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Abstract We investigate the left-right entanglement
entropy of a boundary state, corresponding to a dynami-
cal Dp-brane with the internal and background fields. We
assume that the brane has a tangential linear motion and a
rotation, and is dressed with an internal U (1) gauge poten-
tial and the Kalb–Ramond tensor field Bμν . We derive the
entanglement entropy via the Rényi entropy by applying the
replica trick. Our calculations will be in the context of the
bosonic string theory.

1 Introduction

In a composite quantum system, which consists of subsys-
tems, entanglement relates the different parts of the system.
The subsystems can become entangled if the quantum state
of each subsystem cannot be described independent of the
states of the other subsystems. In fact, the quantum systems
are capable to become entangled through the various types
of processes such as interactions, particles creation and etc.
For instance, in the decay of the subatomic particles, because
of the conservation laws, the measured quantum labels for
the daughter particles are highly correlated. Traditionally, for
quantifying entanglement, geometric setups have been inten-
sively studied in the literature [1–6]. Entanglement entropy is
a favorable quantity for measuring the entanglement between
the subsystems. Also, this quantity has been drastically stud-
ied in the context of the AdS/CFT [7,8].

At first consider a bipartite system with the subsystems A
and B. The division can occur in the Hilbert space (instead
of the configuration space), i.e. H = HA ⊗HB. Let |ai 〉 and
|b j 〉 be the eigen-bases which spanHA andHB, respectively.
Thus, |ai 〉⊗|b j 〉 forms an eigen-basis forH. Hence, a generic
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state |ψ〉 in H possesses the expansion

|ψ〉 =
∑

i, j

ci j |ai 〉 ⊗ |b j 〉. (1.1)

If the correlation coefficients ci j can be decomposed, e.g., as
ci j = αiβ j we acquire the product state |ψ〉 = |ψA〉⊗ |ψB〉.
In this case the subsystems A and B are not entangled. For
the case |ψ〉 �= |ψA〉 ⊗ |ψB〉 we have an entangled system.

In our system the left- and right-moving oscillating modes
of closed strings are the bases of the two subsystems, hence,
the Hilbert space possesses the factorized form H = HL ⊗
HR. The Schmidt decomposition of the boundary state with
respect to the left- and right-moving modes can be written as
[9,10],

|B〉 = N
∑

−→m
|−→m 〉 ⊗ |U−̃→m 〉, (1.2)

where the states |−→m 〉 and |−̃→m 〉 are complete orthonormal
bases forHL andHR, andU is an anti-unitary operator which

acts on HR. Both states |−→m 〉 and |−̃→m 〉 depend on a set of the
integer numbers {m1,m2, . . .}. Now consider Eq. (1.1) for
the maximally entangled case, i.e. ci j = cδi j , and compare
it with Eq. (1.2). This comparing clarifies that the decompo-
sition (1.2) represents the boundary state |B〉 as a maximally
entangled state of the left- and right-moving modes. Thus,
we can choose the boundary state as our composite system
and the left- and right-moving modes of closed strings as its
subsystems.

On the other hand, the D-branes as dynamical objects are
essential for studying different areas of string theory. We shall
investigate one of the attractive characteristics of a D-brane,
i.e. the so called left-right entanglement entropy (LREE)
[11–14]. The left-right entanglement is a non-geometrical
version of the entanglement. Since the boundary state accu-
rately encodes all properties of a D-brane [15–32], it is a
useful tool for investigating the LREE corresponding to the
D-brane.
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Zayas and Quiroz previously worked out the LREE for a
one-dimensional boundary state in a free bosonic 2D CFT
with the Dirichlet or the Neumann boundary condition [11].
Besides, they derived the LREE for the bare-static D-branes
[13]. By making use of their approach, in this paper we shall
obtain the LREE for a bosonic Dp-brane which is dressed
by the Kalb–Ramond background field Bμν and an internal
U (1) gauge potential Aα which lives in the brane worldvol-
ume. In addition, we impose a tangential dynamics to the
brane, which includes linear motion and rotation. We shall
observe that the LREE of our setup may be interpreted as a
thermodynamical entropy.

In fact, the entanglement entropy of the D-branes poten-
tially has relation with the black holes entropies [6,33].
Therefore, we are motivated to investigate the LREE of a spe-
cial Dp-brane. Precisely, a brane configuration with the back-
ground and internal fields can be corresponded to a charged
black hole. Besides, a dynamical brane, especially those with
internal rotations, may be associated with a rotating black
hole. Ultimately, the LREE of our brane configuration may
find a connection with the entropy of the charged-rotating
black holes.

Since the extracted quantities of the bosonic string the-
ory are similar to their counterparts in the NS–NS sec-
tor of the superstring theory we shall begin our calcu-
lations for the foregoing bosonic D-brane. Beside, the
bosonic computations are more simple than the super-
string calculations. Hopefully, in the subsequent works we
shall extend our calculations to the supersymmetric ver-
sion.

The paper is organized as follows. In Sect 2, we shall
introduce the boundary state, corresponding to the Dp-brane,
then, the interaction amplitude between two parallel and
identical Dp-branes will be introduced. This amplitude is
required for calculating the Rényi entropy. In Sect. 3, we
shall compute the LREE for a bare-static Dp-brane and for a
dressed-dynamical one. We shall terminate this section with
a thermodynamical interpretation of the LREE of our system.
In Sect. 4, some simple examples will be presented to clarify
the parametric dependence of the setup. Section 5 is devoted
to the conclusions.

2 The dressed-dynamical D p-branes: boundary state
and interaction

2.1 The boundary state

In the beginning we introduce the boundary state, associated
with a Dp-brane with tangential dynamics, in the presence
of the antisymmetric tensor Bμν and the internal gauge field
Aα . Thus, we apply the following closed string action

S = − 1

4πα′

∫

�

d2σ
(√−hhabgμν∂a X

μ∂bX
ν

+εabBμν∂a X
μ∂bX

ν
)

(2.1)

+ 1

2πα′

∫

∂�

dσ
(
Aα∂σ X

α + ωαβ J
αβ
τ

)
,

where the indices a, b ∈ {0, 1} are devoted to the string
worldsheet and α, β ∈ {0, 1, . . . , p} belong to the Dp-brane
worldvolume. Let the spacetime be flat, i.e. gμν = ημν . In
addition, the string worldsheet will be flat. The tensors ωαβ

and Jαβ
τ = Xα∂τ Xβ −Xβ∂τ Xα indicate the tangential angu-

lar velocity and the angular momentum density, respectively.
The angular velocity ωαβ , the Kalb–Ramond field Bμν and
the field strength of the gauge potential, i.e. Fαβ , are taken to
be constant, hence, we utilize the gauge Aα = − 1

2 FαβXβ .
Because of the presence of the fields on the brane worldvol-
ume the Lorentz symmetry breaks down, thus, the tangential
dynamics along the worldvolume directions obviously is sen-
sible. In the rest of the paper we take α′ = 2.

The boundary state equations can be obtained by vanishing
of the variation of the action with respect to Xμ,
[ (

ηαβ + 4ωαβ

)
∂τ X

β + Fαβ∂σ X
β

+Bαi∂σ X
i
]

τ=0
|Bx 〉 = 0, (2.2)

(
Xi − yi

)

τ=0
|Bx 〉 = 0, (2.3)

where Fαβ ≡ Bαβ −Fαβ . The Dirichlet directions are shown
by {xi |i = p + 1, . . . , d − 1} and the parameters yi specify
the brane position. One can use the mode expansion of Xμ

to rewrite the above equations in terms of the closed string
oscillators
[ (

ηαβ + 4ωαβ − Fαβ

)
αβ
m

+ (
ηαβ + 4ωαβ + Fαβ

)
α̃

β
−m

]
|Bosc〉 = 0,

(
ηαβ + 4ωαβ

)
pβ |B〉(0) = 0, (2.4)

for the tangential directions, and

(αi
m − α̃i−m)|Bosc〉 = 0,

(xi − yi )|B〉(0) = 0, (2.5)

for the perpendicular directions to the worldvolume. The fol-
lowing decomposition was also applied |Bx 〉 = |Bosc〉 ⊗
|B〉(0).

The second equation of Eq. (2.4) eventuates to pα

det (η + 4ω) = 0. Thus, there are two possibilities depend-
ing on whether

(
ηαβ + 4ωαβ

)
is invertible or not. We consider

the invertible case which leads to the vanishing tangential
momentum pα = 0. Hence, by applying the commutation
relations and the coherent state formalism we find the zero-
mode part and oscillatory sector of the boundary state as
follows
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|B〉(0) = Tp

2

d−1∏

i=p+1

δ
(
xi − yi

)
|pi = 0〉

p∏

α=0

|pα = 0〉,

(2.6)

|Bosc〉 = √− det M exp

[
−

∞∑

m=1

(
1

m
α

μ
−mSμνα̃

ν−m

)]
|0〉α

⊗|0〉α̃, (2.7)

where Tp is the brane tension, and the matrix Sμν is defined
by

Sμν =
(
Qαβ ≡ (M−1N )αβ,−δi j

)
,

Mαβ = ηαβ + 4ωαβ − Fαβ,

Nαβ = ηαβ + 4ωαβ + Fαβ. (2.8)

The prefactor in the oscillating part comes from the normal-
ization of the disk partition function. For prefactors of the
stationary setups see, e.g., Refs. [34,35]. One may define
the combination Tp = Tp

√− det M as an effective tension
for the dynamical brane in the presence of the internal and
background fields.

In fact, the coherent state method enabled us to acquire
the boundary state (2.7) under the condition SST = 1. This
condition reduces the number of the total parameters from
3p(p + 1)/2 to p2 − 1 independent parameters.

In addition to the foregoing sectors of the boundary state,
there also exists a contribution from the conformal ghosts too

|Bgh〉 = exp

[ ∞∑

m=1

(c−mb̃−m − b−mc̃−m)

]

c0 + c̃0

2
|q = 1〉|q̃ = 1〉. (2.9)

Therefore, the total bosonic boundary state, corresponding
to the Dp-brane, is given by

|B〉 = |Bosc〉 ⊗ |B〉(0) ⊗ |Bgh〉. (2.10)

2.2 The amplitude of interaction

The interaction amplitude of two parallel Dp-branes enables
us to extract the partition function, which will be required for
computing the LREE. For calculating the interaction ampli-
tude we can look at the one-loop diagram of an open string,
stretched between the branes, or equivalently study the tree-
level diagram of the exchanged closed string. This equiva-
lence is a consequence of the conformal invariance of string
theory.

Here, we apply the second approach in which the inter-
action amplitude is given by the overlap of the two bound-
ary states, corresponding to the two dressed-dynamical Dp-

branes, via the closed string propagator D,

A = 〈B1|D|B2〉,
D = 4

∫ ∞

0
dt e−t H , (2.11)

where H is the closed string Hamiltonian. Accordingly, the
interaction amplitude finds the feature

A = T 2
p Vp+1

8(2π)d−p−1

√
det(MT

1 M2)

∫ ∞

0
dt

⎡

⎣e(d−2)π t/6

×
(√

1

2t

)d−p−1

exp

⎛

⎝− 1

8π t

d−1∑

i=p+1

(
yi1 − yi2

)2

⎞

⎠

×
∞∏

n=1

(
det[1 − QT

1 Q2e
−4nπ t ]−1

(
1 − e−4nπ t

)p−d+3
)⎤

⎦ ,

(2.12)

where Vp+1 is the brane worldvolume. The first exponen-
tial comes from the zero-point energy, the next factor of it
originates from the zero-modes of the Dirichlet directions,
and the second exponential specifies the dependence on the
distance of the branes. Furthermore, the factor

∏∞
n=1(1 −

e−4nπ t )p−d+3 is due to the oscillators of the Dirichlet direc-
tions and the conformal ghosts, while the second determinant
originates from the oscillators of the Neumann directions.
We observe that the interaction amplitude is exponentially
damped by the square distance of the branes. Note that anal-
ogous analysis in the presence of an additional background
field (i.e. the tachyon field) has been worked out in Ref. [36].
Beside, similar results for a setup without rotation have been
found in Ref. [37]. For more investigation also see Refs. [15–
32].

3 LREE corresponding to a D p-brane

3.1 Entanglement entropy of a bipartite system

Let |ψ〉 denote the pure state of the whole composite sys-
tem, including the subsystems A and B. The density operator
which is associated to this state is specified by ρ = |ψ〉〈ψ |.
It satisfies the probability conservation condition Trρ = 1.
Moreover, the reduced density matrix for the subsystem A is
defined by taking the partial trace over the subsystem B as
ρA = TrBρ.

Among the various quantities for measuring entangle-
ment, the entanglement entropy and the Rényi entropy are
more interesting and attractive. The entanglement entropy is
given by the von Neumann formula S = −Tr (ρA ln ρA) [38]
and the Rényi entropy is defined as Sn = 1

1−n ln Trρn
A with

n ≥ 0, n �= 1 [39]. Note that the limit n → 1 of the Rényi
entropy gives the entanglement entropy.
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3.2 The density operator of the setup

By expanding the exponential part of the state (2.7) we
receive a series which elaborates an entanglement between
the left- and right-moving parts of the Hilbert space. Since in
our configuration all elements of the matrix Sμν are nonzero
we have an extremely non-trivial composite system with the
left-right entanglement.

For a given boundary state |B〉, associated with a Dp-
brane, we may immediately take the density matrix as ρ =
|B〉〈B|. Since the inner product 〈B|B〉 is divergent, see Eq.
(3.2) in the limit ε → 0, this choice does not satisfy the
condition Trρ = 1. Thus, a finite correlation length ε is
introduced and the density matrix is defined by [40,41],

ρ = e−εH |B〉〈B|e−εH

Z(2ε)
, (3.1)

where Z(2ε) is fixed by Trρ = 1. Therefore, the amplitude
(2.12) conveniently enables us to extract Z(2ε) as in the
following

Z(2ε) = 〈B|e−2εH |B〉

= T 2
p Vp+1

8(2π)d−p−1 | det M |
⎡

⎣e(d−2)πε/3

(√
1

4ε

)d−p−1

×
∞∏

n=1

(
det[1 − QTQe−8nπε]−1

(
1 − e−8nπε

)p−d+3
)⎤

⎦ . (3.2)

Note that the two interacting boundary states exactly are
alike, and their corresponding branes have been located at
the same position. Consequently, the y-dependent exponen-
tial disappeared and also the indices 1 and 2 were omitted.
Hence, Z(2ε) can be manifestly interpreted as the tree-level
amplitude which a closed string propagates for the time 2ε

between the very near Dp-branes.
At first, we shall construct the LREE corresponding to a

bare-static brane as a simple system, and then LREE will be
computed for a rotating-moving brane in the presence of the
Kalb–Ramond field and U (1) gauge potential.

3.3 LREE corresponding to a bare-static brane

For this setup, quench the internal and background fields,
and also stop the rotation and linear motion of the brane.
Therefore, the partition function (3.2) is simplified with
det M = −1 and QTQ = 1. In this case we call it Z(0)(2ε).
For deriving the Rényi entropy we need to compute Trρn

L
for the real number n, where the subsystem “L” is the left-
moving part of the Hilbert space. The replica trick enables

us to accurately calculate Trρn
L, which yields

Trρn
L ∼ Z(0)(2nε)

Zn
(0)(2ε)

≡ Z(0)n(L)

Zn
(0)

, (3.3)

where Z(0)n(L) is called “replicated partition function”. By
defining q = e−4πε , the last relation can be expressed in
terms of the Dedekind η-function

η(q) = q1/12
∞∏

m=1

(
1 − q2m

)
.

Since in the limit ε → 0 the variable q does not vanish,
the open/closed worldsheet duality is employed to go to the
open string channel. Using the transformation 4ε → 1/4ε

we obtain the new variable q̃ = exp
(− π

4ε

)
which vanishes

at the limit ε → 0. Hence, by expanding the Dedekind η-
function for small q̃ , we acquire

Z(0)n(L)

Zn
(0)

≈ K 1−n
0

((
2
√

ε
)1−n √

n
)d−p−1

exp

[
(d − 2)π

48ε

(
1

n
− n

)]

×
∞∏

m=1

{
1 + (d − 2)

[
− n e−mπ/2ε + e−mπ/2εn

− n(d − 2) e−(1+1/n)mπ/2ε + d − 1

2
e−mπ/εn

+ n2

2

(
d − 2 − 1

n

)
e−mπ/ε

]}
, (3.4)

where K0 = T 2
p Vp+1/8(2π)d−p−1.

Finally, by taking the limit n → 1 of the Rényi entropy
we receive the entanglement entropy as in the following

S(0)LREE = lim
n→1

[
1

1 − n
ln

Z(0)n(L)

Zn
(0)

]

≈ ln K0 + d − p − 1

2
(2 ln 2 + ln ε − 1)

+(d − 2)

⎡

⎣ π

24ε
+

(
1 − π

2ε

)
e−π/2ε

+3

2

(
1 − π

ε

)
e−π/ε

⎤

⎦ , (3.5)

up to the order O (exp (−3π/2ε)). The first term, i.e. ln K0,
depends on the tension and the worldvolume of the brane. It is
related to the boundary entropy of the brane. In Refs. [42,43]
similar relations concerning the boundary entropy have been
found. However, the second factor denotes the zero-mode
contribution which originates from the Dirichlet directions.
The other terms are due to the oscillators. The factor −2 in
(d − 2) comes from the conformal ghosts. The divergence
(d − 2)π/24ε can be justified by the sum over all oscillating
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modes α̃n which become more and more energetic [11]. For
the special case d = 3 and p = 1, the leading terms (the
terms without exponential factors) of Eq. (3.5) are exactly
compatible with the result of the Ref. [11].

3.4 LREE corresponding to a dressed-dynamical brane

Now we calculate the LREE regarding a generalized con-
figuration. Therefore, our Dp-brane possesses a tangential
dynamics and is dressed by the background field Bμν and
the gauge potential Aα . In the previous section we obtained
the corresponding boundary state and the associated parti-
tion function, i.e. Eq. (3.2). Writing the ratio Zn/Zn in terms
of the Dedekind η-function, and applying the transformation
4ε → 1/4ε for receiving the open string channel, and finally
expanding the η-function for small q̃ , give rise to the equation

Zn

Zn
≈ K 1−n

((
2
√

ε
)1−n √

n
)d−p−1

× exp

[
(d − 2)π

48ε

(
1

n
− n

)]

×
∞∏

m=1

{
1 + (d − p − 3)

[
− ne−mπ/2ε

+n2

2

(
d − p − 3 − 1

n

)
e−mπ/ε

+e−mπ/2εn − n(d − p − 3)e−(1+1/n)mπ/2ε

+ (d − p − 2)

2
e−mπ/εn

]}

×
∞∏

m=1

{
1 − n Tr(QTQ) e−mπ/2ε

−n [Tr(QTQ)]2 e−mπ(1/ε+1/nε)

+Tr(QTQ) e−mπ/2nε

+n

2

[
− Tr(QTQ)2 + n[Tr(QTQ)]2

]
e−mπ/ε

+1

2

[
Tr(QTQ)2 + [Tr(QTQ)]2

]
e−mπ/nε

}
, (3.6)

where K = T 2
p Vp+1| det M |/8(2π)d−p−1. The exponential

in the first line and the first infinite product are consequences
of the expansion of the η-function. Besides, the second infi-
nite product is due to the expansion of the determinants in
the partition function and the replicated one.

The entanglement entropy of this generalized configura-
tion finds the feature

SLREE = lim
n→1

[
1

1 − n
ln

Zn

Zn

]

≈ ln K + (d − p − 1)

2
(2 ln 2 + ln ε − 1)

+ (d − 2)π

24ε
+

(
1 − π

2ε

)
[d − p − 3

+Tr(QTQ)
]
e−π/2ε

+
(

1 − π

ε

) [
3

2
(d − p − 3) + Tr(QTQ)

+1

2
Tr(QTQ)2

]
e−π/ε, (3.7)

up to the order O (exp (−3π/2ε)). As it can be seen, the sec-
ond and third phrases are the same as for the bare-static Dp-
brane. In addition, the effects of the background and internal
fields and the brane dynamics have been prominently accu-
mulated in the Q-dependent terms and ln K . However, by
turning off the fields and stopping the brane, Eq. (3.7) is
reduced to the entanglement entropy of the bare-static brane,
as expected.

3.5 Comparison with a thermal entropy

We can associate the LREE of the dressed-dynamical brane,
i.e. Eq. (3.7), to the thermodynamics. This resemblance can
be done by defining a temperature which is proportional to
the inverse of the infinitesimal parameter ε. From this point
of view, the limit ε → 0 is equivalent to the high tempera-
ture limit of the thermal system. According to the partition
function (3.2), the thermodynamical entropy of the system
in the limit β = 2ε → 0 takes the form

Sth = β2 ∂

∂β

(
− 1

β
ln Z

)

≈ ln K + (d − p − 1)

2

[
2 ln 2+ln

β

2
−1

]
+ (d − 2)π

12β

+
(

1 − π

β

) [
d − p − 3 + Tr(QTQ)

]
e−π/β

+
(

1 − 2π

β

) [
3

2
(d − p − 3) + Tr(QTQ)

+1

2
Tr(QTQ)2

]
e−2π/β , (3.8)

up to the order O
(
e−3π/β

)
. We observe that this thermal

entropy exactly is equal to the LREE which was specified
by Eq. (3.7). In fact, these two entropies basically are differ-
ent quantities. This desirable connection may reveal a close
relation between the entanglement entropy and thermody-
namic entropy. There are also other works which illustrate
such connections. For instance, the Refs. [44–46] provide a
relation similar to the first law of thermodynamics via the
entanglement entropy.

4 Some simple configurations with p = 2

For clarifying our results, we reduce the general complicated
case to the D2-brane. Let the brane sit on the x1x2-plane.
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The matrices for the D2-brane are given by

ωαβ =
⎛

⎝
0 v1 v2

−v1 0 �

−v2 −� 0

⎞

⎠ , Fαβ =
⎛

⎝
0 E1 E2

−E1 0 B
−E2 −B 0

⎞

⎠ , (4.1)

where the parameters exhibit the following quantities,
v1 and v2: the components of the linear velocity of the

brane,
�: the angular velocity of the brane,
E1 and E2: the components of the total electric field inside

the brane,
B: total magnetic field, in which E1 ≡ F01 = F01 − B01

(similarly for E2), � = ω12 and B ≡ F12 = F12 − B12.
For more illustration we shall decompose this setup into the
following special configurations.

A dressed-boosted D2-brane At first let us only turn on
v1 and E2. In fact, to have a sensible tangential velocity v1,
presence of the electric field E2 is inevitable, otherwise, the
Lorentz invariance is restored and consequently there is no
preferable direction. For this case we obtain

Tr
(
QTQ

)
= 3 + 4v2

1E2
2

1 − v2
1 − E2

2

. (4.2)

Hence, the LREE (up to the order e−π/ε) becomes

S(1)LREE ≈ S0 + 4v2
1 E2

2

1 − v2
1 − E2

2

(
1 − π

2ε

)
e−π/2ε, (4.3)

where S0 denotes the LREE for a bare-static D2-brane. It is
given by Eq. (3.5) with p = 2.

The prefactor of Eq. (2.7) gives rise to the condition
det M < 0. On the basis of this, the denominator of Eq. (4.3)
for a moving D2-brane does not vanish, i.e. 1 − v2

1 − E2
2 >

15v2
1 . Thus, the entropy S(1)LREE for any finite value of E2

satisfactorily remains finite.
As the second special case, we consider v1 and B to be

nonzero. Hence, the trace factor is given by

Tr
(
QTQ

)
= 3 − 4v2

1B2

1 − v2
1 + B2

. (4.4)

Therefore, the LREE takes the form

S(2)LREE ≈ S0 − 4v2
1B2

1 − v2
1 + B2

(
1 − π

2ε

)
e−π/2ε . (4.5)

A dressed-rotating D2-brane Another profitable option is
illustrated by turning on the fields and the brane rotation.
Again note that the fields are indeed necessary for sensibility
of the tangential rotation. At first, consider a rotating D2-
brane with the angular velocity � which is dressed with E1.
Accordingly, we receive the following LREE

S(3)LREE ≈ S0 − 4�2E2
1

1 + �2 − E2
1

(
1 − π

2ε

)
e−π/2ε . (4.6)

For the last case, we turn on the angular velocity � and
the magnetic field B, which yield

S(4)LREE ≈ S0 + 8�B
1 + (� − B)2

(
1 − π

2ε

)
e−π/2ε . (4.7)

Note that similar to the finiteness of S(1)LREE, again the
condition det M < 0 eventuates to the finiteness of the other
three foregoing entropies.

5 Conclusions

At first, we acquired the LREE of a bare-static Dp-brane.
Then, the LREE of a rotating-moving Dp-brane in the pres-
ence of the Kalb–Ramond background field and an internal
U (1) gauge potential was computed. For this purpose, we
utilized the boundary state, associated with the Dp-brane,
and the interaction amplitude between the two identical and
parallel Dp-branes. For the dressed-dynamical brane pres-
ence of the various parameters in the setup dedicated a gen-
eralized feature to the LREE. By varying the parameters the
value of the LREE can be accurately adjusted to any desirable
value.

The partition function enabled us to conveniently calculate
a reliable thermodynamic entropy. The LREE of the dressed-
dynamical Dp-brane was compared with this entropy. We
observed that, by redefinition of the temperature, the two
entropies exactly are the same. This connection may be useful
for the future works. For example, by deriving the LREE
for those supersymmetric configurations which represent the
black holes, one may find the Bekenstein–Hawking entropy.

Finally, for explicit appearance of the various parameters,
we reduced the general case to the D2-brane with either a
linear velocity or an angular velocity in the presence of the
total electric field E or the total magnetic field B.
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