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Abstract This paper discusses wormholes supported by
general equation-of-state , resulting in a significant combina-
tion of the linear equation-of-state and some other models.
Wormhole with a quadratic equation-of-state is studied as
a particular example. It is shown that the violation of null
energy condition is restricted to some regions in the vicinity
of the throat. The combination of barotropic and polytropic
equation-of-state has been studied. We consider fluid near the
wormhole throat in an exotic regime which at some r = r1,
the exotic regime is connected to a distribution of asymptot-
ically dark energy regime with −1 < ω < −1/3. We have
presented wormhole solutions with small amount of exotic
matter. We have shown that using different forms of equation-
of-state has a considerable effect on the minimizing violation
of the null energy condition. The effect of many parameters
such as redshift as detected by a distant observer and energy
density at the throat on the r1 is investigated. The solutions
are asymptotically flat and compatible with presently avail-
able observational data at the large cosmic scale.

1 Introduction

The significant development in wormhole physics has been
started by Morris and Thorne [1]. Wormhole is an exact
solution of the Einstein field equations which can be used
as a hypothetical shortcut between points in a universe or
between two different universes. Wormholes are not famous
as black holes, but the possibility that wormholes and black
holes are in fact very similar object has been presented [2–
5]. Wormholes have not been observed experimentally but
there is not any observational reason to rule out this theory.
Wormhole is a good candidate which would provide us with
a practically unlimited possibility for interstellar travel. In
wormhole study, a description of the matter content of the
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wormhole is essential to present wormhole physics. Morris-
Thorne wormholes violate classical energy conditions [6].
Null energy condition (NEC) specified by Tμνkμkν ≥ 0, in
which kμ is any null vector and Tμν stress-energy tensor. The
matter which violates the NEC is called exotic. Exotic matter
is the main ingredient in wormhole theory. It was shown that
violation of the NEC is a generic and universal feature of the
traversable wormhole in General Relativity (GR) [7,8]. Of
course, wormholes with NUT parameter [9–11] may be con-
sidered as traversable wormhole without exotic matter but,
one should keep in mind that cosmological constant is exotic
in this realm. Some researchers try to solve the problem of
exotic matter by investigating wormhole in modified theories
of gravity. Wormhole in modified gravitational theories such
as Brans-Dicke [12–14], f (R) gravity [13,15–19], curvature
matter coupling [20,21], and brane-world [22–27] has been
studied. For a review on traversable wormhole solutions in
modified theories of gravity, see [28] and references therein.
In most of these theories, an effective stress-energy tensor
which contains the higher-order curvature has appeared in
the right side of the Einstein field equations. So the effec-
tive stress-energy tensor violates NEC instead of ordinary
matter. Investigation of wormholes in higher-dimensional
spacetime was done [29,30]. Wormholes in the framework
of Lovelock [31–33] which is considered as the most theory
of gravitation in n dimensions have been studied. Arkani-
Hamed et al. have studied Euclidean wormholes in string
theory [34].

Application of quantum inequalities imposed a bound on
exotic energy densities [35]. The quantum effects allow local
violation of energy conditions, but this bound implies that
any inertial observer in flat spacetime cannot see an arbitrar-
ily large negative energy density which lasts for an arbitrarily
long period of time [36]. Kuhfittig has shown that a worm-
hole supported by only small amounts of the exotic matter
really can be traversable [36]. Wormholes with small amount
of violation of the energy conditions in the framework of GR
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have been studied in the literature. Somebody have used the
cut and paste method to minimize the violation of NEC [38–
42]. In the cut and paste method, the single manifold M is the
combination of two spherically symmetric spacetime Mint

and Mext which the interior space is related to the wormhole
and the exterior one is usually the vacuum space. The junction
conditions originated from Israel junction condition, should
be considered in this surgery. Since the wormhole geometry
is confined to a local spacetime in the cut and paste method,
the violation of NEC is due to this part and can be arbitrarily
small. We believe that thin shells are a mathematical abstrac-
tion, for physical reasons, it is better to minimize the usage
of the cut and paste method.

Theoretical physicists have used the different equation-
of-state (EoS) to investigate cosmological as well as astro-
physical phenomena. The EoS of fluid supporting wormhole
geometry is an essential equation in studying wormhole the-
ory. Recent observations indicate that the Universe is spa-
tially flat with low matter density and expanding with accel-
eration [43–46]. Fluid with an EoS, p = ωρ, and positive
energy density is the most considerable one to explain the
evolution of the cosmos. The regime with −1 < ω ≤ 0
is called dark energy and the special case with ω < −1 is
called phantom. Accelerated expansion of the Universe is
reachable for fluid with ω ≤ − 1

3 . The phantom fluid is found
to be compatible with most of classical test of cosmology
such as CMB (cosmic microwave background), anisotropy,
and mass power spectrum. Although the exotic nature of
phantom energy leads to some unusual cosmological conse-
quences such as big rip, phantom fluid is a good candidate to
support wormhole solutions. It violates the NEC and is spec-
ulated to be a possible driving late time cosmic acceleration.
Many asymptotically flat [47–50] or not asymptotically flat
[49,51–54] wormhole solutions with phantom fluid source
have been presented. Wormholes with other forms of fluid,
like Chaplygin EoS [55–58], polytropic EoS [59], and mod-
ified Chaplygin EoS [60] have been studied in the literature.
Jamill et al. have studied wormhole supported polytropic
phantom energy which is a generalization of phantom energy
and in some cases Chaplygin-gas models [61]. In all of these
papers, the violation of the NEC is inevitable in the whole of
wormhole spacetime.

Some authors have studied the wormhole with a variable
EoS parameter in which ω = p

ρ
is a function of radial coordi-

nate [62–67]. In some of these studies, the violation of energy
condition is inevitable in the whole of spacetime [62]. In [63],
the cut and paste is used to find wormhole solutions of the
finite size which minimize the violation of energy condi-
tions. Lopez et al. have assumed an EoS in which the sum
of the energy density and radial pressure is proportional to
a constant with a value smaller than that of the inverse area
characterizing the system [64]. They have found solutions
which are not asymptotically flat. Azreg-Aïnou by consid-

ering two barotropic equations of state for lateral and radial
pressures has presented wormholes with no gluing effects
[65]. In another method, Remo and Lobo have proposed solu-
tions in which phantom fluid is concentrated in the neighbor-
hood of the throat to ensure the flaring out condition [66].
Some of their solutions are asymptotically flat. They have
investigated the possibility that these phantom wormholes be
sustained by their own quantum fluctuations. In [67], a gen-
eral formalism to find asymptotically flat wormholes with
variable EoS parameter has been presented. Also, the phys-
ical difference between the cut and paste method and the
intrinsically asymptotically flat wormholes which minimize
the NEC has been discussed. Note that, it is not a neces-
sary condition that the EoS of wormhole or any astrophysical
object should be the same as the EoS of the Universe. The
only condition is that the EoS of wormhole should be fitted
by EoS of the Universe in the large cosmological scale. This
motivation helps us to find wormhole solutions with EoS
that is asymptotically linear but have additional terms. So
this work is focussed on the exploration of wormhole solu-
tions using the different form of EoS. We will seek solutions
which restrict the violation of the NEC to some regions in
the vicinity of the throat. The theory is GR but the matter
content of wormhole is investigated in more details. Actu-
ally, we considered an EoS which has a linear term and some
extra terms. This method can be used to sustain wormhole
solutions with minimum violation of energy conditions. We
study some new wormhole solutions which are asymptoti-
cally flat. We will present solutions by considering a special
shape function.

The paper is organized as follows: In the next section, the
basic structure of wormhole theory is presented. In Sect 3,
by considering a power-law shape function, wormhole with
quadratic EoS is studied and solutions with minimum vio-
lation of the NEC are presented. Wormholes with a combi-
nation of barotropic and polytropic EoS are investigated in
Sect. 4. Discussions and Concluding remarks are presented
in the last section.

2 The general model of wormhole theory

Usually, the metric of a static and spherically symmetric
wormhole is given by [1]

ds2 = −e2φ(r)dt2 +
[

1 − b(r)

r

]−1

dr2 + r2 d�2 , (1)

where d�2 = (dθ2 +sin2 θdφ2). At a minimum radial coor-
dinate, r0, with b(r0) = r0 the wormhole connects two dif-
ferent worlds or two distant parts of the same universe. Here
b(r) is called the shape or form function and ro is the throat of
the wormhole. The function φ(r) is called redshift function
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because the gravitational redshift as measured by a distant
observer is

z = δλ

λ
= 1 − λ(r → ∞)

λ(r = r0)
= 1

exp(φ(r0))
. (2)

The redshift function should be finite everywhere to avoid
the existence of the horizon. The conditions

(b − b′r)
2b2 > 0 (3)

and

(1 − b/r) > 0. (4)

are necessary to support a traversable wormhole. Note that
the prime denotes the derivative d

dr . In this paper, we investi-
gate asymptotically flat wormhole solutions so the condition

lim
r→∞

b(r)

r
= 0, lim

r→∞ φ(r) = 0, (5)

is also imposed. Considering an anisotropic fluid in the
form Tμ

ν = diag(−ρ, p, pt , pt ) and using the Einstein
field equations, the following distribution of matter (with
8πG = c = 1) are obtained,

ρ = b′

r2 , (6)

p = 2(r − b)φ′

r2 − b

r3 , (7)

pt = p + r

2

[
p′ + (ρ + p)φ′] (8)

where ρ(r) is the energy density, p(r) is the radial pressure
and pt (r) is the lateral pressure. Equation (8) can be consid-
ered as a consequence of the conservation of the stress-energy
tensor, Tμν ;μ = 0. Although the wormhole solutions are
anisotropic in general form, we can use an EoS for radial pres-
sure and find lateral pressure through the Einstein equations.
This is motivated by the discussion of the inhomogeneities
that may arise due to gravitational instabilities. Indeed, as the
dark energy EoS represents a spatially homogeneous cosmic
fluid and is assumed not to cluster. It is also possible that
inhomogeneities may arise due to gravitational instabilities.
Thus anisotropic wormholes may have originated from den-
sity fluctuations in the cosmological background, resulting
in nucleation through the respective density perturbations.
One can also deduce the possibility that these structures are
sustained by their own quantum fluctuations [66]. Because
of the aforementioned reason, the pressure in the EoS may
be regarded as a radial pressure, and the tangential pressure
may be deduced through the Einstein field equations. This
method has been used extensively in the literature, i.e. phan-
tom wormholes [47–54]. Also Sushkov and Kim have studied
a time-dependent solution describing a spherically symmet-
ric wormhole in a cosmological setting with a ghost scalar
field [68]. More specifically, they have shown that the radial
pressure is negative throughout the spacetime, and for large

values of the radial coordinate, equals to the lateral pressure,
which demonstrates that the ghost scalar field behaves essen-
tially as dark energy.

There are many algorithms to construct wormhole geom-
etry theoretically. Assuming desired forms of the redshift
and shape functions and then the corresponding matter field
is determined by the Einstein field equations. In another
method, the redshift or shape functions are obtained as solu-
tions by solving the Einstein field equations with prescribed
matter field configuration. The energy density and pressure in
the first method usually are not realistic. In the second algo-
rithm, one may consider an EoS which has suitable proper-
ties to describe the physical matter. The second algorithm has
been used by many authors in the literature to find a worm-
hole solution with different forms of EoS [47–63]. In the
present article, we used the same algorithm to find asymptot-
ically flat wormhole exact solutions with some other forms
of EoS.

Generally, an EoS is added to set of equations and then
some strategies have been used to solve the equations and
find unknown functions. The EoS is very important because
it explains the physical fluid which is essential to sustain the
wormhole. Commonly, the essential fluid need to construct
the wormhole geometry is not isotropic. We can use the radial
pressure in the EoS, p = f (ρ), which was first presented
in the study of phantom wormhole solutions [51]. In recent
studies, fluid with a linear EoS manifests itself as the source
causing a rapid accelerated expansion of the Universe on a
large cosmic scale and EoS

p = ωρ (9)

is the most famous in studying cosmos. As it was mentioned
the accelerated expansion of the Universe is reachable for
fluid with ω ≤ −1/3. Fluid with −1 < ω ≤ −1/3 and ρ > 0
satisfies the NEC which can cause accelerated expansion of
the Universe. Phantom fluid violates the NEC every where in
the spacetime but a linear EoS with ω > −1 and an extra term
may violate the NEC only in some region of the spacetime.
So we try to find some solutions with barotropic EoS and a
mixed energy density.

We consider an EoS as follows:

p = ωρ(r) + g(ρ). (10)

At large distance from the throat, the physics of wormhole
should be compatible with the cosmos. So the condition

lim
ρ→0

g(ρ)

ρ
= 0, (11)

leads to an asymptotically linear EoS on the large scale.
Wormhole models building in cosmology based on two main
ingredients: a theory of gravity and a description of the matter
content of the Universe. In this paper, the gravity sector of the
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theory is not completely fixed. There are some free param-
eters. The matter sector is represented in the field equations
by the energy-momentum tensor and some EoS rather than
conventional ones have been considered. The conventional
EoSs like linear, polytropic, Chaplygin, power-law and so on
are models to describe cosmology. The wormhole theory has
been explored in those models to achieve a good understand-
ing of our Universe. Since there are not any observational data
about wormhole, it seems that the EoS of wormhole hasn’t a
specific form. So, any EoS that has the necessary conditions
in the local view and is compatible with cosmological known
EoS in global view, can be considered as a candidate. It is
clear that wormhole geometries admit an EoS in the general
form p = f (ρ). Mathematically, this EoS can be expressed
in a Taylor series so any general EoS of the wormhole can
be expressed in the form of Eq. (10).

The EoS (10) helps us to investigate a large class of worm-
hole solutions which violates the NEC only in some regions
near the wormhole throat. Phantom wormholes violate the
NEC in the whole of spacetime but the additional term g(ρ)

in Eq. (10) provides a way to construct wormhole solutions
with the minimum violation of energy condition and con-
sidering ω > −1 instead of phantom EoS in large scale. In
asymptotically flat spacetime at large radial coordinate, ρ(r)
and p(r) should tend to zero. So to have compatibility with
cosmos in large scale, we have

lim
ρ→0

p(ρ) = 0. (12)

In the following, we consider some strategy to find exact
wormhole solutions with different forms of g(ρ).

3 Wormhole with a quadratic equation of state

Ananda and Bruni have discussed cosmological dynamics
and dark energy with a quadratic model of EoS [69,70]. They
have shown this model evolves from a phantom phase asymp-
totically approaching a de Sitter phase instead of evolving
to a big rip. In [69,70] and references therein, it has been
addressed the motivations behind considering a quadratic
EoS. For example, the loop quantum gravity corrections
which result in a modified Friedmann equation provides a
quadratic EoS. The modification is appearing as a negative
term which is quadratic in the energy density. Also the stud-
ies of k-essence fields as unified dark matter (UDM) models
indicated that a fluid with a closed-form barotropic EoS is a
good candidate to describe the general k-essence field. Now,
we consider the same EoS in the following form

p(ρ) = ωρ + ω1ρ
2 (13)

It should be noted that the correct form of EoS is as follows

p(ρ) = ωρ + ω1

ρc
ρ2 (14)

but for the sake of simplicity, we set ρc = 1. This EoS is
suitable to describe a standard fluid at high pressure and
high energy density to vanishing presumer at low energy
density(limρ→0 p(ρ) = 0). Wormholes with a quadratic EoS
has been studied by Rahaman et al. [72]. They have consid-
ered the shape function as a series and have found the form of
coefficients of the series solution. They have studied the pos-
sibility of finding solutions for this particular shape function.
They have not reached in a reasonable proof for the condition
(4) in their research. They only discussed some general math-
ematical possibility. Let us study wormhole with a vanishing
redshift function, putting φ = 0 in Eq. (7), leads to

p = −b(r)

r3 . (15)

So by considering (13), one can get

r2 ωb′ + ω1b
′2 = r b. (16)

Finding exact solution for this equation is very difficult. Thus
we try to find solutions with nonconstant redshift function.
For the sake of simplicity, we set r0 = 1 in the recent part
of this paper. Several authors have investigated wormhole
by considering power-law shape function [49–59,61]. We
choose a special shape function in the following form [50]

b(r) = A rα + (1 − A) (17)

The mass function related to this shape function is

m(r) ≡
∫ r

r0

4πr2ρdr = A rα − A

2
. (18)

The condition 1 > α should be imposed to satisfy asymp-
totically flat condition (5). It is clear that for α > 0 the mass
is unbounded and for 0 > α mass is bounded. This shape
function shows an energy density in the form

ρ(r) = Aα r (α−3) (19)

which is a positive smooth function of r for A α > 0 . This
energy density function has a maximum at the throat

ρ0 = ρ(r0) = A α (20)

and tends to zero at large infinity distance from the throat.
Equation (20) relates the constant A and α to physical
parameter ρ0. Someone may believe that specifying a shape
function lacks physical justification and motivation for the
stress-energy tensor. But we can consider another alternative
approach that has been used by many authors. As it was done
in [50,51], one can consider a specific energy density pro-
file instead of considering a known shape function. In this
context, the energy density profile (19) can be considered
known which leads to the shape function (17). We think that

123



Eur. Phys. J. C (2020) 80 :366 Page 5 of 13 366

these two approaches are intrinsically the same. So we con-
sider only the known shape function instead of considering a
smooth energy density distribution. The presented algorithm
could be used for other forms of energy density distribution.

Because of the aforementioned properties, the defined
shape function is a good candidate to find wormhole exact
solutions. Now, we try to find solutions for φ(r) by using the
Einstein field equation. Using Eq. (7) leads to

φ(r) = 1

2

∫ (
b(r) + r3 p(r)

r(r − b(r))

)
dr (21)

Putting p(r) from (13) and (20) in this equation yields

φ(r) = 1

2

∫
(A + ω A)rα + 1 − A + ω1A2α2r2α−3

r(r − Arα + A − 1)
dr.

(22)

Calculating this integral for a general form of A and α

is difficult, so we analyzed some special cases. As the first
example, consider α = −1 which leads to

φ(r) = c1

r4 + c2

r3 + c3

r2 + c4

r
+c5 ln(r) + c6 ln(r − 1) + c7 ln(r + A) (23)

with

c1 = ω1A

8
, c2 = −ω1

6
(1 − A), c3 = −ω1

4

(
1 − A − 1

A

)
,

c4 = −ω

2

(
1 − A − 1

A
+ 1

A2

)
,

c5 = 1

2

(
ω + ω1

(
1 − A − 1

A
+ 1

A2 − 1

A3

)
+ 1

)
,

c6 = 1

2(A + 1)

(
1 − ωA + ω1A

2
)

,

c7 = 1

2(A + 1)

(
A − ω + ω1

A3

)
. (24)

To avoid from horizon, we should set c5 = c6 = c7 = 0
which leads to

ω = A6 − 1

A5 − A
, ω1 = A2 − A4

A4 − 1
. (25)

Equation (19) implies that for a positive energy density, A
should be negative. Defining the function

F(r, A) = ρ(r, A) + p(r, A)

= ((ω(A) + 1) + ω1(A)ρ(r, A))ρ(r, A) (26)

helps us to investigate the violation of the NEC. The function
F(r, A) is depicted as the surface in Fig. 1, which is negative
through the spacetime so the NEC is violated everywhere.
Let us try to find solutions which satisfy the NEC in some
regions of spacetimes. We consider A = 1 and α = 1/2.
Equation (22) provides

Fig. 1 The plot depicts the function F(r, A) against r and A. It is clear
that F(r, A) is negative thorough the entire range of r and A which
means the NEC is violated everywhere. See the text for details

φ(r) = 1

2

(
ω1

2

(
1

r1/2 + 1

2r
+ 1

3r3/2 + 1

4r2 + 1

5r5/2

)

+
(ω

2
+ 1 + ω1

4

)
ln

(
1 − 1√

r

))
. (27)

The condition of an event-horizon-free spacetime requires
that φ(r) be finite everywhere. Therefore the coefficient of
ln(r) should be equal to zero. This yields

ω1 = −(2 ω + 4). (28)

Using Eqs. (2) and (27), one can easily show that

ω1 = −240

137
ln(z). (29)

It relates the redshift as detected by a distant observer and
ω1. Since −1 < ω < −1/3 is related to dark energy regime,
it is easy to show that

− 10

3
< ω1 < −2, (30)

is acceptable in this regime. Now, we devote some words to
the possibility of the violation of the NEC. We define the
function

F(r, ω) = ρ(r) + p(r, ω)

= ((ω + 1) − 2(ω + 2)ρ(r))ρ(r). (31)

The sign of this function indicates the violation of the
NEC. The negative sign corresponds to exotic matter. We
have plotted F(r, ω) against r in Fig. 2 for some different ω.
It is clear that the violation of the NEC is restricted to some
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Fig. 2 F(r, ω) for ω = −0.5 (dashed line), ω = −0.7 (dotted line)
and ω = −0.9 (solid line) against r . It is clear that F(r, ω) is positive
throughout some range r > r1 which implies the NEC is satisfied. See
the text for details

region in the vicinity of the throat. Some explicit calculations
yield

r1(ω) =
(

ω + 2

ω + 1

)(
2
5

)
. (32)

Here r1 is the radial where the sign of F(r, ω) changes. We
have plotted r1 as a function of ω in Fig. 3. This figure shows
that as ω increases r1 decreases. Since ω < −1/3 leads to
accelerated expansion of the Universe, the minimum of r0 is
given by

rmin = lim
ω−→− 1

3

(
ω + 2

ω + 1

)(
2
5

)
=

(
5

2

) 2
5

. (33)

It is also obvious that limω−→−1 r1(ω) −→ ∞. Although the
violation of the NEC is resulted from the flaring out condition
which appears directly in ρ + p, it is necessary to check the
other NEC ρ + pt ≥ 0. So we have defined the function

F1(r, ω) = ρ(r) + pt (r, ω). (34)

We have plotted F1(r, ω) versus r and ω in Fig. 4. Since
F1(r, ω) is positive through the entire range of r and ω, we
can conclude that ρ + pt ≥ 0 holds everywhere. In general,
we can conclude that the selected shape function (17) can be
used to construct wormhole geometries with a quadratic EoS
fluid in which the violation of the NEC is considerable only
near the wormhole throat.

Fig. 3 r1 as a function of ω. It is transparent that r1 decreases as ω

increases. See the text for details

Fig. 4 The plot depicts the function F1(r, ω) against r and ω. It is clear
that F1(r, ω) is possitive thorough the entire range of r and ω which
means the NEC is satisfied everywhere. See the text for details

In the next sections, we will try to find solutions with a
more general EoS. The class of solutions has been presented
in this section seems to be a special case of the solutions in
the next section.
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4 Combination of barotropic and polytropic equation of
state

Wormhole with a polytropic EoS has been studied in the
literature, kjuy [59,61]. On the other side, many papers have
discussed wormhole with a barotropic EoS [49–54,71]. Now,
we consider wormhole with a combination of barotropic and
polytropic EoS:

p = ωρ + ω1ρ
n, (35)

An important feature of this EoS is the reduction of exotic
matter in constructing wormhole theory. We use the method
of the previous section to find exact wormhole solutions. If
we let A = 1 in the shape function (17) and use Eq. (35), the
form of integral (22) becomes as follows

φ(r) = 1

2
((1 + ωα)φα

1 + ω1α
nφα

m). (36)

where

φα
1 =

∫
1

r(r (1−α) − 1)
dr =

ln
(

1 − 1
r1−α

)
1 − α

,

φα
m =

∫
1

rm(r (1−α) − 1)
dr,

m = (1 − n)(α − 3) + 1. (37)

Considering the derivative of redshift function finite at the
throat (the term behind integral (21) should be finite at the
throat) leads to

ω1 = −1 + ωα

αn
. (38)

The solutions of φα
m for a general α and m appear in the

hypergeomtric function form, so we will solve some special
cases. An interesting solution corresponds to α = 1

2 and

m = s

2
, s = 3, 4, 5, . . . . (39)

For these values, we can verify that n = 3+s
5 and

φ
1
2
m = φ

1
2
1 +

2m−2∑
j=1

2

j r j/2 . (40)

Finally, from Eqs. (36–40) for n = 3+s
5 and α = 1

2 one can
get

φ = −
(

1 + ω

2

) 5n−5∑
j=1

1

j r j/2 . (41)

By taking into account Eqs. (2) and (41), one can verify that

z = e((ω/2+1)H5n−5), (42)

Fig. 5 The plot depicts the function r1(n, ω, α) as a function of ω and
α for n = 3. It is clear that r1 decreases as α or ω increases. See the
text for details

where H5n−5 is the (5n − 5)-th harmonic number. Equation
(42) shows the relation between z and n. To check the NEC,
we use the function

F(n, r, ω)=ρ(r) + p(r, ω) = ((ω + 1) + ω1ρ(r)n−1)ρ(r).

(43)

It is clear that F(n, r, ω) depends on n, ω and r . Since ρ > 0,
one can deduce that

r1(n, ω, α) =
(

α
1 + ω

1 + αω

) 1
(n−1)(α−3)

. (44)

Here r1 is the radial where the sign of F(n, r, ω) changes.
We have plotted r1(n, ω, α) as a function of ω and α for n = 3
in Fig. 5. This figure shows that the value of r1 increases as
α or ω decreases, so in the solutions with larger ω or α, the
violation of the NEC is limited to a smaller space near the
throat. We can use the same analyzes for the dependence of
r(n, ω, α) on n and α or n and ω when the third parameter is
fixed. Figures 6 and 7 describe these dependencies. Figure 6
indicates that r1 is an ascending function as α or n decreases.
Also, Fig. 7 explains that r1 is an ascending function as ω or n
decreases which shows that all of three parameters generally
have the same behaviour. Observe that as n −→ ∞ then
r1 −→ 1 which means that for larger n the violation of the
NEC is limited to a very thin radial in the vicinity of the
throat.

For this class of solutions, investigating the condition ρ +
pt ≥ 0, for a general n is too complicated. So, we will
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Fig. 6 The plot depicts the function r1(n, ω, α) as a function of α and
n for ω = − 1

2 . It is clear that r1 increases as α or n decreases. See the
text for details

Fig. 7 The plot depicts the function r1(n, ω, α) as a function of ω and
n for α = − 1

2 . It is clear that r1 increases as α or n decreases. See the
text for details

check this condition for each n individually. According to
the previous section, we can define the function

Fn
1 (r, ω) = ρ(r) + pt (r, ω) (45)

Fig. 8 The plot depicts the function F3
1 (r, ω) as a function of ω and

r for. It is clear that F3
1 (r, ω) is positive through the entire range of ω

and r . This shows that condition ρ + pt ≥ 0 holds everywhere. See the
text for details

for each n then we can plot Fn
1 (r, ω versus r and ω. As an

example, we have plotted F3
1 (r, ω) against r and ω in Fig. 8.

This figure guarantees that ρ+ pt ≥ 0 holds everywhere. Let
us seek a special example for wormhole solutions violating
the NEC only in the vicinity of the wormhole throat in detail.
If we set α = 1

2 , ω = − 2
3 and n = 3 , leading to the line

element

ds2 = −e
− 4

3

∑10
j=1

1
jr j/2 dt2 + dr2

1 − 1√
r

+ r2 d�2. (46)

The stress-energy tensor components are as follows

ρ(r) = 1

2 r5/2
, (47)

p(r) = − 1

3 r5/2

(
1 + 2

r5

)
, (48)

pt (r) = 1

36 r13 (3r21/2 + r10 + r19/2 + r9 + r17/2

+r8 + r15/2 + r7 + r13/2 + r6 + 133r11/2

−4r5 − 4r9/2 − 4r4 − 4r7/2 − 4r3 − 4r5/2

−4r2 − 4r3/2 − 4r − 4
√
r). (49)

Then r1 = 41/5 	 1.32 and the total amount of exotic matter
can be measured by [74]

I = 8π

∫ r1

r0

(ρ + p)r2dr. (50)

We have plotted ρ + p and ρ + pt as a function of r in Fig.
9 which implies that the NEC is violated only in the interval
r0 ≤ r < r1 with the total amount of the NEC violation
I 	 −8π × 0.056 and z = e3/4h10 	 10.58. To summarize,
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Fig. 9 The plot depicts the function p + ρ (solid line) and pt + ρ

(dotted line) as a function of r where n = 3, ω = −2/3 and r1 	 1.32.
It is clear that for r > r1 the NEC is satisfied. See the tex for details

the line element (46) is a special example of wormholes with
an unbounded mass which has been constructed by a fluid
in the form of Eq. (35). One can construct many different
wormholes solutions by considering other forms of b(r) and
p(ρ) with the minimum violation of the NEC by carefully
fine-tuning the parameters to find φ(r).

The same analyse can be used for a general EoS in the
form

p = ωρ +
N∑
i=1

ωiρ
ni
i (51)

where ni > 1. The physical properties of this EoS when ni
is an integer has been investigated in [73]. The condition,
avoiding horizon at the throat, gives

1 + ωα +
N∑
i=1

ωiα
ni = 0. (52)

It is easy to show that

φ(r) = 1

2

(
(1 + ωα)φα

1 +
N∑
i=1

ωiα
ni φα

mi

)
(53)

where

mi = (1 − ni )(α − 3) + 1. (54)

As it was mentioned before, calculating φα
mi

for general α

andmi leads to hypergeometrical functions. So one can study
the special cases by choosing the suitable values for α and
mi . Again, we put α = 1

2 and mi = s
2 , s = 3, 4, 5, ... or

Fig. 10 The plot depicts the function ρ−(ω2) as a function of ω2 . It
is clear that ρ− is in the possible range 0 ≤ ρ ≤ 1

2 so ρ− is acceptable.
See the tex for details

ni = 3+s
5 , then

φ(r) =
⎛
⎝ N∑

i=1

ωi

(
1

2

)ni 5ni−5∑
j=1

1

jr
j
2

⎞
⎠ . (55)

For example, by using Eq. (55) for the case where the only
non vanishing ni are n1 = 2 and n2 = 3 with

p(ρ) = ωρ + ω1ρ
2 + ω2ρ

3, (56)

one can find

φ(r) =
⎛
⎝ω1

4

5∑
j=1

1

jr
j
2

+
(ω2

8

) 10∑
j=1

1

jr
j
2

⎞
⎠ . (57)

then for ω = −α = − 1
2 , Eq. (52) yields

ω1 = −6 + ω2

2
. (58)

This implies that we can not choose all of ωi in Eq. (52)
freely. It is easy to show that p + ρ changes sign in

ρ± =
−ω1 ±

√
ω2

1 − 4ω2(1 + ω)

2ω2

= 3 + ω2
2 ±

√(
3 + ω2

2

)2 − 2ω2

2ω2
. (59)

We have plotted ρ−(ω2) and ρ+(ω2) as a function of ω2 in
Figs. 10 and 11 respectively. Since for α = 1

2 , the possible
range for energy density is 0 ≤ ρ ≤ 1

2 , one can deduce from
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Fig. 11 The plot depicts the function ρ+(ω2) as a function of ω2 . It
is clear that ρ+ is not in the possible range 0 ≤ ρ ≤ 1

2 so ρ+ is not
acceptable. See the tex for details

these figures that ρ+ is not acceptable. Now, it is easy to show
that

r1(ω2) = (2 ρ−)−
5
2

=
⎛
⎝−−3 + ω2

2 −
√(

3 + ω2
2

)2 − 2ω2

ω2

⎞
⎠

− 2
5

. (60)

r1(ω2) has been plotted against ω2 in Fig. 12. This plot shows
that r1 is an ascending function of ω2. It means that the
smaller ω2 will present a wormhole with smaller amount of
the NEC violation. We analyze three cases ω2 = −10 (case
1), ω2 = −2 (case 2) and ω2 = 0 (case 3) which are related
to following EoS’s respectively.

p1 = −1

2
ρ + 2ρ2 − 10ρ3,

p2 = −1

2
ρ − 2ρ2 − 2ρ3,

p3 = −1

2
ρ − 3ρ2. (61)

We have plotted p(ρ) as a function of ρ for three cases
and compared with p = ωρ in Fig. 13. This figure shows that
p1 have more consistency with linear EoS. It should be noted
from Fig. 12 that the NEC is violated for ω2 = −10 (case
1) in a smaller region in comparison to the other cases. It is
also of particular interest that p3 is a quadratic EoS which is
achieved by putting ω2 = 0 in Eq. (56). So one should note
that if EoS has more terms, the opportunity to fit the EoS
with linear EoS is more accessible and the NEC violation is

Fig. 12 The plot depicts the function r1(ω2) as a function of ω2 where
ω = − 1

2 . It is evident that r1 increases as ω2 increases which shows
that the NEC violation is restricted in a smaller region for smaller ω2 .
See the tex for details

restricted to a smaller region. Also, EoS with few terms can
be considered as a special case of a more general EoS. This
result may be considered as the one of the main points of our
work. It should be mentioned that the conditions (3) and (4)
are necessary but not sufficient to check wether wormhole is
traversable or not. We should checked the parameters

|a(r)| =
∣∣∣∣∣
(

1 − b(r)

r

)1/2

e−φ(r)(γ eφ(r))′
∣∣∣∣∣ (62)

| 
 at (r)| =
∣∣∣∣
(

1 − b(r)

r

)
(−φ′′

+ b′r − b

2r(r − b)
φ′ − (φ′)2

∣∣∣∣ (63)

where a is the radial acceleration that traveler feels and 
at
is the maximum tidal acceleration felt by traveler [1]. As an
example, for metric (46) we have calculated the maximum
value of |a(r)| in the range 1 ≤ r < ∞ which is equal to
amax = 0.52. So, the condition

|a(r)| ≤ g⊕, (64)

is satisfied. Also, the maximum value of 
at is (
at )max =
0.25. Therefor, the condition

| 
 at (r)| ≤ g⊕
2

(65)

123



Eur. Phys. J. C (2020) 80 :366 Page 11 of 13 366

Fig. 13 The plot depicts the three special EoS p1 (dotted line), p2
(dashed line), p3 (dotted-dashed line) and p = ωρ (solid line) as a
function of ρ. It is evident that p1 has the most consistency with p = ωρ.
So the EoS with extra terms can increase the opportunity of consistency
with linear EoS. See the tex for details

is satisfied. Note that we have considered 8πG = C = 1. In
[1], it was mentioned that


τ1 =
∫ l2

−l1

dl

vγ
≤ 1yr (66)


t1 =
∫ l2

−l1

dl

veφ
≤ 1yr. (67)

are the necessary conditions in a journey. Checking these
conditions analytically for our solutions is so difficult but one
can consider some value for l1 and l2 then try to check these
conditions numerically. As an example, if we set l1 = −l2 =
−3 × 108 for metric (46) then we can find 
τ1 	 19.89 and

t1 	 20.002 . So total time to travel conditions are satisfied.
During this calculation, we consider γ = 1/

√
0.99. Reader

can used the same procedure for other solutions.

5 Discussion and concluding remarks

Wormholes have attracted a lot of attention in the literature
and a large number of models have been proposed in this
realm. Many of these studies are presented to answer to the
basic question, how to avoid or at least minimize the require-
ment of the exotic NEC violating matter? Minimizing the
usage of exotic matter for the physical viability of wormhole
has received considerable attention. We have shown the fact
that the choice of EoS for the description of matter presenting

the wormhole has great relevance in the violation of the NEC
in the wormhole static solutions. In the following discussion,
we will see how our method is interpreted as a solution for
wormhole and how the definition of EoS affects the viola-
tion of energy conditions. We also discuss the priority of this
method than the cut and paste method.

Actually, we can divide the geometry of the wormhole into
two regimes; high energy density regime and low energy den-
sity regime. If we consider ρ as a steady function of r with a
minimum and a maximum, then low regime is related to the
regime where ρ tends to a minimum when the high regime
is relevance to the vicinity of the maximum. This motivation
helps us to consider an EoS with two terms. The first term
is the dominant term in the low regime. The violation of the
NEC can be caused by the combination of these two terms.
On the other hand, it supports the possibility of confining
the exotic matter in some finite regions of the spacetime. The
shape function (17) present a smooth energy density function
which has a maximum at the throat and tends to zero at large
distance from the throat. It seems that this is a suitable choice
to present the desired energy density. It should be noted that
this algorithm can be used for other forms of shape functions
or energy density. Any physical energy density which has a
maximum near the throat and tend to zero at large distance
may be considered as a candidate. The mathematical diffi-
culty of solving equations to find redshift function is different
for different choices of shape function.

Generally, in our method EoS is as follows

p = L(ρ) + H(ρ). (68)

The former function, L , in the recent equation gives informa-
tion about the behavior of the fluid supporting wormhole far
from the throat while combination of L and H specifies the
behavior of the fluid in the vicinity of the wormhole throat. It
should be noted that the portion of the H is more than L near
the wormhole throat. The parameter ε(r) = H

L can be used
as a measure to quantify the portion of each term in different
regions. It is clear that limr→∞ ε → 0. Since p(ρ) = ωρ is
the most usual EoS which has been used in the literature to
describe the cosmos, we set L(ρ) = ωρ to have consistency
with physics of cosmos in large scale. Note that Eq. (11) pro-
vides the difference between the low regime and high regime
in the EoS. This is the essential condition for the function
H(ρ). As an example, wormhole with a modified Chaplygin
EoS [60]

p = ωρ − ω1

ρα
, (69)

with α > 0 is not a suitable case in our method. Because Eq.
(11) is not satisfied. The use of the mixed EoS (68) offers two
important advantage over p(ρ) = ωρ: First, in the wormhole
theory, violation of the NEC is an essential condition at the
throat, so one should assume ω < −1 for satisfying flaring
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out condition. This directed us toward phantom wormhole,
but phantom models have problems such as Big Rip singu-
larity or problem of instability in quantum field theory. In
phantom model, the violation of the NEC is inevitable in the
entire range of spacetime. Mathematically, this assumption is
not necessary when the EoS is considered as a mixed model,
thereby producing a smaller violation of energy conditions.
Second, in the cut and paste method the violation of the NEC
can be confined to a small region near the throat. The worm-
hole metric was matched to an exterior vacuum metric to
keep the exotic matter within a finite region of space.

We have found an asymptotically flat spacetime without
having to go through acrobatics of cutting and pasting. Our
method seems to be more physically than this method. In the
cut and paste method, the geometry is divided into two differ-
ent parts the interior part is the wormhole line element and the
exterior part is the geometry of the general cosmos spacetime
or at least a geometry which asymptotically is compatible
with the metric of cosmos. The surgery may need a surface
stress-energy tensor in the boundary of the cut and paste.
In our method, the geometry is single and there is not any
need to surface stress-energy tensor. The EoS is compatible
with cosmos EoS in large scale intrinsically. We have utilized
a specific shape function which describes a smooth energy
density function with a maximum near the throat and tends to
zero at large distance from the throat. Although some classes
of EoS are investigated in this paper, this method can be
used with the other EoS or shape function to find new solu-
tions. For solutions with quadratic EoS, avoiding horizon at
the throat has led to a relation between ω and ω1. The same
condition is imposed between the ωi parameters on the other
EoS. So we can not choose EoS without considering this con-
straint. We have shown that for a combination of barotropic
and polytropic EoS r1 is dependent on the parameter ω, n
and α in which the larger n proposed a fluid with a smaller
amount of exotic matter. The general dependence of r1 has
been discussed in detail. We have presented solutions with
a more general EoS which are a polynomial function of ρ.
The previous solutions can be considered as a special case
of these solutions. We have shown that for three individual
cases (Eq. (61)), if we choose an EoS with more additional
terms, the opportunity to have more consistency with linear
EoS will increase. Also, one can conclude that a more general
EoS instead of a linear one may present solutions with fewer
violation of the NEC. As we know, different astrophysical
objects may have different EoS in the local view in compar-
ison with global view. In the other word, the EoS of fluid
supporting wormhole near the throat has a behavior different
from the behavior of the EoS of the Universe in large scale.
This local behaviour of fluid near the throat will tend to a
global EoS in the large scale. This method seems to be more
physically than considering a unique EoS in all regions of the

spacetime. This is the main point of our work which leads to
the minimum violation of the NEC.
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