominantly to ρK .

The semileptonic decays studied in the present work pro-
ceed first with the elementary V P production from the
hadronization after the weak decay of the c quark via the
creation of a q̄q pair with the 3 P0 model. The weights of the
different channels are then related using SU (3) arguments.
The K1(1270) shows up in the decay after the implementa-
tion of the final state interaction of the V P pair, using the
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unitarized V P amplitudes. In spite of the fact that in the
full amplitudes there is always a mixture of both poles, we
obtain, by evaluating the V P invariant mass distributions,
that the D+ → νe+K ∗−π+ weighs more the lower mass
pole while in the D+ → νe+ρ+K − decay the higher mass
pole has a greater influence. The shapes do not necessarily
reflect directly the pure resonant shape of each pole since
there are interferences between the poles and non-resonant
terms, but both the position and shape of the invariant mass
distributions are clearly different and reflect the dominance of
either pole in both channels considered and could be observed
in experiments amenable to look at these mass distributions.
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