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Abstract In this paper we construct a black hole solution
surrounded by superfluid dark matter and baryonic matter,
and study their effects on the shadow images of the Sgr A∗
black hole. To achieve this goal, we have considered two den-
sity profiles for the baryonic matter described by the spher-
ical exponential profile and the power law profile including
a special case describing a totally dominated dark matter
galaxy. Using the present values for the parameters of the
superfluid dark matter and baryonic density profiles for the
Sgr A∗ black hole, we find that the effects of the superfluid
dark matter and baryonic matter on the size of shadows are
almost negligible compared to the Kerr vacuum black hole.
In addition, we find that by increasing the baryonic mass the
shadow size increases considerably. This result can be linked
to the matter distribution in the galaxy, namely the baryonic
matter is mostly located in the galactic center and, therefore,
increasing the baryonic matter can affect the size of black
hole shadow compared to the totally dominated dark matter
galaxy where we observe an increase of the angular diameter
of the Sgr A∗ black hole of the magnitude 10−5 µarcsec.

1 Introduction

It is widely believed that the region at the centre of many
galaxies contain black holes (BHs). They are astrophysical
objects which perform manifestations of extremely strong
gravity such as formation of gigantic jets of particles and

a e-mail: kimet.jusufi@unite.edu.mk
b e-mail: mjamil@zjut.edu.cn (corresponding author)
c e-mail: zhut05@zjut.edu.cn

disruption of neighboring stars. From theoretical perspective,
BHs serve as a perfect lab to test gravity in strong field regime.
Recently, the Event Horizon Telescope (EHT) Collaboration
announced their first results concerning the detection of an
event horizon of a supermassive black hole at the center of
a neighboring elliptical M87 galaxy [1]. Due to the grav-
itational lensing effect, the bright structure surrounding the
black hole also known as the accretion disk appears distorted.
Moreover, the region of accretion disk behind the black hole
also gets visible due to the bending of light by black hole.
The shadow image captured by EHT is in good agreement
with the predictions of the spacetime geometry of black hole
described by the Kerr metric. Studies of the shadow images
of various black holes, together with the current and future
observations, are expected to provide an important approach
to the geometric structure of black holes or small deviations
from Kerr metric in the strong field regime.

On the other hand, it is believed that up to 90% of matter
in the host galaxy of a central black hole consists of dark
matter. Thus, it is natural to expect that the dark matter halo
which surrounds the central black hole could lead to small
deviations from the Kerr metric near the black hole hori-
zon. With this motivation, the black hole solutions with dark
matter halo and their effects on the black hole shadow have
been studied in [2–7]. In this paper, we consider a scenario
of a BH solution surrounded by a halo, which contains both
the dark matter and the baryonic matter. For dark matter, we
assume a superfluid dark matter model recently proposed in
[8] and construct the corresponding black hole solution with
the halo of dark matter and baryonic matter. As a specific
example we are going to elaborate the shadow images of Sgr
A∗ to estimate its angular diameter with the effect of the halo.
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One aim here is to study the shadows of rotating black
holes surrounded by SFDM and baryonic matter. As we men-
tioned, shadows possess interesting observational signatures
of the black hole spacetime in the strong gravity regime
and, in the future we expect that shadow observations can
impose constraints on different gravity theories. It is interest-
ing that the characteristic map of a shadow image depends on
the details of the surrounding environment around the black
hole, while the shadow contour is determined only by the
spacetime metric itself. In the light of this, there have been
made extensive efforts to investigate shadows cast by differ-
ent black hole and compact object spacetimes. The shadow
of a Schwarzschild black hole was first studied in [9] and
later in [10] and the shadow for a Kerr black hole was stud-
ied by [11]. Since then various authors have studied shadows
of black holes in modified theories of gravity and wormholes
geometries [12–52].

The plan of the paper is as follows: in Sect. 2, we use
the superfluid density profile to obtain the radial function
of a spherically symmetric spacetime. In Sect. 3, we study
the effect of baryonic and SFDM in the spacetime metric,
using the exponential and power law profile for the baryonic
matter. In Sect. 4, we find a spherically symmetric black hole
metric surrounded by SFDM. And then in Sect. 5, we first
construct the spinning black hole surrounded by dark matter
halo based the spherically symmetric spacetime we obtained
by applying the Newman–Janis method. With this spinning
black hole, we then study null geodesics and circular orbits
to explore the shadows of Sgr A∗ black hole. In Sect. 6 we
present the main conclusions of this paper. We shall use the
natural units G = c = h̄ = 1 throughout the paper.

2 Superfluid dark matter and spherically symmetric
dark matter spacetime

2.1 Superfluid dark matter

From the view of field theory, one can describe the superfluid
by the theory of a spontaneously broken global U (1) sym-
metry, in a state of finite U (1) charge density. In particular,
at low energy regime the relevant degree of freedom is the
Goldstone boson for the broken symmetry of the phonon field
ψ . On the other hand, the U (1) symmetry acts non-linearly
on ψ as a shift symmetry, ψ → ψ +c. In the non-relativistic
regime, at finite chemical potential μ, the most general effec-
tive theory is described by [8]

LT=0 = P(X), (1)

in which X = μ−m�+ ψ̇ − ( �∇ψ)2/2m. Note that m is the
particle mass and � represents the Newtonian gravitational
potential. The main idea put forward in [8] is that the DM

superfluid phonons are described by the modified Newtonian
dynamics (MOND) type Lagrangian

LDM, T=0 = 2�(2m)3/2

3
X
√|X | . (2)

At first sight the fractional power of X may seem strange
if (2) represents for example a scalar field; however, from the
theory of phonons one can argue that an exponent is crucial
since it determines the superfluid equation of state. On the
other hand, to obtain a mediator, a force between baryons
and the DM phonons, one must have the coupling

Lint = α�ψ ρB, (3)

where α is a constant while ρB gives the baryonic density.
Let us point out that at zero temperature, this superfluid
theory has three parameters, namely the particle mass m,
a self-interaction strength parameter �, and finally the cou-
pling constant α between phonons and baryons. Starting from
the action composed of Eqs. (2) and (3) one can obtain a
MOND type force law. In particular the equation of motion
for phonons is the following [8]:

�∇ ·
⎛

⎝ ( �∇ψ)2 − 2mμ̂
√

( �∇ψ)2 − 2mμ̂

�∇ψ

⎞

⎠ = αρb

2
, (4)

with μ̂ ≡ μ − m�. Using the limit ( �∇ψ)2 � 2mμ̂ and
ignoring the curl term one has

| �∇ψ | �∇ψ � α �aB , (5)

with �aB being the Newtonian acceleration due to baryons
only. While the mediated acceleration resulting from (3) is

�aphonon = α� �∇ψ . (6)

In this way it can be shown that

aphonon =
√

α3�2 aB . (7)

From this result it is easy to see the well-known MOND
acceleration by identifying

a0 = α3�2. (8)

From the galactic rotation curves for a0 it is found

aMOND
0 � 1.2 × 10−8 cm/s2 . (9)

As we saw, the MOND type law obtained in the superfluid
model is not exact and only applies in the regime ( �∇ψ)2 �
2mμ̂. More importantly, the total acceleration experienced
by a test particle is a contribution of �aB, �aphonon and �aDM.

123



Eur. Phys. J. C (2020) 80 :354 Page 3 of 13 354

2.2 Spacetime metric in the presence of superfluid dark
matter

The density profile can be given in terms of dimensionless
variables � and ξ , defined by [8]

ρ(r) = ρ0�
1/2, r =

√
ρ0

32π�2m6 ξ, (10)

where ρ0 ≡ ρ(0) is the central density. From the Lane–
Emden equation,

1

ξ2

d

dξ

(
ξ2 d�

dξ

)
= −�1/2 , (11)

and using the boundary conditions �(0) = 1 and �′(0) = 0,
the numerical solution yields

ξ1 � 2.75. (12)

The previous equation determines the size of the condensate

R =
√

ρ0

32π�2m6 ξ1 . (13)

A simple analytical form that provides a good fit is

�(ξ) = cos

(
π

2

ξ

ξ1

)
. (14)

The central density is related to the mass of the halo conden-
sate as follows:

ρ0 = M

4πR3

ξ1

|�′(ξ1)| . (15)

From the numerics we find �′(ξ1) � −0.5. Substituting (13)
in Eq. (15), we can solve for the central density,

ρ0 �
(

MDM

1012M


)2/5 ( m

eV

)18/5
(

�

meV

)6/5

10−24 g/cm3 .

(16)

Meanwhile the halo radius is

R �
(

MDM

1012M


)1/5 ( m

eV

)−6/5
(

�

meV

)−2/5

45 kpc . (17)

Remarkably, for m ∼ eV and � ∼ meV we obtain DM
halos of realistic size. The mass profile of the dark matter
galactic halo is given by

MDM (r) = 4π

∫ r

0
ρDM

(
r ′) r ′2dr ′. (18)

To solve the last integral we use Eqs. (10)–(14) and rewrite
the mass profile in terms of the new coordinate ξ . In particular
we obtain

MDM (r) = sin
(πr

2R

) πr2

2R

ρ2
0

8�2m6 , r ≤ R. (19)

From the last equation one can find the tangential velocity
v2

tg (r) = MDM(r)/r of a test particle moving in the dark
halo in spherical symmetric space-time,

v2
tg (r) = sin

(πr

2R

) πr

2R

ρ2
0

8�2m6 . (20)

In this section, we derive the space-time geometry for
pure dark matter. To do so, let us consider a static and spher-
ically symmetric spacetime ansatz with pure dark matter in
Schwarzschild coordinates that can be written as follows:

ds2 = − f (r)dt2 + dr2

g(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (21)

in which f (r) = g(r) are known as the redshift and shape
functions, respectively. We have

v2
tg (r) = d ln

√
f (r)

d ln r
, (22)

and we find

f (r)DM = e
− ρ2

0 cos( π r
2 R )

4�2m6 (23)

with the constraint

lim
ρ0→0

(

e
− ρ2

0 cos( π r
2 R )

4�2m6

)

= 1. (24)

In the standard cold dark matter picture, a halo of mass
MDM = 1012 M
. In addition, for m = 0.6 eV and � = 0.2
meV we find ρ0 = 0.02 × 10−24 g/cm3 = 9.2 × 10−8 eV4.
Note that here we have used the conversion 10−19 g/cm3 �
0.4 eV4.

3 Effect of baryonic matter and superfluid dark matter

In a realistic situation, galaxies consist of a baryonic (normal)
matter (consisting of stars of mass Mstar, ionized gas of mass
Mgas, neutral hydrogen of mass MHI etc.,), the dark matter of
mass MDM, which we assume to be in the form of a superfluid.
The total mass of the galaxy is therefore MB = Mstar +
Mgas + MHI as the total baryonic mass in the galaxy. But,
as we saw by introducing the baryonic matter we must take
into account a phonon-mediated force which describes the
interaction between SFDM and baryonic matter.
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To calculate the radial acceleration on a test baryonic par-
ticle within the superfluid core this is given by the sum of
three contributions [53]

�a(r) = �aB(r) + �aDM(r) + �aphonon(r), (25)

where the first term is just the baryonic Newtonian acceler-
ation aB = MB(r)/r2. The second term is the gravitational
acceleration from the superfluid core, aDM = MDM(r)/r2.
The third term is the phonon-mediated acceleration

�aphonon(r) = α� �∇ψ. (26)

The strength of this term is set by α and �, or equivalently
the critical acceleration

aphonon(r) = √
a0aB, (27)

which is nothing but the phonon force closely matching the
deep-MOND acceleration a0 given by Eq. (8). Thus, in total,
the centrifugal acceleration of the particle of a test particle
moving in the dark halo in spherical symmetric space-time
is given by

v2
tg (r)

r
= MDM(r)

r2 + MBM(r)

r2 +
√

a0
MBM(r)

r2 . (28)

Outside the size of the superfluid “core” denoted as R,
there should be a different phase for DM matter, namely
it is surrounded by DM particles in the normal phase, most
likely described by a Navarro–Frenk–White (NFW) profile or
some other effective type dark matter profile, most probably
described by the empirical Burkert profile (see, for example,
[54–60]).

However, as was argued in [53] we do not expect a sharp
transition, but instead, there should be a transition region
around at which the DM is nearly in equilibrium but is inca-
pable of maintaining long range coherence. In the present
work we are mostly interested to explore the effect of the
SFDM core and, therefore, we are going to neglect the outer
DM region in the normal phase given by the NFW profile.

3.1 Exponential profile

As a toy model for describing the baryonic distribution, we
consider a spherical exponential profile of density given by
[53]

ρB(r) = MB

8πL3 e
− r

L (29)

where the characteristic scale L plays the role of a radial
scale length and MB is the baryonic mass. In that case the
total mass can be written as a sum of masses of dark matter

and the disc. The mass function of the stellar thin disk is
written as

MB(r) =
MB

[
2L2 − (2L2 + 2r L + r2

)
e− r

L

]

2L2 . (30)

We observe from these profiles that by going in the out-
side region of core i.e. r >> L , the mass MB(r) reduces to a
constant MB. In that way the last term in (28) becomes inde-
pendent of r and the empirical Tully–Fisher relation which
describes the rotational curves of galaxies. In our analyses,
we shall simplify the calculations by considering a fixed bary-
onic mass MB in the last term in (28). Let us introduce the
quantity

v2
0 = √MBa0, (31)

and use the tangent velocity while assuming a spherically
symmetric solution resulting with

f (r)BM+DM ≈ C r2 v2
0 e

− ρ2
0 cos( π r

2 R )

4�2m6

× exp

[
−MB

r L
(2L − (2L + r)e− r

L )

]
, (32)

valid for r ≤ R. In the present work, we shall focus on HSB
type galaxyes, such as the Milky Way. We can use MB =
5 − 7 × 1010M
 and L = 2 − 3 kpc [61].

3.2 Power law profile

As a second example, we assume the baryonic matter to be
concentrated into an inner core of radius rc, and that its mass
profile MB(r) can be described by the simple relation [62]

MB(r) = MB

(
r

r + rc

)3β

, (33)

in the present paper we shall be interested in the case β = 1,
for high surface brightness galaxies (HSB). Making use of
the tangent velocity and assuming a spherically symmetric
solution for the baryonic matter contribution in the case of
HSB galaxies we find

f (r)BM+DM ≈ C
(πr

2R

)2 v2
0
e
− MB(2r+rc)

(r+rc)2 e
− ρ2

0 cos( π r
2 R )

4�2m6 . (34)

Note that the above analysis holds only inside the superfluid
core with r ≤ R (Fig. 1).

3.3 Totally dominated dark matter galaxies

There is one particular solution of interest which describes
a totally dominated dark matter galaxies (TDDMG), some-
times known as dark galaxies. To address this, we neglect the

123



Eur. Phys. J. C (2020) 80 :354 Page 5 of 13 354

Fig. 1 Schematic representation of the superfluid DM core and bary-
onic matter surrounding a black hole at the center. Outside the superfluid
core DM exists in a normal phase probably described by the NFW pro-
file or Burkert profile

baryonic mass MBM → 0, and therefore a0 → 0, yielding

f (r)TDDMG = C e
− ρ2

0 cos( π r
2 R )

4�2m6 , (35)

valid for r ≤ R. This result is obtained directly from Eqs.
(32)** and (34) in the limit MB = 0. In other words this
solution reduces to (23), as expected. Note that the integra-
tion constant C can be absorbed in the time coordinate using
dt2 → C dt2.

4 Black hole metric surrounded by baryonic matter and
superfluid dark matter

Let us now consider a more interesting scenario by adding
a black hole present in the SFDM halo. To achieve this aim,
we shall use the method introduced in [6]. Namely we need
to compute the spacetime metric by assuming the Einstein
field equations given by [6]

Rν
μ − 1

2
δν

μR = κ2T ν
μ, (36)

where the corresponding energy–momentum tensors T ν
μ =

diag[−ρ, pr , p, p], where ρ = ρDM + ρBM, encodes the
total contribution coming from the surrounded dark mat-
ter and baryonic matter, respectively. The space-time metric
including the black hole is thus given by [6]

ds2 = −( f (r) + F1(r))dt
2 + dr2

g(r) + F2(r)
+ r2d�2, (37)

where d�2 = dθ2 + sin2 θdφ2 is the metric of a unit sphere.
Moreover, we have introduced the following quantities:

F(r) = f (r) + F1(r), G(r) = g(r) + F2(r). (38)

In terms of these relations, the space-time metric describing
a black hole in dark matter halo becomes [6]

ds2 = − exp

⎡

⎢
⎣
∫

g(r)

g(r) − 2M

r

(
1

r
+ f

′
(r)

f (r)

)

dr − 1

r
dr

⎤

⎥
⎦ dt2

+
(
g(r) − 2M

r

)−1

dr2 + r2d�2. (39)

In the absence of the dark matter halo, i.e., f (r) = g(r) =
1, the indefinite integral reduces to a constant [6]

F1(r)+ f (r) = exp

[∫
g(r)

g(r)+F2(r)

(
1

r
+ f

′
(r)

f (r)

)

−1

r
dr

]

= 1 − 2M

r
, (40)

yielding F1(r) = −2M/r . In that way one can obtain the
black hole space-time metric with surrounding matter,

ds2 = −F(r)dt2 + dr2

G(r)
+ r2d�2. (41)

Thus the general black hole solution surrounded by SFDM
with F(r) = G(r) is given by

F(r)exp = C r2 v2
0 e

− ρ2
0 cos( π r

2 R )

4�2m6

× exp

[
−MB

r L
(2L − (2L + r)e− r

L )

]
− 2M

r
(42)

and

F(r)power = C
(πr

2R

)2 v2
0
e
− ρ2

0 cos( π r
2 R )

4�2m6 e
− MB(2r+rc)

(r+rc)2 − 2M

r
.

(43)

As a special case we obtain a black hole in a totally dom-
inated dark matter galaxy given by

F(r)TDDMG = C e
− ρ2

0 cos( π r
2 R )

4�2m6 − 2M

r
, (44)

valid for r ≤ R. Note that M is the black hole mass. In the
limit M = 0 our solution reduces to (23), as expected.
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5 Shadow of Sgr A∗ black hole surrounded by
superfluid dark matter

In this section we generalize the static and the spherical
symmetric black hole solution to a spinning black hole sur-
rounded by dark matter halo applying the Newman–Janis
method and adapting the approach introduced in [63,64].
Applying the Newman–Janis method we obtain the spinning
black hole metric surrounded by dark matter halo as follows
(see Appendix A):

ds2
1,2 = −

(
1 − 2ϒ1,2(r)r

�

)
dt2 + �

�1,2
dr2 + �dθ2

−2a sin2 θ
2ϒ1,2(r)r

�
dtdφ

+ sin2 θ

[
(r2 + a2)2 − a2�1,2 sin2 θ

�

]
dφ2 (45)

where we have introduced

ϒ1,2(r) = r (1 − F1,2(r))

2
(46)

and identified F1 = F(r)exp and F2 = F(r)power, respec-
tively. As a special case we find the Kerr BH limit, Y1,2(r) =
M , if a0 = MB = ρ0 = 0.

In addition we can explore the shape of the ergoregion of
our black hole metric (45), that is, we can plot the shape of
the ergoregion, say in the xz-plane. On the other hand the
horizons of the black hole are found by solving �1,2 = 0,
t.e.,

r2F(r)1,2 + a2 = 0, (47)

while the inner and outer ergo-surfaces are obtained from
solving gtt = 0, i.e.,

r2F(r)1,2 + a2 cos2 θ = 0. (48)

In Fig. 2 we plot �1,2 as a function of r for different values
of a. In the special case for some critical value a = aE (blue
line) the two horizons coincide, in other words we have an
extremal black hole with degenerate horizons. Beyond this
critical value, a > aE , there is no event horizon and the
solution corresponds to a naked singularity.

5.1 Geodesic equations

In order to find the contour of a black hole shadow of the
rotating spacetime (45), first we need to find the null geodesic
equations using the Hamilton–Jacobi method given by

∂S
∂τ

= −1

2
gμν ∂S

∂xμ

∂S
∂xν

, (49)

where τ is the affine parameter, and S is the Jacobi action.
Due to the spectime symmetries there are two conserved
quantities, namely the conserved energy E = −pt and the
conserved angular momentum L = pφ , respectively.

To find the separable solution of Eq. (49), we need to
express the action in the following form:

S = 1

2
μ2τ − Et + Jφ + Sr(r) + Sθ (θ), (50)

in which μ gives the mass of the test particle. Of course, this
gives μ = 0 in the case of the photon. That being said, it is
straightforward to obtain the following equations of motions
from the Hamilton–Jacobi equation:

�
dt

dτ
= r2 + a2

�1,2
[E(r2 + a2) − aL] − a(aE sin2 θ − L),

(51)

�
dr

dτ
= √R(r), (52)

�
dθ

dτ
= √�(θ), (53)

�
dφ

dτ
= a

�1,2
[E(r2 + a2) − aL] −

(
aE − L

sin2 θ

)
, (54)

where R(r) and �(θ) are given by

R(r) = [E(r2 + a2) − aL]2 − �1,2[m2r2+(aE − L)2+K],
(55)

�(θ) = K −
(

L2

sin2 θ
− a2E2

)
cos2 θ, (56)

andK is the separation constant known as the Carter constant.

5.2 Circular orbits

Due to the strong gravity near the black hole, it is thus
expected that the photons emitted near a black hole will even-
tually fall into the black hole or eventually scatter away from
it. In this way, the photons captured by the black hole will
form a dark region defining the contour of the shadow. To
elaborate the presence of unstable circular orbits around the
black hole we need to study the radial geodesic by intro-
ducing the effective potential Veff which can be written as
follows:

�2
(

dr

dτ

)2

+ V 1,2
eff = 0, (57)

where V 1
eff = V exp

eff and V 2
eff = V power

eff give the exponential
and the power law, respectively. At this point, it is convenient

123



Eur. Phys. J. C (2020) 80 :354 Page 7 of 13 354

Fig. 2 Left panel: variation of �1 as a function of r , for BH-SFDM
using the spherical exponential profile. Right panel: variation of �2 as
a function of r , for BH-SFDM using the power profile law. Note that
a = 0.65 (black curve), a = 0.85 (red curve), a = 1 (blue curve),

respectively. We have used m = 0.6 eV and � = 0.2 meV we find
ρ0 = 0.02 × 10−24 g/cm3, or in eV units, ρ0 = 9.2 × 10−8 eV4. For
the Milky Way we can use MB = 6 × 1010M
 = 1.39 × 104MBH and
rc = 2.6 kpc = 1.24 × 1010MBH

Fig. 3 Left panel: the effective potential of photon moving for BH-SFDM using the exponsntial profile. Right panel: the effective potential of
photon using thepower law profile. We have chosen a = 0.5 (black color), a = 0.65 (red color) and a = 0.85 (blue color), respectively

to introduce the two parameters ξ and η, defined as

ξ = L/E, η = K/E2. (58)

For the effective potential then we obtain the following rela-
tion:

V 1,2
eff = �1,2((a− ξ1,2)

2 +η1,2)− (r2 +a2 −a ξ1,2)
2, (59)

where we have replaced V 1,2
eff /E2 by V 1,2

eff . For more details
in Fig. 3 we plot the variation of the effective potential asso-
ciated with the radial motion of photons. The circular photon
orbits exist when at some constant r = rcir. the conditions
(Fig. 4)

V 1,2
eff (r) = 0,

dV 1,2
eff (r)

dr
= 0. (60)

Combining all these equations it is possible to show that

ξ1,2 = (r2 + a2)(rF ′
1,2(r) + 2F1,2(r)) − 4(r2F1,2(r) + a2)

a(rF ′
1,2(r) + 2F1,2(r))

,

η1,2 = r3[8a2F ′
1,2(r) − r(rF ′

1,2(r) − 2F1,2(r))2]
a2(rF ′

1,2(r) + 2F1,2(r))2 . (61)

One can recover the Kerr vacuum case by letting a0 =
MB = ρ0 = 0, yielding

ξ1,2 = r2(3M − r) − a2(M − r)

a(r − M)
, (62)

η1,2 = r3
(
4Ma2 − r(r − 3M)2

)

a2(r − M)2 . (63)

To obtain the shadow images of our black hole in the pres-
ence of dark matter we assume that the observer is located at
the position with coordinates (ro, θo), where ro and θo repre-
sents the angular coordinate on observer’s sky. Furthermore,
we need to introduce two celestial coordinates, α and β, for
the observer by using the following relations [29]:

α = −ro
p(φ)

p(t)
, β = ro

p(θ)

p(t)
, (64)

where (p(t), p(r), p(θ), p(φ)) are the tetrad components of
the photon momentum with respect to locally non-rotating

123
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Fig. 4 The shape of the ergoregion and inner/outer horizons for differ-
ent values of a using the spherical exponential profile. We use M = 1
in units of the Sgr A∗ black hole mass given by MBH = 4.3 × 106M

and R = 158 kpc or R = 75.5 × 1010MBH. Furthermore for m = 0.6

eV and � = 0.2 meV we find ρ0 = 0.02 × 10−24 g/cm3, or in eV
units, ρ0 = 9.2 × 10−8 eV4. For the normal matter contribution of the
Milky Way we can use MB = 6 × 1010M
 = 1.39 × 104MBH and
L = 2.6 kpc = 1.24 × 1010MBH

reference frame. The observer basis eμ

(ν) can be expanded in
the coordinate basis (see [65])

p(t) = −eμ
(t) pμ = E ζ1,2 − γ1,2 L , p(φ) = eμ

(φ)
pμ = L√

gφφ
,

p(θ) = eμ
(θ)

pμ = pθ√
gθθ

, p(r) = eμ
(r) pμ = pr√

grr
, (65)

where the quantities E = −pt and pφ = L are conserved
due to the associated Killing vectors. If we use ξ = L/E , η =
K/E2 and pθ = ±√

�(θ) we can rewrite these coordinates

in terms our parameters ξ and η as follows [43]:

α1,2 = − ro
ξ1,2√

gφφ(ζ1,2 − γ1,2ξ1,2)
|(ro,θo),

β1,2 = ± ro

√
η1,2 + a2 cos2 θ − ξ2

1,2 cot2 θ
√
gθθ (ζ1,2 − γ1,2ξ1,2)

|(ro,θo), (66)

where

ζ1,2 =
√

gφφ

g2
tφ − gtt gφφ

(67)

123



Eur. Phys. J. C (2020) 80 :354 Page 9 of 13 354

Fig. 5 Variation in shape of shadow using the spherical exponential
profile for baryonic matter. We use M = 1 in units of the Sgr A∗
black hole mass given by MBH = 4.3 × 106M
 and R = 158 kpc or
R = 75.5 ×1010MBH. Furthermore for m = 0.6 eV and � = 0.2 meV
we find ρ0 = 0.02 ×10−24 g/cm3, or in eV units, ρ0 = 9.2 ×10−8 eV4.
For the Milky Way we can use MB = 6 × 1010M
 = 1.39 × 104MBH

and L = 2.6 kpc = 1.24 × 1010MBH. We observe that the dashed blue
curve corresponding to Sgr A∗ with the above parameters is almost
indistinguishable from the black dashed curve describing the Kerr vac-
uum BH. The solid blue curve corresponds to the case of increasing the
baryonic mass by a factor of 102 and decrease of core radius by a factor
of 103

and

γ1,2 = − gtφ
gφφ

ζ1,2. (68)

Finally to simplify the problem further we are going to con-
sider that our observer is located in the equatorial plane (θ =
π/2) and that we have very large but finite ro = D = 8.3
kpc, to find

α1,2 = −√ f1,2 ξ1,2,

β1,2 = ±√ f1,2
√

η1,2. (69)

Note that f1,2 are given by Eqs. (32) and (34), respectively.
We see that due to the presence of SFDM our solution is non-
asymptotically flat. In the special case when SFDM is absent
we recover f1,2 → 1, hence the above relations reduces to
the asymptotically flat case. Note that for the observer located
at the position with coordinates (ro, θo) we have neglected
the effect of rotation while ξ1,2 and η1,2 are given by Eq. (61)
and are evaluated at the circular photon orbits r = rcir.

For more details in Figs. 5 and 6 we plot the shape of Sgr
A∗ black hole shadows. Using the parameter values speci-
fying the SFDM and baryonic matter we obtain almost no

effect on the shadow images. In fact one can observe that
the dashed curve (exponential profile) and dashed red curve
(power law profile) are almost indistinguishable from the
black dashed curve (Kerr vacuum BH). However, we can
observe that by increasing the baryonic mass the shadow
size increases considerably (solid blue/red curve). The angu-
lar radius of the Sgr A∗ black hole shadow can be estimated
using the observable Rs as θs = RsM/D, where M is the
black hole mass and D is the distance between the black hole
and the observer. The angular radius can be further expressed
as θs = 9.87098 × 10−6Rs(M/M
)(1 kpc/D) µas. In the
case of Sgr A∗; we have used M = 4.3×106M
 and D = 8.3
kpc [4] is the distance between the Earth and the Sgr A∗ cen-
tral black hole. In order to get more information about the
effect of SFDM on the physical observables we shall esti-
mate the effect of SFDM on the angular radius for Sgr A∗.
To simplify the problem, let us consider our static and spher-
ically symmetric black hole metric in a totally dominated
dark matter galaxy described by the function (Fig. 7)

F(r) = e−X − 2M

r
, (70)

where we have introduced
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Fig. 6 Variation in shape of shadow for different values of a using
the power law profile. We use M = 1 in units of the- Sgr A∗ black
hole mass given by MBH = 4.3 × 106M
 and R = 158 kpc or
R = 75.5 ×1010MBH. Furthermore for m = 0.6 eV and � = 0.2 meV
we find ρ0 = 0.02 ×10−24 g/cm3, or in eV units, ρ0 = 9.2 ×10−8 eV4.
For the Milky Way we can use MB = 6 × 1010M
 = 1.39 × 104MBH

and rc = 2.6 kpc = 1.24 ×1010MBH. The dashed red curve corresponds
to Sgr A∗ using the above parameters which is almost indistinguishable
from the black dashed curve discribing the Kerr vacuum BH. The solid
red curve corresponds to the case of increasing the baryonic mass by a
factor of 102 and decrease of core radius by a factor of 103

X = ρ2
0

4�2m6 , (71)

where we have used the approximation cos( π r
2 R ) � 1 since

our solution is valid for r ≤ R. From the circular photon
orbit conditions one can show [41]

2 − rF ′(r)
F(r)

= 0. (72)

Now if we expand around X in the above function we obtain

F(r) = 1 − X − 2M

r
+ · · · (73)

By solving this equation and considering only the leading
order terms one can determine the radius of the photon sphere
rps yielding

rps = 3M(1 + X). (74)

On the other hand, one also can show the relation [41]

ξ2 + η = r2
ps

F(rps)
. (75)

Fig. 7 The expected value for the angular diameter in the case of Sgr
A∗ . Note that we have adopted D = 8.3 kpc and M = 4.3 × 106M


The shadow radius Rs can be expressed in terms of the celes-
tial coordinates (α, β) as follows:

Rs =
√

α2 + β2 = √
1 − X

rps√F(rps)
. (76)

Note that in the last equation we have used Eqs. (69) and
(75). Using the values m = 0.6 eV, � = 0.2 meV and ρ0 =
9.2 × 10−8 eV4, in units of the Sgr A∗ black hole we find
Rs = 5.196158313M (i.e. Rs is measured in the units of M)
(i.e. Rs is measured in the units of M). Using this result, we
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can find that the angular diameter increases by δθs = 3×10−5

µas as compared to the Schwarzschild vacuum. This result
is consistent with the result reported in Ref. [4] where the
authors estimated that the dark matter halo could influence
the shadow of Sgr A∗ at a level of order of magnitude of 10−3

µas and 10−5 µas, respectively. They have used the so called
Cold Dark Matter and Scalar Field Dark Matter models to
study the apparent shapes of the shadow. A similar result has
been obtained for the dark matter effect on the M87 black
hole (see, [5]) using the Burkert dark matter profile.

6 Conclusion

In this paper we have obtained a rotating black hole solution
surrounded by superfluid dark matter along with baryonic
matter. To this aim we considered the superfluid dark matter
model and used two specific profiles to describe the baryonic
matter distribution, namely the spherical exponential profile
and the power law profile followed by the special case of a
totally dominated dark matter case. Using the current values
for the baryonic mass, the central density of the superfluid
dark matter, halo radius, and the radial scale length for the
baryonic matter in our galaxy, we found that the shadow size
of the Sgr A∗ black hole remains almost unchanged compared
to the Kerr vacuum BH. This result is consistent with a recent
work reported in [5] and also [4]. For entirely dominated dark
matter galaxies, we find that the angular diameter increases
by 10−5 µarcsec. This result shows that it is very difficult
to constrain the dark matter parameters using the shadow
images. Such tiny effects on the angular diameter are out of
reach for the existing space technology and it remains an open
question if future astronomical observations can potentially
detect such effects. That being said, the expected value for
the angular diameter in the case of Sgr A∗ is of the order of
θs � 53µas as predicted in GR.

As an interesting observation, we show that an increase
of baryonic mass followed by a decrease of the radial scale
length can increase the shadow size considerably. This can
be explained by the fact that the baryonic matter is mostly
located in the interior of the galaxy; on the other hand, dark
matter is mostly located in the outer region of the galaxy. In
other words, for the totally dominated dark matter galaxies
we observe almost no effect on black hole shadows, but a
more precise measurement of the Sgr A∗ shadow radius can
play a significant role in determining the baryonic mass in
our galaxy.
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Appendix A

Here we demonstrate the derivation of the spinning black
hole metric. As a first step to this formalism, we trans-
form the Boyer–Lindquist (BL) coordinates (t, r, θ, φ) to
Eddington–Finkelstein (EF) coordinates (u, r, θ, φ). This
can be achieved by using the coordinate transformation

dt = du + dr
√F1,2(r)G1,2(r)

, (A1)

we obtain

ds2
1,2= −F1,2(r)du2−2

√
F1,2(r)

G1,2(r)
dudr+r2dθ2+r2 sin2 θdφ2. (A2)

This metric can be expressed in terms of null tetrads as

gμν = −lμnν − lνnμ + mμmν + mνmμ, (A3)

where the null tetrads are defined as

lμ = δμ
r , (A4)

nμ =
√

G1,2(r)

F1,2(r)
δμ
u − 1

2
G1,2(r)δ

μ
r , (A5)

mμ = 1√
2H

(
δ
μ
θ + ι̇

sin θ
δ
μ
φ

)
. (A6)

These null tetrads are constructed in such a way that lμ andnμ

whilemμ and m̄μ are complex. It is worth noting thatH = r2

and this will be used later on. It is obvious from the notation
that m̄μ is the complex conjugate ofmμ. These vectors further
satisfy the conditions for normalization, orthogonality and
isotropy:

lμlμ = nμnμ = mμmμ = m̄μm̄μ = 0, (A7)

lμmμ = lμm̄μ = nμmμ = nμm̄μ = 0, (A8)

−lμnμ = mμm̄μ = 1. (A9)
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Following the Newman–Janis prescription we write

x ′μ = xμ + ia(δμ
r − δμ

u ) cos θ →

⎧
⎪⎪⎨

⎪⎪⎩

u′ = u − ia cos θ,

r ′ = r + ia cos θ,

θ ′ = θ,

φ′ = φ.

(A10)

in which a stands for the rotation parameter. Next, let the
null tetrad vectors Za undergo a transformation given by
Zμ = (∂xμ/∂x ′ν)Z ′ν , following [63],

l ′μ = δμ
r ,

n′μ =
√

B1,2

A1,2
δμ
u − 1

2
B1,2δ

μ
r ,

m′μ = 1
√

2�1,2

[
(δμ

u − δμ
r )ι̇a sin θ + δ

μ
θ + ι̇

sin θ
δ
μ
φ

]
,

(A11)

where we have assumed that (F1,2(r),G1,2(r),H(r)) trans-
form to (A1,2(a, r, θ), B1,2(a, r, θ),�1,2(a, r, θ)). With the
help of the above equations the new metric in Eddington–
Finkelste coordinates reads

ds2
1,2 = −A1,2du2 − 2

√
A1,2

B1,2
dudr

+2a sin2 θ

(

A1,2 −
√

A1,2

B1,2

)

dudφ

+2a

√
A1,2

B1,2
sin2 θdrdφ + �1,2dθ2

+ sin2 θ

[

�1,2 + a2 sin2 θ

(

2

√
A1,2

B1,2
− A1,2

)]

dφ2.

(A12)

Note that A1,2 is some function of r and θ as we already
pointed out. Without going into details of the calculation one
can revert the EF coordinates back to BL coordinates by using
the following transformation (see for more details [63]):

du = dt − a2 + r2

�1,2
dr, dφ = dφ′ − a

�1,2
dr, (A13)

where in order to simplify the notation we introduce

�(r)1,2 = r2 F1,2(r) + a2. (A14)

Making use of F1,2(r) = G1,2(r), one can obtain �1 =
�2 = r2 + a2 cos2 θ ; here we shall use just �. Dropping the
primes in the φ coordinate and choosing

A1,2 = (F1,2H + a2 cos2 θ)�1,2

(H + a2 cos2 θ)2 (A15)

and

B1,2 = F1,2H + a2 cos2 θ

�
, (A16)

we obtain the spinning black hole space-time metric in a
SFDM halo,

ds2
1,2 = −

(
1 − 2ϒ1,2(r)r

�

)
dt2 + �

�1,2
dr2 + �dθ2

−2a sin2 θ
2ϒ1,2(r)r

�
dtdφ

+ sin2 θ

[
(r2 + a2)2 − a2�1,2 sin2 θ

�

]
dφ2 (A17)

with

ϒ1,2(r) = r (1 − F1,2(r))

2
, (A18)

in which F1 = F(r)exp and F2 = F(r)power, respectively.
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