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Abstract The continuation of high energy QCD Lipatov’s
effective action to Euclidean space is performed. The result-
ing Euclidean QCD RFT action is considered separately in
Euclidean “light-cone” coordinates and axial gauge suitable
for the numerical and analytical calculations correspond-
ingly. The further application of the obtained results is also
discussed.

1 Introduction

Lipatov’s effective action approach, [1–13], can be consid-
ered as Regge Field Theory (RFT) constructed on the base of
QCD and intended to to take account of unitarity corrections
to the high-energy scattering amplitudes in the multi-Regge
kinematics, see [14–35]. It also can be considered as a fur-
ther generalization of phenomenological RFT [36–52]. The
formalism is based on the reggeized gluons (reggeons) as the
main degrees of freedom, with the Pomeron calculus, [53–
68], introduced on the base of colorless Reggeons states.

The transition to QCD RFT formulation of the theory is
performed with the introduction of the generating functional
for the reggeized gluons fields A± obtained by an integration
out of the gluon fields v from the the Sef f [v, A]:

eı �[A] =
∫

Dv eı Sef f [v, A ] (1)

with Lipatov’s effective action defined as QCD action plus
effective currents for the longitudinal gluon fields:

Sef f = −
∫

d4 x

(
1

4
Ga

μν G
μν
a + tr

[
( T +(v+)

− A+ ) j+reg + ( T−(v−) − A− ) j−reg
] )

(2)

a e-mail: sergeyb@ariel.ac.il (corresponding author)

and effective currents defined as

T±(v±) = 1

g
∂± O(v±) = v± O(v±),

j±reg a = 1

C(R)
∂2
i A±

a , (3)

where C(R) is eigenvalue of Casimir operator in the repre-
sentation R, tr(T aT b) = C(R) δab A± as Reggeon fields,
see [1–9]. This action can be considered as an averaging of
the interacting eikonal lines over the gluon fields, this defini-
tion and the derivation of the Lipatov’s effective action were
clarified in [11] paper, see also [12]. In general, the form of
the Lipatov’s operator O (and correspondingly T ) depends
on the particular process of interests, see again in [11], the
simplest choice of the operators are Wilson lines (ordered
exponential) of the longitudinal gluon fields:

O(v±) = P eg
∫ x±
−∞ dx± v±(x+, x−, x⊥), v± = ı T a va±, (4)

see also [28–35]. There are additional kinematical constraints
for the Reggeon fields

∂− A+ = ∂+ A− = 0, (5)

corresponding to the strong-ordering of the Sudakov com-
ponents in the multi-Regge kinematics, see [1–7,11]. The
action is constructed by the request that the LO value of the
classical gluon fields in the solutions of equations of motion
will be fixed as

vcl± = A±, (6)

this condition also can be considered as the definition of
the Reggeon fields. The further use of the Eq. (2) action is
based on the different perturbative calculation schemes, see
[11–35], of course all the calculations are performed in the
Minkowski space.
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The continuation of the action to the Euclidean space,
respectively, is an important task due to the two interest-
ing issues. The fist one is the formulation of the action for
the possible lattice (numerical) calculation of any objects
of interests in the Euclidean space. The second one is the
analytical investigation of the non-perturbative contributions,
such as instantons for example, to the Reggeons interactions
vertices and amplitudes. There are many calculations which
have be done in this direction, see for example [69–86],
but the Lipatov’s action continued to Euclidean space can
serve as some generic approach for the consistent account of
the instanton-Reggeon interactions and instanton contribu-
tions to the high-energy scattering amplitudes. Therefore, the
paper is organized as follows. In the next section we intro-
duce all required tools and notions for the continuation of
the action to Euclidean space. In the Sect. 3 we consider the
continuation of the Lipatov’s action in the Euclidean space.
Section 4 and 5 are about the different forms of the action. In
Sect. 4 we discuss the action written in the terms of new coor-
dinates similar to the light-cone coordinates of Minkowski
space, we will call it further as Euclidean “light-cone” coor-
dinates. In the Sect. 5 we consider the axial gauge for the
action which is suitable for the analytical calculations in the
framework. The last section is Conclusion where the further
applications of the results are discussed.

2 Euclidean space kinematics

The main task of the problem is the continuation of the effec-
tive currents of the action to Euclidean space. We begin from
the usual four-momentum vectors in Minkowski space used
for the description of the high energy scattering kinematics:

p μ
1 =

√
s

2
(1, 1, 0⊥), p μ

2 =
√
s

2
(1,−1, 0⊥), (7)

where

s = (p1 + p2)
2, t = (p1 − p

′
1)

2, s = (p1 − p
′
2)

2. (8)

In the light cone coordinate frame these vectors can be rewrit-
ten as

p μ
1 L .C. =

√
s

2
(1, β, 0⊥), p μ

2 L .C. =
√
s

2
(β, 1, 0⊥) (9)

with β as some regularization introduced in order to regular-
ize the rapidity divergences of the corresponding integrals,
see [87–92] for example. Application of these vectors to the
Eq. (3) current terms provides

√
2

s
p μ

1 L .C ∂μ
β→0→ ∂+,

√
2

s
p μ

2 L .C. ∂μ
β→0→ ∂− (10)

as requested. Therefore, the Eikonal interaction term intro-
duced in [11,12], see also Eq. (29) below, can be written as
following:

2

s

(
p μ

1 L .C. ∂μ O(v+)
)

∂2⊥
(
p ν

2 L .C. ∂ν O(v−)
)

(11)

which is fully covariant, i.e. it can be also in the usual
Minkowski coordinates as

2

s

(
p μ

1 ∂μ O(v+)
)

∂2⊥
(
p ν

2 ∂ν O(v−)
)
, (12)

that can considered as a step to the continuation of the effec-
tive action to Euclidean space. Nevertheless, it is not easy to
work with β as parameter performing the continuation for the
arbitrary angle between particles trajectories in the Euclidean
space, see [93,94]. Therefore, considering the hyperbolic
angle between the light cone directions in the Minkowski
space, we introduce the following vectors of the directions
of the relativistic particles motion in the Minkowski space:

n μ
1 = 1√

2
(1, tanh(γ /2), 0⊥),

n μ
2 = 1√

2
(1,− tanh(γ /2), 0⊥), (13)

with the following form of the same vectors in the light cone
coordinates:

n μ
+ L .C. = 1

2
(1 + tanh(γ /2), 1 − tanh(γ /2), 0⊥),

n μ
− L .C. = 1

2
(1 − tanh(γ /2), 1 + tanh(γ /2), 0⊥). (14)

As usual, for the

p2 = m2 (15)

we have at high energy

γ ≈ ln(s/m2), β = m2/s. (16)

The Wick rotation of the vectors to the Euclidean space can
be done now by

γ → 2ıφ (17)

continuation, where 2φ is an angle between trajectories of
the two particles in the c.m.f. in Euclidean space. We obtain
correspondingly for Eq. (13):

n μ
1 E = 1√

2
(1, ı tan(φ), 0⊥),

n μ
2 E = 1√

2
(1,−ı tan(φ), 0⊥), (18)
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the transforms

∂0 → ı ∂4 E , va0 → ı va0 E (19)

must be performed further as well. Therefore we obtain

n μ
1 ∂μ → ı nμ

+ E ∂μ E ,

n μ
2 ∂μ → ı nμ

− E ∂μ E (20)

where

n μ
+ E = 1√

2
(1, tan(φ), 0⊥),

n μ
− E = 1√

2
(1,− tan(φ), 0⊥) (21)

are vectors in the Euclidean space. Correspondingly, the
Eikonal interaction term in Minkowski space can be rewritten
in Euclidean space as

−ı
∫

d4x
((
n μ

1 ∂μ O(v+)
)

∂2⊥
(
n ν

2 ∂ν O(v−)
))

→
∫

d4xE
((

nμ
+ E ∂μ E OE +

)
∂2⊥ E

(
nμ

− E ∂μ E OE −
))

.

(22)

with

O(v±) = P eg
∫ 1
−∞ dλ (nμ

1,2 vμ)

→ OE ± = P e ı g
∫ 1
−∞ dλ (nμ

± E vμ E ) ,

vμ E = ı T a vaμ. (23)

The remaining part of Eq. (2) gluon’s QCD Lagrangian is
continued to the Euclidean space as usual.

We note, that the exponential Eq. (23) is real in the case of
the fundamental representation of the gluon field but remains
imaginary for the adjoint representation of the field with
T a
b c = −ı fabc. In this case we perform another continuation

in the Euclidean space based on the following continuation
of the coordinates and fields:

∂i → −ı ∂i E , vai → −ı vai E ,

∂0 → ∂4 E , va0 → va4 E . (24)

This way of continuation still provides the correct continua-
tion of the action into the Euclidean space:

S =
∫

d3xi dt

(
1

2
Ga

0 i G
a
0 i − 1

4

(
Ga

i j

)2
)

→ ı SE ,

(25)

but with effective currents changed correspondingly to
Eq. (24) transforms:

n μ
1 ∂μ → nμ

+ E ∂μ E , n μ
2 ∂μ → nμ

− E ∂μ E (26)

with

−ı
∫

d4x
((
n μ

1 ∂μ O(v+)
)

∂2⊥
(
n ν

2 ∂ν O(v−)
))

→
∫

d4xE
((

nμ
+ E ∂μ E OE +

)
∂2⊥ E

(
nμ

− E ∂μ E OE −
))

(27)

and

OE ± = P e g
∫ 1
−∞ dλ (nμ

± E vμ E ) , vμ E = f a vaμ. (28)

We see, that in this case the whole effective action remains
real as well.

3 Lipatov’s action in Euclidean space

In this Section we consider the generating functional for the
Lipatov’s operators in the Euclidean space, here and further
we omit the E notation in the formulae and discuss firstly
the case of the adjoint representation of the gluon fields.1

We write the full Lagrangian of the approach as a continua-
tion in the Euclidean space of the Eq. (2) Lagrangian of the
interacting eikonal lines. Then the following expression is
obtained:

Z [J ] = 1

Z ′

∫
Dv exp

(
− SYM [v] + 1

2 g2 C(R)

×
∫

d4x
(
nμ

+ ∂μ O+
)

∂2⊥
(
nμ

− ∂μ O−
)

− 1

2 g C(R)

∫
d4x J−

(
nμ

+ ∂μ O+
) − 1

2 g C(R)

×
∫

d4x J+
(
nμ

− ∂μ O−
) )

, (29)

the external currents J± here are the auxiliary ones, we take
them equal to zero at the end of the derivation. Introducing
Lipatov’s operators

T± = 1

g
nμ

±∂μ O± = (
nμ

± vμ

)
O± (30)

we rewrite the same generating functional as

Z [J ]
= 1

Z ′

∫
Dvexp

(
− SYM [v] + 1

2C(R)

∫
d4x T+ ∂2⊥ T− −

− 1

2C(R)

∫
d4x J− T+ − 1

2C(R)

∫
d4x J+ T−

)
.

(31)

1 The case of the fundamental representation can be considered sim-
ilarly to the adjoint one with Aa± → ı Aa± redefinition of Reggeon
fields which preserves the whole expression real, see end of the section.

123



356 Page 4 of 7 Eur. Phys. J. C (2020) 80 :356

Now, with the help of some auxiliary fields2 A± we obtain
for the generating functional the following expression:

Z [J ]
= 1

Z ′

∫
Dv DA exp

(
− SYM [v] − 2

C(R)

×
∫

d4x A+(x) ∂2⊥ A−(x)

+ 1

C(R)

∫
d4x T+ ∂2⊥ A− + 1

C(R)

∫
d4x T− ∂2⊥ A+

+ 1

C(R)

∫
d4x J− A

+ 1

C(R)

∫
d4x J+ A− − 1

2C(R)

×
∫

d4x J+
(
∂2⊥

)−1
J−

)
. (32)

Finally, taking the external currents equal to zero, we
write the generating functional for Lipatov’s action in the
Euclidean space:

Z [A+, A−] = 1

Z ′

∫
Dv exp

(
− SYM [v] − 2

C(R)

×
∫

d4x A+(x) ∂2⊥ A−(x)

+ 1

C(R)

∫
d4x T+ ∂2⊥ A− + 1

C(R)

×
∫

d4x T− ∂2⊥ A+
)
. (33)

The classical equations of motion are in the case

(
Dμ Gμν

)
a = ∂μ Gμν

a + g fabcvbμ Gcμν = jνa (34)

with the new effective currents obtaining by the variation of
the Lipatov’s currents with respect to the v4, v1 gluon fields.
The details of the derivation of the current can be found in
[8], we have then:

j4
a = − 1

N
√

2
tr [ fa O+ fb O

T+ ]
(

∂2⊥Ab−
)

− 1

N
√

2
tr [ fa O− fb O

T− ]
(

∂2⊥Ab+
)

(35)

j1
a = − 1

N
√

2
tr [ fa O+ fb O

T+ ]
(
∂2⊥Ab−

)
tan(φ)

+ 1

N
√

2
tr [ fa O− fb O

T− ]
(
∂2⊥Ab+

)
tan(φ) (36)

which to LO are equal to

j4
a = 1√

2
∂2⊥ (A− + A+) ,

j1
a = 1√

2
∂2⊥ (A− − A+) tan(φ). (37)

2 In Minkowski space these fields are Reggeon fields.

In the case of the fundamental representation we obtain
instead Eq. (35):

j4
a = − ı

N
√

2
tr [ fa O+ fb O

T+ ]
(

∂2⊥Ab−
)

− ı

N
√

2
tr [ fa O− fb O

T− ]
(

∂2⊥Ab+
)

(38)

j1
a = − ı

N
√

2
tr [ fa O+ fb O

T+ ]
(
∂2⊥Ab−

)
tan(φ)

+ ı

N
√

2
tr [ fa O− fb O

T− ]
(
∂2⊥Ab+

)
tan(φ). (39)

In general we can redefine the Reggeon fields

A+ → ı A+, A− → ı A− (40)

obtaining in the case the same classical equation Eq. (35) and
Eq. (37) in terms of redefined auxiliary fields.

4 The action in Euclidean “light-cone” coordinates

The presence of the angle in Eq. (35) currents determine the
gluons fields as dependent on the angle through the equa-
tions of motion. Whereas these expressions are suitable for
the analytical calculations, the numerical implementation of
any calculations can be complicated somehow because of
the angle present. Therefore, we introduce the following
“light-cone” coordinates in the Euclidean space. Requiring
nμ

±∂μ O± = ∂± we determine the “contravariant” “light-
cone” coordinates as

x+ = x4 + x1/ tan φ√
2

, x− = x4 − x1/ tan φ√
2

(41)

and “covariant” gluon fields in the Euclidean space as

v+ = v4 + v1 tan φ√
2

, v− = v4 − v1 tan φ√
2

. (42)

Corresponding “covariant” and “contravariant” vectors are
obtained with the help of the following metric tensor3:

gμν = 1

2 cos2(φ)

(
1 cos(2φ)

cos(2φ) 1

)
,

g μν = 1

2 sin2(φ)

(
1 − cos(2φ)

− cos(2φ) 1

)
, μ ν = + − .

(43)

3 The tensor convert form of Eq. (41) vectors to Eq. (42) form and vise
verse, it’s action is given simply by x±(φ) = x±(π/2 − φ) replace.
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In this case we have for the Lagrangian:

LQCD = 1

2
Ga+− G+−

a + 1

2
Ga+i G

+i
a

+1

2
Ga

−i G
−i
a + 1

4
Ga

i j G
i j
a (44)

and for the effective currents Eq. (28):

O+ = e g
∫ x+
−∞ dx

′ + v+(x
′ +, x−, x⊥),

O− = e g
∫ x−
−∞ dx

′ − v−(x+, x
′ −, x⊥). (45)

We see, therefore, that in these “light-cone” coordinates the
Eq. (33) effective action does not contain the angle, it must be
accounted only once in the Eq. (42) definition of “covariant”
and corresponding “contravariant” gluon fields. The price for
that is the doubled number of the longitudinal gluon fields
which are depend each on other trough the transformations
with the use of Eq. (43) metric tensor. Additional advantage
of the introduced coordinates is that we can use here one
from the v± = 0 gauges that simplifies the structure of the
Eq. (45) currents terms and corresponding numerical calcu-
lations.

5 The action in axial gauge

The “light-cone” coordinates introduced above are not so
suitable for the analytical calculation and construction of
the Euclidean Regge Field Theory (RFT). Eliminating the
angle’s dependence of the effective currents, the new gluons
fields “move” the angle in the l.h.s. of Eq. (34) written in
the terms of only “covariant” coordinates. The Lagrangian
Eq. (44) does not help in this case, there is no simple rule
which allows to raise and lower the corresponding indexes
with the help of Eq. (43) tensor. Therefore, we consider
the analytical solution of Eq. (34) equations of motion tak-
ing v1 = 0 axial gauge, where in this case the condition
O+ = O− also is satisfied. We have correspondingly to LO
precision:4

∂2
4 vi + ∂2

1 vi − ∂4 ∂i v4 = 0 (46)

∂2
1 v4 + ∂2

i v4 − ∂4 ∂i vi = j4 (47)

− ∂4 ∂1v4 − ∂i ∂1 vi = j1. (48)

The solution of the equations are the following functions:

vcl4 (A+, A−) = �−1
(
j4 − ∂4 ∂−1

1 j1
)

,

vcli (A+, A−) = −∂i �−1
(
∂−1

1 j1
)

. (49)

4 We omit here color indexes of the fields for the shortness of the nota-
tions.

The third equation from the system for the two unknown
functions is the condition of transversality of the currents:

∂μ jμ = 0 (50)

that to LO can be written with the help of Eq. (37) as:

∂+ A− = ∂− A+ = 0 → A−
= A−(x−), A+ = A+(x+), (51)

see definitions in the above section.

6 Instantons in the effective action framework

Now we ready to shortly sketch out the possibility of the
accounting of the classical instanton solution in the frame-
work of the effective action. There are plenty of the different
applications of the instanton contributions to the high energy
scattering processes, see [69–86] and references therein. The
effective action, in turn, provide a framework where these
instanton’s contributions can be, in principle, accounted on
the level of the systematic perturbative calculations. Indeed,
the gauge introduced in the above section is useful for the
definition of the instantons in YM theory, see [95–100], and
can be used effectively for the description of the Reggeon
solution. The general idea of the calculation which we pro-
pose is the following therefore. The instanton is a classical
non-perturbative solution of the homogenous Euclidean YM
equations of motion, see [95–100] for example. Then, the
gluon fields in Euclidean space we can write as as classical
solution of homogenous equation plus classical solution of
non-homogenous equation (the Reggeon solution) plus fluc-
tuations around it:

v4 = vcl4 + ε4 = v inst
4 + v cl

4 (A+, A−, v inst ) + ε4,

vi = vcli + εi = v inst
i + vcli (A+, A−, v inst ) + εi . (52)

Here the dependence of the v cl
4 i classical Reggeon solution on

the instanton fields will arise from the NLO of the perturba-
tion theory due the non-linearity of the equations of motion,
whereas to the LO precision only the whole classical solution
is a linear combination of the instanton and Reggeon fields.
Inserting the Eq. (52) expressions back into the action, we
obtain for Eq. (33) generating functional:

Z [vinst , A+, A−] = 1

Z ′

∫
Dε exp

(
− SYM [v] − 2

C(R)

×
∫

d4x A+(x) ∂2⊥ A−(x)

+ 1

C(R)

∫
d4x T+(v) ∂2⊥ A− + 1

C(R)

×
∫

d4x T−(v) ∂2⊥ A+
)
. (53)
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This functional effectively determines the vertices of interac-
tions of A± fields with the instanton fields in the framework
of high energy Euclidean QCD RFT, after the inverse con-
tinuation to Minkowski space it will determine the vertices
of interactions of Reggeon with instanton fields as well.

We note, that using the diagrammatic approach of [3–
7,14–27], the effective currents determine the Feynman rules
for the construction of the vertices of interaction of glu-
ons with instanton and Reggeon fields. Namely, instead the
Eq. (52) representation of gluon fields, the any interaction
vertex of interest can be constructed by the v → v + vinst

substitution performed directly in the effective currents and
their consequent expansion into the perturbative series simi-
larly to done in [3–7].

7 Conclusion

The obtained Eqs. (33), (45) and Eqs. (50)–Eq. (53) expres-
sions we consider as the main results of the paper which
clarify two issues concerning the formalism of high energy
QCD Lipatov’s effective action in Euclidean space. Namely,
the formalism is expanded to Euclidean space on purpose of
the following possible applications of the Euclidean version
of the action.

The first one is a possible implementation of the numeri-
cal (lattice) calculation in the framework with the Euclidean
action. With the help of Eq. (33) generating functional and
Eq. (45) effective currents expressions, any correlator of A±
fields can be calculated.5 In Minkowski space it will allow
to trace the high energy behavior of the arbitrary Reggeon’s
correlators. For example, taking BFKL colorless state we can
calculate the correlator in Euclidean state for the different val-
ues of φ angle. The reverse continuation to Minkowski space,
therefore, will allow to interpolate the behavior of the corre-
lator as function of energy on the base of the points obtained
in the Euclidean space. These non-perturbative calculations
of the high energy asymptotic behavior of the Pomeron (and
other correlators) with the unitarity corrections included is an
interesting task due the importance of the BFKL calculus in
the high-energy QCD. Another interesting possibility of the
application of the formalism is the connection of the Wilson
lines correlators and correlators of A± fields, see Eqs. (31)–
(32), the knowledge of A± correlators will determine the
correlators of Wilson lines as well. It is important to under-
line, nevertheless, that the obtained action is the only first
step towards to the real lattice calculations which definitely
will require a lot of additional work to do. For example, the
discretization of the effective currents, introducing Wilson

5 For the color correlators an additional regularization of the effective
currents must be introduced.

loops and etc. must be done in the framework as well, these
tasks we will consider in the separate publications.

Another application of the Euclidean version of the action
is that it demonstrates a possibility of the definition of the cor-
rect interaction vertices of the correlators of A± fields with
the instantons. Namely, Eq. (53), after the integration with
respect to the classical instanton fields, will provide instan-
ton induced corrections to the Reggeon fields correlators,
i.e. to the propagator of reggeized gluons, BFKL Pomeron,
et cetera. These corrections are interesting to account, see
[69–86] for the different applications of the instanton contri-
butions in the high energy scattering processes. An opposite
is also true, it is a possibility to define a contribution of the
Reggeon fields into the instanton solutions by initial integra-
tion of the Reggeon fields in the generating functional. The
calculations related to that problem is an especially interest-
ing task, we consider it as the next step in the development
of the framework.
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