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Abstract In this paper, we study the braneworld models
with non-standard kinetic term of Dirac–Born–Infeld (DBI)
type in two case which are (I) in usual gravity and (II) in
f (T ) gravity. In each of these cases, we examine gravity
localization on branes and show that both models are stable
and capable of gravity localizing in a similar manner to the
standard case of braneworld models. In addition, we inves-
tigate the problem of fermion localization in both models
and by considering the Yukawa coupling as a function of the
warp factor, we show that the massless zero mode of fermion
fields are localized on both types of the the branes. Mean-
while, the effect of parameters in both models is addressed
on the zero mode and massive mode of graviton and fermion
and the effective potentials. Finally, we study the gauge hier-
archy problem in both models and we show that by choosing
the appropriate parameters, both models are able to solve
the gauge hierarchy problem between the Tev scale and the
Planck scale.

1 Introduction

The braneworld models are an interesting subject in theoret-
ical physics. These models were introduced for the first time
in Ref. [1] as domain walls embedded in extra dimension
and can provide creative ways to solve some problems in
modern physics, including Casimir force [2] and the hierar-
chy problem [3]. Randall and Sundrum introduced another
model called the R-S model, which did not require large extra
dimensions to solve the hierarchy problem [4]. In their model,
the brane was assumed to be extremely thin, and the size of
extra dimension was not determined by the dynamics of the
model. Goldberger and Wise [5], suggested an alternative
mechanism that the size of extra dimension was stabilized by

a e-mail: e.mazani@stu.umz.ac.ir (corresponding author)
b e-mail: a.tofighi@umz.ac.ir
c e-mail: m.m.sorkhi@kub.ac.ir

a five dimensional bulk scalar field with usual dynamics that
could interact with gravity minimally [6] or non-minimally
[7,8]. In their scenario, the brane is generated by a scalar field
with kink configuration and it provides a domain wall that
can be considered as non-singular versions of R-S model [9].
Recently, the standard braneworld scenario has been modi-
fied in such a way that the standard gravity action is extended
to include scalar fields with generalized dynamics [10]. In
these models, the Lagrange density has a non-standard form
L = K (X) − V (φ), that is, the kinetic term is expressed as
a non canonical form K (X) which is a function of X . These
theories are called K-fields and were used for thick branes in
Refs. [11–15]. The authors of Ref. [10] have considered two
specific forms for K (X), which are K (X) = −X2/2 and
K (X) = X + α |X | X , and with the help of first order for-
malism, they showed that their model is stable and capable
of localizing gravity in a similar way to the standard case.
An important example of K-field theories is DBI model, in
which the kinetic term is of Dirac–Born–Infeld (DBI) type.
The main difference between the DBI models and the mod-
els described above is the non-linear structure of the kinetic
energy term. These models are also considered in the field
of dark energy, so that in the framework of string theory,
the accelerated expansion of the early universe, or the infla-
tion problem, is explained by a model called DBI inflation
[16–19]. On the other hand, the braneworld models with non-
standard kinetic term of DBI type have been investigated in
Ref. [20] and it has been shown that these models have linear
stable solutions.

The issue of localization of matter fields on different
branes can be of great importance, since it reflects the fact
that which brane structure is more acceptable from the phe-
nomenological point of view. We know that the zero mode
of massless scalar fields and graviton are localized on branes
of different types [21–24], but for vector and Kalb–Ramond
tensor fields, this does not happen [25,26], so other methods
have been used to localize them [9,27]. On the other hand,
in order to localize the fermions, we need to introduce the
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Yukawa coupling between the fermions and the background
scalar fields [28–30], but if the background scalar field is an
even function of extra dimension, then the Yukawa coupling
mechanism does not work. One of the methods used to solve
this problem in Ref. [31] is the introduction of a derivative
fermion-scalar coupling in which the background scalar field
can be an even or odd function of extra dimension. Another
method is the introduction of a coupling between the spinor
field and the scalar curvature of space-time, which is used in
Ref. [32]. In general, the issue of the localization of different
matter fields in braneworld models has been widely studied.
For a complete review, you can see Refs. [33–37].

From another standpoint, braneworld models can be
applied to gravitational theories, such as f (T ) gravity. The
braneworld models in f (T ) gravity have been widely stud-
ied in Refs. [38–40]. On the other hand, the authors of Ref.
[41] used the K-fields as the background scalar fields and by
considering some specific forms for f (T ) and K (X), they
have shown that their solutions are stable, and the zero mode
of graviton can be localized on the brane.

The K-field theories of DBI type are of particular impor-
tance because DBI models play an important role in infla-
tionary models based on string theory, in which the inflation
is considered as D-brane moving on the space-time manifold,
in other words, inflation is described as the open string mode
[42–44]. Therefore, the study of braneworld models with the
kinetic energy term of DBI type (DBI braneworld models)
can have interesting results. As has been said earlier, this issue
has been recently considered by some authors, but the prob-
lem of graviton and fermion localization, both in the absence
of f (T ) gravity and in f (T ) gravity, has not yet been inves-
tigated. In this paper, we intend to study the DBI braneworld
models in two cases, which are: (1) DBI braneworld models
in usual gravity, (2) DBI braneworld models in f (T ) grav-
ity. In each of these cases, we examine the stability of the
model and the graviton and fermion localization conditions.
It should be noted that we use the derivative coupling term
as Yukawa coupling and by presenting the mass-independent
potential shapes in the corresponding Schrodinger-like equa-
tions, we examine the localization of bulk fermion and gravi-
ton fields on both types of branes mentioned above.

On the other hand, solving the hierarchy problem was
one of the most important goals for proposing the small
extra dimensional models, in particular the Randall-Sundrum
model. So we were interested in exploring the hierarchy
problem for the DBI braneworld models as well. To investi-
gate this, we used a perturbation method in which the non-
standard term of kinetic energy is considered as a perturba-
tion to the standard scenario.

The plan of this paper is as follows. In Sect. 2, we briefly
summarize two braneworld models. To do this, we follow the
approach of Ref. [10], for the first model and the approach
of Ref. [41], for the second model. In Sect. 3, we study the

localization of graviton field in these models. In Sect. 4, we
study the localization of fermion field in these models. To do
this, we assume the Yukawa coupling term as a function of the
warp factor and the normalization condition of the fermion
zero mode is discussed for this coupling. There is also a
qualitative discussion of massive mode in Sect. 5. Section 6
is devoted to solving the hierarchy problem in both models
and finally, a summary and conclusion are given in Sect. 7.

2 DBI braneworld models

In this section, we will investigate the braneworld models
with non-standard kinetic term in which the kinetic term is
of Dirac–Born–Infeld (DBI) type. We call these models as
DBI braneworld models. We examine these models in two
separate categories, which are (I) DBI braneworld model in
usual gravity and (II) DBI braneworld model in f (T ) gravity.
In the first model, we follow the approach outlined in Ref.
[10] and we find the solutions of the model with the help of
the first order formalism method. But in the second model,
we follow the approach of Ref. [41], where another method
is used instead of the usual first order formalism method.
It should be noted that the first order formalism has been
used in Refs. [38,39] for braneworld models with standard
kinetic term in f (T ) gravity and braneworld models with
non-standard kinetic term in f (T ) gravity with the specific
form K (X) = X+α[(1+bX)n−1], respectively. But in both
cases, only the particular form of f (T ) = T +αT n was used.
Thus, in order to consider more general forms of f (T ) and
K (X), the authors of Ref. [41] have used another method
other than the first order formalism. In the following, we
study both of the DBI braneworld models mentioned above.

2.1 DBI braneworld models in usual gravity

In this model, we use a brane with generalized dynamics
where the five dimensional action is written in such a way
that gravity is coupled to the scalar field in the following form
[10],

S =
∫

d5x
√|g|

(
−1

4
R + L(φ, X)

)
, (1)

where R is the scalar curvature and we have L(φ, X) =
K (X)−V (φ) in which K (X) and V (φ) are the non-standard
kinetic term and potential, respectively. The non-standard
kinetic term K (X) is a function of X and in the standard
case we have K (X) = X . The quantity X is defined as X =
− 1

2g
MN ∂Mφ∂Nφ. On the other hand, the warped metric for a

five dimensional space-time has the following general form,

ds2 = gMNdx
MdxN = e2A(y)gμνdx

μdxν − dy2, (2)
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where e2A(y) is the warp factor and gμν is the metric of four
dimensional curved brane with the signature (+,−,−,−).
Also we have M, N = 0, 1, 2, 3, 4 and μ, ν = 0, 1, 2, 3. As
usual we suppose that the scalar field φ and the warp factor A
only depend on the extra dimension y. That is, it can be said
that φ = φ(y) and A = A(y), so we can obtain the equation
of motion for the scalar field as follows,

(KX + 2XKXX )φ′′ − Vφ = −4KXφ′A′. (3)

Also, with respect to the metric (2), the Einstein equations
are as follows,

A′′ = 4

3
XKX , (4)

A′ 2 = 1

3
(K − 2XKX − V ), (5)

where prime denotes derivative with respect to y and we use
the notation KX = ∂K

∂X and KXX = ∂2K
∂X2 . It should be noted

that for the static solutions, we have X = − 1
2φ′2. Now we

apply the first order formalism to the braneworld scenario.
This method was first introduced in Ref. [45] and it uses a
function W (φ) called superpotential in such a way that

A′ = −1

3
W (φ). (6)

The Eqs. (4) and (5) in the first order formalism can be written
as

KXφ′ = 1

2
Wφ, (7)

K − 2KX X − V (φ) = 1

3
W 2, (8)

where Wφ denotes Wφ = ∂W
∂φ

. In this paper we would like
to consider the Dirac–Born–Infeld (DBI) model in which
the non-standard kinetic term K (X) has the following form
[46,47],

K (X) = −a2

(√
1 − 2X

a2 − 1

)
, (9)

where a is a real parameter and it can control the high order
powers in the covariant derivative. It can be shown that for
a � 1, the kinetic term K (X) returns to the standard case
K (X) = X . Now, if we put relation (9) into equation (7),
we arrive at the following equation for the DBI braneworld
models,

φ′ = Wφa√
4a2 − W 2

φ

. (10)

The Eqs. (6) and (10) must be solved together to obtain the
scalar field and warp factor solutions, but before that, we

must introduce the superpotential function W (φ). According
to Ref. [20], we can consider the following two forms for
superpotential,

Wφ = 1 − φ2√
1 + 1

a2 (1 − φ2)2
, (11)

Wφ = 1 − sinh2(φ)√
1 + 1

a2 (1 − sinh2(φ))2
. (12)

We first consider the first form for superpotential to solve
the equations (6) and (10), but since the analytical solutions
of these equations are difficult, we solve them numerically.
By numerically solving of these equations, the graphs for the
scalar field φ(y) and the warp factor A(y) are obtained for
different values of parameter a. These diagrams are shown
in Fig. 1a, b. Our calculations show that the results for the
second superpotential are similar to the first one. Therefore,
in the entire paper, only the first form of the superpotential
will be considered.

On the other hand, according to the Eq. (8), the scalar field
potential can be obtained as follows,

V (φ) = a2
(

1 − 1

G(φ)

)
− 1

3
W (φ)2 (13)

where G(φ) has the following form,

G(φ) = 2

√
φ4 − 2φ2 + a2 + 1

3φ4 − 6φ2 + 4a2 + 3
(14)

and we have W (φ) = ∫
Wφdφ. By calculating W (φ), which

appears as an elliptic function, we can plot the shape of the
scalar potential function V (φ). In Fig. 1c, we plotted this
potential for different values of the parameter a. It can be
seen that the potential is stable for different values of this
parameter. Furthermore, the stable values (〈φ〉) are indepen-
dent of the parameter a, but by increasing the parameter a
and approaching the standard scenario, the minimum value
of the potential (V (〈φ〉)) gets larger negative values. This
means that the V (〈φ〉) is proportional to the parameter a. It
should be noted that the above potential shape corresponds
to the scalar field potential of the braneworld models with
non-standard kinetic term K (X) = X + α |X | X , which is
studied in Ref. [10].

2.2 DBI braneworld models in f (T ) gravity

In this section, we follow the approach outlined in Ref.
[41] and study the DBI braneworld models in f (T ) gravity.
According to f (T ) gravity in braneworld models, we have to
replace the torsion scalar T with f (T ) which is a function of
T . It should be noted that the torsion scalar can be calculated
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(a) (b) (c)

Fig. 1 The profile of a the background scalar field φ(y), b the warp factor eA(y) and c the scalar field potential V (φ) for a= 1 (solid line), a=2
(dashed line), a = 5 (dotted line)

as T = −12A′2. The total action in these branworlds models
has the following form,

S = −1

4

∫
d5x e f (T ) +

∫
d5x LM , (15)

where LM = e(K (X) − V (φ)) is the Lagrangian of the
background scalar field and e is the determinant of vielbein.
Also, the metric of five-dimensional space-time is the same
as the relation (2). With respect to action (15) and the ansatz
(2), the equations of motion are obtained as follows,

1

4
f + 1

2
fT (3A′′ + 12A′2) − 36 fT T A

′2A′′ = K − V,

(16)
1

4
f + 6 fT A

′2 = K − V + KXφ′2, (17)

4A′φ′KX + ∂y(KXφ′) = Vφ, (18)

where we used the notation fT = ∂ f
∂T and fT T = ∂2 f

∂T 2 , and
the prime denotes the derivative with respect to y. Among
the Eqs. (16)–(18), only two of them are independent, so we
focus only on Eqs. (16) and (17). If we subtract Eq. (17) from
Eq. (16), we arrive at

3

2
fT A

′′ − 36 fT T A
′2A′′ = −KXφ′2, (19)

which this equation can be written as the following form,

3

2
∂y( fT A

′) = −KXφ′2. (20)

This equation helps us to find solutions to our braneworld
model. In our model, the kinetic energy term is of the DBI
type. Therefore, if we put relation (9) in equation (20),

the equation of DBI braneworld model in f (T ) gravity is
obtained as follows,

3

2
∂y( fT A

′) = − φ′2√
1 + φ′2

a2

. (21)

To solve Eq. (21), we need to introduce the function f (T ) that
must have the necessary conditions for gravity localization.
For example, in Ref. [38], the function f (T ) was considered
as f (T ) = T + αT n , and with the help of the first order
formalism, they were able to solve these models and studied
the localization of matter fields. In this paper, we use the
following three forms for f (T ). The first two cases were
introduced in Ref. [41], but the third one was introduced by
ourselves,

fT = exp(
T

T0
), (22)

fT =
N∑

n=0

αnT
n, (23)

fT = − ln

(
1 + T

2 − T

)
, (24)

where we have T0 = 24k2m2, in which k and m are arbitrary
constants. Since we need only the warp factor to study the
zero mode of graviton and fermion, we consider the back-
ground scalar field as a constant function as follows,

φ(y) = m tanh(ky). (25)

Now, with respect to the background scalar field φ(y), we
can solve the Eq. (21) for different forms of the function fT .
It is difficult to solve this equation by analytical methods,
so we solve it numerically for different forms of fT . For
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(a) (b)

Fig. 2 The profile of a the warp factor eA(y) for a= 1, k = m = 1 and b the scalar field potential V (φ) for a= 1 (solid line), a=2 (dashed line), a
= 5 (dotted line)

example, the shape of the warp factor for fT = exp(T/T0)

is obtained as Fig. 2a. Finally, it should be noted that the scalar
field potential (V (φ)) is computable from the Eq. (17). Our
numerical calculations show that this scalar field potential is
stable and its diagram is generally similar to the scalar field
potential diagram in the first model. In Fig. 2b, the scalar field
potential in the second model for fT = exp(T/T0) is plotted.
As we see, the stable values (〈φ〉 = ±m) are independent
of the parameter a, but by increasing the parameter a and
approaching the standard scenario, the minimum value of
the potential (V (〈φ〉)) gets larger negative values. Therefore
the effect of parameter a on the scalar field potential in the
second model is similar to the effect of this parameter in the
first model (see Fig. 1c).

3 Localization of graviton

In this section, we would like to investigate the localization
of graviton in DBI braneworld models. In order to obtain
the zero mode of graviton in the first model, we follow the
approach of Ref. [10] in which by considering the metric per-
turbations and the first order contributions of Einstein equa-
tions, we can arrive at the schrodinger-like equation and the
zero mode of graviton. But in the second model, we follow
the approach of Ref. [41], in which the tensor perturbation
method was used. By considering the transverse-traceless
tensor perturbation which is related to the four dimensional
gravitons, the perturbation equation can be obtained and with
the help of the perturbation equation, we can arrive at the
schrodinger-like equation for the extra dimensional profile.

In the following, we study the localization of graviton zero
mode in both DBI braneworld models.

3.1 Localization of graviton on DBI braneworld models in
usual gravity

It can be shown that Einstein’s equations for braneworld mod-
els with generalized dynamics are simplified as follows [10],(

∂2
y + 4A′∂y − e−2A�

)
h̄μν = 0, (26)

where � is d’Alembert operator . Now, if we use the
relation dz = e−A(y)dy and the change of variables
Hμν = e−i px+3/2A(z)h̄μν , finally we arrive at the following
Schrodinger-like equation,

[
−∂2

z +U (z)
]
Hμν = p2Hμν, (27)

where Schrodinger-like potential U (z) is

U (z) = 9

4
A′2(z) + 3

2
A′′(z). (28)

Since analytical solution of the warp factor is not available,
therefore, an analytic analysis of the potential function is not
possible, so we will consider its numerical analysis. To do
this, with the help of the relation dz = e−A(y)dy, we write
the potential in the y coordinate as follows:

U (y) = 9

4

[
eA(y)∂y A(y)

]2

+3

2
e2A(y)

[
(∂y A(y))2 + ∂2

y A(y)
]
. (29)
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Using the relationU (y), we can obtain the shape of the poten-
tial function. In this paper, we would like to examine the
effect of parameter a, so we plot the shape of potential for
different values of this parameter in Fig. 3a. The potentials
tend to zero at the infinity so they are volcano-like. On the
other hand, increasing the parameter a causes the minima
and maxima of the potential increase, which means that the
ability to gravity localization is proportional to the parameter
a.

The Eq. (27) can be written as follows,

(
∂z + 3

2
A′(z)

)(
−∂z + 3

2
A′(z)

)
Hμν = p2Hμν. (30)

This equation shows that the graviton does not have a bound-
ary state with a negative mass. In addition, if we put p = 0,
we conclude that the zero mode of graviton is proportional
to

�0(z) ∝ e
3
2 A(z), (31)

where �0(z) denotes the graviton zero mode. In order to
localize graviton on the brane, we should have

∫
�2

0 (z)dz <

∞. Therefore, the necessary condition for the localization of
graviton zero mode is

∫
�2

0 (z)dz ∝
∫

e3A(z)dz < ∞. (32)

According to our numerical calculations, the limit of the warp
factor when z −→ ±∞, is equal to (−∞) and since the inte-
grand in Eq. (32) is a continuous function, it can be concluded
that the result of the integral is finite and the localization con-
dition is established. Now, with respect to relation (31), we
can plot the zero mode of graviton for different values of the
parameter a as Fig. 3b. It can be seen that the zero mode
of graviton is localized on the brane, and by increasing the
parameter a, its localization is strengthened. These results
are in agreement with the results of changing the parameter
a on the potential function that we discussed earlier.

3.2 Localization of graviton on DBI braneworld models in
f (T ) gravity

Using the approach outlined in Ref. [41] and with the ten-
sor perturbation method, the tensor perturbation equation is
obtained as follows,

(
∂2
z + 2H∂z + �(4)

)
γμν = 0, (33)

where �(4) = gμν∂μ∂ν and we have

H = 3

2
∂z A + 12e−2A

(
(∂z A)3 − ∂2

z A∂z A
) fT T

fT
. (34)

Now, if we use the KK decomposition, we have

γμν(x
ρ, z) = εμν(x

ρ)F(z)�(z), (35)

where we have

F(z) = e− 3
2 A(z)+∫

k(z)dz, (36)

and

k(z) = 12e−2A(∂2
z A∂z A − (∂z A)3)

fT T
fT

. (37)

By putting relation (35) in Eq. (33), we arrive at two indepen-
dent equations, which are: (1) The Klein–Gordon equation
for the four-dimensional KK gravitons,

(�(4) + m2)εμν(x
ρ) = 0, (38)

(2) The Schrodinger-like equation for the extra dimension
profile,

(−∂2
z +U (z))�(z) = m2�(z), (39)

wherem is KK graviton mass and the effective potentialU (z)
has the following form,

U (z) = H2 + ∂z H. (40)

The Schrodinger-like equation (39) can be written as follows,

(−∂z + H)(∂z + H)�(z) = m2�(z). (41)

This equation shows that there is no four-dimensional gravi-
ton with m2 < 0, so each solution is stable for the branes in
f (T ) gravity.

In Eq. (39), if we put m = 0, the zero mode of four-
dimensional massless graviton is obtained as follows,

�0(z) = N0e
3
2 A(z)−∫

k(z)dz, (42)

where N0 is the normalization coefficient. In order to local-
ize graviton on the brane, we should have

∫
�2

0 (z)dz < ∞.
Therefore, the necessary condition for the localization of
graviton zero mode is

∫
�2

0 (z)dz =
∫

N 2
0 e

3A(z)−2
∫
k(z)dz < ∞. (43)

Numerical calculations with any of the above-mentioned
f (T ) show that in Rel. (43) the integrand in infinity tends to
zero, which means that the result of the integral is finite and
the localization condition is established. Now, with respect
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(a) (b)

Fig. 3 The profile of a the potential U (y) and b the zero mode of graviton �0(y) for a = 1(solid line), a = 2 (dashed line), a = 5 (dotted line)

to the Eq. (40) and using the relation dz = e−A(y)dy, we
can plot the shapes of effective potentials U (y) for differ-
ent forms of the function fT as Fig. 4. Our investigations
show that all potentials tend to zero at infinity and they
are volcano-like but there are differences between them. For
fT = exp(T/T0), the potential always has a negative well
at the origin and for fT = − ln( 1+T

2−T ), the potential always
has two negative wells on both sides of the origin. But for
fT = ∑N

n=0 αnT n , both states can occur, that is, there are
two wells in the two sides of the origin as Fig. 4b, or the
parameters α may be chosen in a way that the potential only
has a negative well at the origin. On the other hand, as we see
in Fig. 4a, when the parameter a becomes larger, the values
of two maxima of the potential increase. This is an interest-
ing feature, because it changes the behavior of the massive
modes in the region between the two maxima where our four-
dimensional universe is located. Meanwhile, with increasing
the parameter a, the depth of well for all three forms of the
function fT increases, but the thickness of the well does not
change significantly. Thus, the ability of the effective poten-
tial in trapping the graviton is proportional to the parameter
a.

Now, we would like to investigate the localization of gravi-
ton. In the following, we consider the zero mode of graviton
for three different types of f (T ),

Type (I) f (T ) = exp( T
T0

): In this case, taking into account
the relation (42) and the numerical solution of warp factor
obtained in Sect. 2.2, we can plot the zero mode of graviton
for different values of the parameter a. As shown in Fig. 5a,
the zero mode is localized on the center of the brane and with

increasing parameter a, the graviton localization is strength-
ened.

Type (II) fT = ∑N
n=0 αnT n : In this case, if N = 1, we

have fT = α0 + α1T and the zero mode of graviton can be
plot as Fig. 5b for different values of the parameter a. As
we see the zero mode of graviton can be localized between
the two sub-branes. It should be noted that in this case, by
changing the parameters α0 and α1, there may be a situation
where the zero mode is localized on the center of brane. To
investigate this, we assume that α0 = 1, so that the form of
the function f (T ) is obtained as follows,

f (T ) = T + 1

2
α1T

2, (44)

considering this relation for f (T ), we would like to examine
the effect of parameter α1 on the zero mode of graviton. Our
investigations show that, as shown in Fig. 6a, when α1 tends
to zero, the effective potential which has two wells at the sides
of the origin, changes to a well at the origin. Also, according
to Fig. 6b, the zero mode instead of being localized between
the two sub-branes is localized on the center of brane. In other
words, it can be said that by increasing the parameter α1,
the brane is split into two sub-branes. This result is expected
because it is consistent with Einstein’s general relativity. The
reason is that in relation (44), if α1 tends to zero, the sentence
1
2α1T 2 can be ignored, and we have f (T ) = T , which is the
same as the general relativity scenario.

Now we want to go to the case N = 2, and we consider
fT as fT = α0 + α1T + α2T 2. In this case, if we plot the
zero mode of graviton for different values of the parameters,
we see that the zero mode is localized on the brane. Also, it
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(a) (b) (c)

Fig. 4 The profile of the effective potentials for a fT = exp(T/T0), b fT = α0 + α1T , α0 = 2, α1 = −10, and c fT = − ln( 1+T
2−T ). In all figures

we set a = 1 (solid line), a = 2 (dashed line), a = 5 (dotted line)

(a) (b) (c)

Fig. 5 The profile of graviton zero mode for a fT = exp(T/T0), b fT = α0 + α1T , α0 = 2, α1 = −10 and c fT = − ln( 1+T
2−T ). In all figures we

set a = 1 (solid line), a = 2 (dashed line), a = 5 (dotted line)

was observed that if α0 = 1 and α1 and α2 tend to zero, then
the zero mode of graviton has a peak that is consistent with
general relativity. In the end of this section, we note that in
all states N = 1, N = 2 and ..., increasing the parameter
a causes the localization of the zero mode of graviton to be
strengthened.

Type (III) fT = − ln( 1+T
2−T ): In this case, we can plot the

zero mode of graviton for different values of the parameter
a. As shown in Fig. 5c, the zero mode is localized between
the two sub-brane. On the other hand, It can be seen that
by increasing the parameter a, the graviton localization is
strengthened.

As the final point of this section, we note that in each
of the three forms of fT , the localization of graviton zero
mode has its own characteristics. Studies show that for
fT = exp(T/T0), the zero mode is always localized on
the center of brane and for fT = − ln( 1+T

2−T ), the zero

mode is always localized between the two sub-branes but for
fT = ∑N

n=0 αnT n , depending on the parameters α, two dif-
ferent states may occur, the zero mode is localized on the cen-
ter of brane, or the zero mode localization occurs between the
two sub-branes. Therefore, the function fT plays an impor-
tant role in the problem of graviton localization in the DBI
braneworld models in f (T ) gravity.

4 Localization of fermion

In this section, we would like to investigate the localization of
the bulk fermion fields by analyzing the potential of the cor-
responding Schrodinger-like equation for their KK modes.
We know that the introduction of Yukawa coupling between
the scalar and spinor field is necessary condition for the local-
ization of fermions on a brane. The action of a massive bulk
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(a) (b)

Fig. 6 The profile of a the effective potential and b the graviton zero mode for f (T ) = T + 1
2 α1T 2 with α1 = −5 (solid line), α1 = −2 (dashed

line), α1 = −0.01 (dotted line)

fermion field can be written as the following form [48,49],

S =
∫

d5x
√−g(�̄
M (∂M + ωM )� − �̄F(y)�), (45)

where the ωM is the spin connection and F(y) is an odd
function of the extra dimensional coordinate y. The metric
for five-dimensional space-time is given by Eq. (2), but if
we use the relation dz = e−A(y)dy and write it in the z-
coordinate, the equation of motion for the fermion field can
be obtained as

1√−g

[
γ μ∂μ + γ 5(∂z + 2 Ȧ) − eAF(y)

]
� = 0, (46)

where the dot denotes the derivative with respect to z. To solve
the Eq. (46), we use the chiral decomposition as follows

�(x, z) = e−2A
∑

(ψLn(x) fLn(z)+ψRn(x) fRn(z)), (47)

where ψLn(x) and ψRn(x) are the left-handed and right-
handed components of the four-dimensional spinor field
respectively and they satisfy the four-dimensional Dirac
equations. Also, fLn(z) and fRn(z) are the fermion KK
modes and it can be shown that they satisfy the following
schrodinger-like equations

[
−∂2

z + VL(z)
]
fLn(z) = m2

n fLn(z), (48)[
−∂2

z + VR(z)
]
fRn(z) = m2

n fRn(z), (49)

where the effective potentials VL and VR in the y coordinate
have the following forms,

VL(z(y)) = (eAF(y))2 − e2A(A′F(y) + F ′(y)), (50)

VR(z(y)) = (eAF(y))2 + e2A(A′F(y) + F ′(y)). (51)

In order to investigate the above effective potentials, we
must have the warp factor A(y) and the function F(y).
Since we have freedom to choose the Yukawa coupling,
we consider it as a function of the warp factor A(y), i.e.,
F(y) = −η∂y A(y).

In Eqs. (48) and (49), if we set mn = 0, the zero mode of
left-handed and right-handed fermions are obtained as fol-
lows,

fL0(y) ∝ exp

[
−

∫ z

0
eA(ź)F(y)dź

]

= exp

[
−

∫ y

0
F(ý)d ý

]
, (52)

fR0(y) ∝ exp

[
+

∫ z

0
eA(ź)F(y)dź

]

= exp

[
+

∫ y

0
F(ý)d ý

]
. (53)

On the other hand, the normalization condition of the left-
handed fermion zero mode can be written as

∫ ∞

−∞
dy exp

[
−A(y) − 2

∫ y

0
F(ý)d ý

]
< ∞. (54)
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Now, by setting F(y) = −η∂y A in Eqs. (52) and (53), we
get zero mode solutions as

fL0,R0(y) ∝ exp(±ηA(y)), (55)

and the normalization condition (54) can be written as

∫ ∞

−∞
exp[(2η − 1)A(y)]dy < ∞. (56)

Our numerical calculations show that, in both DBI braneworld
models, we have

A(y −→ ±∞) = −∞, (57)

Considering this asymptotic behavior of the warp factors in
both models, it is easy to see that for η > 1

2 the left-chiral
zero mode can be localized in both types of DBI braneworld
models.

4.1 Localization of fermion on DBI braneworld models in
usual gravity

In the Sect. 2.1, we obtained the solutions of the warp fac-
tor and the background scalar field for the DBI braneworld
models with numerical methods and we presented the graphs
of A(y) and φ(y) in Fig. 1. Now, with the help of the Eqs.
(50) and (51), we can plot the effective potentials VL ,R(y) for
different values of the parameter a as Fig. 7. As we see, the
potential VL(y) is volcano-like which means that there is no
mass gap to separate the zero mode from the excited modes.
Also, the potential VL(y) has a negative well at the origin, so
the left-handed fermion may have a massless mode but the
potential VR(y) does not have a well structure and does not
support the zero mode. On the other hand, by increasing the
parameter a, the depth of the well increased, which means
that the ability of the effective potential VL in trapping the
fermions is proportional to the parameter a. At the beginning
of this section, we see that with respect to the normalization
condition (56), for η > 1

2 the left-chiral zero mode can be
localized on the brane. Now, with the help of Eq. (55), we
can arrive at the zero mode of left-handed and right-handed
fermions. We plot the zero mode of fermions as Fig. 8. It
can be seen that the left-handed zero mode is localized on
the center of the brane but for the right-handed zero mode,
this does not happen which indicates that only one of the left
and right handed fermion zero mode may be localized on the
brane. This is consistent with the shapes of potentials VL and
VR that we discussed earlier. On the other hand, it can be
seen that by increasing the parameter a, the localization of
left-chiral fermion zero mode is strengthened.

4.2 Localization of fermion on DBI braneworld models in
f (T ) gravity

In Sect. 2.2, to obtain the warp factor, we considered the back-
ground scalar field as a constant function φ(y) = m tanh(ky)
and plotted the warp factor with numerical methods as
Fig. 2a. Now, with the warp factor A(y), we can use the
Eqs. (50) and (51) to obtain the shapes of the effective poten-
tials VL and VR . As a result, we plot these potentials for
f (T ) = exp(T/T0) as shown in Fig. 9. Again, it can be seen
that the potential VL(y) is volcano-like and it has a nega-
tive well at the origin, so the left-handed fermion may have
a massless mode but the potential VR(y) does not have a
well structure and does not support the zero mode. Also, by
increasing the parameter a, the depth of the well increased,
which means that the ability of the effective potential VL

in trapping the fermions is proportional to the parameter a.
On the other hand, according to the normalization condition
(56), for η > 1

2 the left-chiral zero mode can be localized on
the brane. Therefore, with the help of Eq. (55), we can plot
the zero mode of left-handed and right-handed fermions as
shown in Fig. 10. We can see that the left-chiral zero mode is
localized on the brane but for the right-chiral zero mode, this
does not happen. This is consistent with the shapes of poten-
tials VL and VR that we discussed earlier. It should be noted
that for each of three forms of the function fT , the potential
VL has a negative well at the origin and the zero mode of left-
chiral fermion is always localized on the center of the brane.
Also, it can be seen that by increasing the parameter a, the
localization of left-chiral fermion zero mode is strengthened.

5 A qualitative discussion on the graviton and fermion
massive modes

Now we would like to discuss the massive modes of graviton
and fermion on both DBI braneworld models. To do this,
we have to solve the equations (27), (39), (48) and (49) for
mn 
= 0. In some cases, the analytical solutions of these
Schrodinger-like equations can be obtained. For example in
Refs. [36,37], the analytical solutions of these equations are
computed. In our work due to the more complex structure of
the functions Wφ defined in relations (11) and (12), it is not
possible to analytically solve the Schrodinger-like equations
for massive modes. So, like the approach of Refs. [50–52],
we solve these equations numerically. As we have seen in
the Sects. 3 and 4, the effective potentials tend to zero at
infinity. This means that the potentials provide no mass gap
to separate the zero mode of graviton and fermion from the
excited KK modes; i.e., there exists a continuous spectrum of
KK modes for graviton as well as for fermion. On the other
hand, the potentials are symmetric so the wave functions
such as fLn,Rn(z) can be either even or odd. Thus, we use
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(a) (b)

Fig. 7 The profile of the potentials a VL (y) and b VR(y) for a = 1 (solid line), a = 2 (dashed line), a = 5 (dotted line), η = 1

(a) (b)

Fig. 8 The profile of a the left-handed zero mode and b the right-handed zero mode for a = 1 (solid line), a = 2 (dashed line), a = 5 (dotted
line), η = 1

the following boundary conditions to solve the Schrodinger-
like equations for fermions and similar boundary conditions
for gravitons,

fLn,Rn(0) = 0, f ′
Ln,Rn(0) = 1, f or odd K K modes,

(58)

fLn,Rn(0) = 1, f ′
Ln,Rn(0) = 0, f or even K K modes.

(59)

The results of these numerical calculations are shown in
Fig. 11a, b, in which the graviton and fermion massive modes

are plotted in DBI braneworld models in usual gravity for
m2

n < Vmax and m2
n > Vmax . As we can see, the wave func-

tion oscillates quickly for m2
n > Vmax and reduces its period

for m2
n < Vmax . In fact it can be said that for m2

n � Vmax ,
the wave functions of massive modes acquire the plane wave
structure because the effective potential in Schrodinger-like
equation represents only a small perturbation. Since we are
interested in the effect of parameter a on the massive modes,
we again solve the Schrodinger-like equations of graviton and
fermion for different values of the parameter a. In Figs. 12
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(a) (b)

Fig. 9 The profile of the potentials a VL (y) and b VR(y) for a = 1 (solid line), a = 2 (dashed line), a = 5 (dotted line), η = 1

(a) (b)

Fig. 10 The profile of a the left-handed zero mode and b the right-handed zero mode for a = 1 (solid line), a = 2 (dashed line), a = 5 (dotted
line), η = 1

and 13, the wave functions of massive modes were plotted for
DBI braneworld model in usual gravity and in f (T ) gravity,
respectively. As Fig. 12 shows, in DBI braneworld model in
usual gravity, the amplitude of the graviton massive mode as
well as the period increase with increasing the parameter a,
but in the case of fermions, the amplitude increases and the
period does not change. In Fig. 13, the effect of parameter a
on fermion and graviton massive modes in DBI braneworld
model in f (T ) gravity for fT = α0 + α1T is also investi-

gated. It can be seen that the graviton massive mode as well as
the fermion massive mode smoothly affected by the parame-
ter a such that the amplitude and frequency of wave function
increase with increasing the parameter a.

Finally, it should be noted that for a complete analysis of
the massive modes, one must include the calculation of reso-
nant modes. We know that in the Schrodinger-like equations
such as Eqs. (48) and (49), the term

∣∣ fL ,R(z)
∣∣2 is described as

the probability of finding the massive KK modes at the posi-
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(a) (b)

Fig. 11 The profile of a graviton wave function and b right-handed fermion wave function for m2
n < Vmax (solid line), m2

n > Vmax (dashed line),
in all cases we have a = 5 and η = 1 for fermion case

(a) (b)

Fig. 12 The profile of a graviton wave function for a = 3 (solid line), a = 5 (dashed line), a = 7 (dotted line) and b right-handed fermion wave
function for a = 1 (solid line), a = 2 (dashed line), a = 5 (dotted line), in fermion case we set η = 1

tion z along the extra dimension [53]. In Ref. [53], it has been
suggested that large peaks in the distribution of fL ,R(0) as a
function of m can represent the resonant states. But because
of the condition fL ,R(0) = 0 for odd parity, the authors of
Ref. [54] have extended the above idea in another way. They
proposed that the large relative probabilities of finding mas-
sive KK mode in a narrow range −zb < z < zb around the
brane location indicate resonant states. In our work, since
the effective potentials of DBI braneworld models are not

known analytically, we propose to use the relative probabil-
ity method for both cases of graviton and fermion. We defer
this numerical analysis for future works.

6 Hierarchy problem in DBI braneworld models

The hierarchy problem for braneworld models in F(R) the-
ory was studied in Ref. [37] in an interesting way. In the
framework of the fermion localization and by calculating its
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(a) (b)

Fig. 13 The profile of a graviton wave function in f (T ) gravity and b right-handed fermion wave function in f (T ) gravity for a = 1 (solid line),
a = 2 (dashed line), a = 5 (dotted line), in all cases we set α0 = 10 and α1 = 5 and in fermion case we set η = 1

mass spectrum, they showed that to solve the gauge hierar-
chy problem, the warp factor at Tev brane must acquire the
value=36. As we have seen in Sect. 2, we do not have the ana-
lytical solutions of the warp factor A(y) and the scalar field
φ(y). So we work in a different way to solve the hierarchy
problem. In this method, we first expand the kinetic energy
of DBI braneworld models (9) as follows,

K (X) = X + 1

2a2 X
2 + 1

2a4 X
3 + · · · . (60)

Now using the above expansion we can investigate the hier-
archy problem in both DBI braneworld models.

6.1 Solving the hierarchy problem for DBI braneworld
models in usual gravity

In order to solve the hierarchy problem in DBI braneworld
models in usual gravity, we put the expansion of kinetic
energy (Rel. 60) in the Eq. (7) and we have

φ′ + αφ′ 3 + O(α2) = 1

2
Wφ (61)

in which we set α = −1
2a2 . In the following, we follow the

approach outlined in Ref. [10] and to ease the investigations,
we focus our study on the cases where α takes small values
(or a takes large values). So we can ignore the sentences that
are of higher order α and write the Eq. (61) as follows,

φ′ + αφ′ 3 = 1

2
Wφ (62)

where the second term can be regarded as a perturbation to
the standard scenario. The answer to the Eq. (62) for small
values of the parameter α is as follows [10],

φ′ = 1

2
Wφ − α

8
Wφ (63)

After integrating the above equation, we have

2
∫

dφ

Wφ

+ α

2
W (φ) = y (64)

From this relation we can write

φ(y) = φ0(y − α

2
W (φ))=φ0(y)−α

2
φ′

0(y)W (φ0(y)) (65)

where φ0(y) is the solution in the standard case (for α = 0).
Using the Eq. (63), the Eq. (65) is written as follows,

φ(y) = φ0(y) − α

4
Wφ(φ0(y))W (φ0(y)) (66)

Now according to the first order formalism and using the Eq.
(6), we can write

A(y) = −1

3
W (φ0(y) − α

4
Wφ(φ0(y))W (φ0(y)))

= A0(y) + α

12
W (φ0(y))

2 (67)

where A0(y) is the warp factor solution in the standard case
(for α = 0). In order to obtain A0(y) and φ0(y) in the stan-
dard case, we use the relation φ′ = 1

2Wφ , and thus we have

W ′
0(y) = 2

(
φ′

0(y)
)2 (68)
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where W0(y) represents the superpotential function in the
standard case. It can be shown that in the standard case, the
function φ0(y) is a function of tanh(y) and inspired by the
Ref. [55], we take it in a more general form as follows,

φ0(y) = κ√
β

tanh(βy) (69)

whereβ represents the thickness regulator andκ parametrizes
the brane tension in the brane limit : β → ∞, so that λ = 4

3κ2

is the brane tension. By putting the Eq. (69) into the Eq. (68)
we have

W0(y) = 2κ2
{

tanh(βy) − 1

3
tanh3(βy)

}
+ W0c (70)

where W0c is the integration constant which can be fixed by
the initial condition A′(ymax ) = 0, in which ymax is the loca-
tion of the maximum of warp factor along the extra dimen-
sion. Now, with the help of the equation A′

0(y) = − 1
3W0(y),

we have

A′
0(y) = −2

3
κ2

{
tanh(βy) − 1

3
tanh3(βy)

}
− 1

3
W0c (71)

By integrating the above equation, we can calculate the func-
tion A0(y) and then we can get the function A(y) as follows,

A(y) = A0(y) + α

12
W0(y)

2 (72)

Here we should note that in the one-brane case the hierarchy
problem remains unsolved. Since our main purpose in this
section is to solve the hierarchy problem, we focus on the two-
brane scenario. In this scenario, the model has two branes
that are located at y = y1 and y = y2 as UV and IR branes,
respectively. So we rewrite φ0(y) (Rel. (69)) as follows [55],

φ0(y) = κ1√
β

tanh(β(y − y1)) + κ2√
β

tanh(β(y − y2)) (73)

where κ1,2 are the brane tension parameters. As before, using
the superpotential method (i.e. Eq. (68)) we can write the
superpotential W (φ0) as a function of y as follows,

W0(y) = 2κ2
1 {tanh(β(y − y1)) − 1

3
tanh3(β(y − y1))}

+2κ2
2 {tanh(β(y − y2)) − 1

3
tanh3(β(y − y2))}

+W0c (74)

Therefore, the warp factor in the standard case can be written
as,

A′
0(y) = −2

3
κ2

1 {tanh(β(y − y1)) − 1

3
tanh3(β(y − y1))}

−2

3
κ2

2 {tanh(β(y − y2)) − 1

3
tanh3(β(y − y2))}

−1

3
W0c (75)

If the branes are thin enough (or they are well separated) then
the warp factor appears exponentially between them so that
the hierarchy problem could be addressed. So we consider the
brane limit (β → ∞) and we obtain all solutions including
the warp factor in this limit as follows,

A′
0(y) = −1

3
{λ1 sgn(y − y1) + λ2 sgn(y − y2)}

+1

3
{λ1 sgn(ymax − y1) + λ2 sgn(ymax − y2)}

(76)

where λ1,2 = 4
3κ2

1,2 are the tensions of each brane located at
y = y1 (UV-brane) and y = y2 (IR-brane).

In order to see the consequences of the warp background
geometry and to study the hierarchy problem, we assume that
the Higgs field is bounded at the IR-brane so that its action
is written as follows [55],

SHiggs

= −
∫

d4x
√−gI R

{
gμν
I R∂μH

†∂νH − m2 |H |2 +λ |H |4
}

(77)

where m is the 5D Higgs mass parameter (m ∼ 5D Planck
mass) and gμν

I R is the four dimensional metric induced on the
IR brane and we have

gμν
I R = e−2A(y2)ημν (78)

where A(y2) is the value of warp factor at the IR-brane. Now,
if we use rescaling H → e−AH and the fact that

√−gI R =
e4A(y2), we arrive at

SHiggs = −
∫

d4x
{
ημν∂μH

†∂νH − μ2 |H |2 + λ |H |4
}

(79)

where μ = meA(y2) is the effective Higgs mass as mea-
sured on the IR-brane. If we assume that the 5D fundamental
mass scale is the Planck mass, then we can require the value
of warp factor at IR-brane such that the effective 4D Higgs
mass parameter is of order μ ∼ T ev. We suppose that the
maximum value of the warp factor is at the location of UV-
brane (i.e. y1 = ymax ) and so with the Eqs. (76) and (72) we
have

A(y2) = −1

3
(λ1 + λ2)y2 + α

12
(λ1 + λ2)

2 (80)
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So if we have

1

3
(λ1 + λ2)y2 − α

12
(λ1 + λ2)

2 ∼ 30 (81)

then the hierarchy problem can be solved.

6.2 Solving the hierarchy problem for DBI braneworld
models in f(T) gravity

In order to solve the hierarchy problem in DBI braneworld
model in f (T ) gravity, we need to put Eq. (60) into Eq. (20)
which results the following equation,

3

2
∂y( fT A

′) = −φ′2 − αφ′4 (82)

Now if we put the above expression equal to − 1
2∂yW (φ(y))

where W (φ(y)) is a function of the scalar field φ(y), then
we get the following equations,

3

2
∂y( fT A

′) = −1

2
∂yW (φ(y)) (83)

−φ′2 − αφ′4 = −1

2
∂yW (φ(y)) (84)

Equations (83) and (84) are simplified as follows,

fT A
′ = −1

3
W (φ) (85)

φ′ + αφ′3 = 1

2
Wφ (86)

In the simplest case for f (T ), we can consider f (T ) = T ,
so the Eq. (85) is written as follows,

A′ = −1

3
W (φ) (87)

On the other hand, according to the Eq. (84), we can conclude
that in the standard case (for α = 0) we have

W ′
0(y) = 2

(
φ′

0(y)
)2 (88)

It can be seen that the Eqs. (86), (87) and (88) are exactly
the equations that existed for solving the hierarchy problem
in the first model (previous section). So all calculations in
the second model for f (T ) = T are exactly the same as the
first model, and the hierarchy problem can be addressed in
the same way.

7 Conclusions

In this work, we have studied the localization of graviton
and fermion fields in two braneworld models with nonstan-
dard kinetic terms, which we named as (I) DBI braneworld

models in usual gravity and (II) DBI braneworld models in
f (T ) gravity. First, we consider the graviton localization in
both models and we have investigated the shapes of the mass-
independent potentials in the corresponding schrodinger-like
equations. we have found that in both models, the shapes of
the effective potentials are volcano-like, which means that
there is not mass gap to separate the scalar zero mode from
KK modes. Meanwhile, we examined the localization condi-
tions in both models and showed that according to the shapes
of the warp factors and their behavior in infinity, these con-
ditions always satisfied. We then obtained the zero mode of
graviton in both models and we showed that in the first model,
graviton is localized on the center of the brane. To do this,
in the second model, we considered three special forms for
f (T ) that were fT = exp(T/T0), fT = ∑N

n=0 αnT n and
fT = − ln( 1+T

2−T ). In each cases, we investigated the shapes
of the effective potential and we found that in all three cases,
they are volcano-like, but there are differences between them.
For fT = exp(T/T0), the effective potential always has a
negative well at the origin, and the zero mode of graviton is
localized on the center of the brane. But for fT = − ln( 1+T

2−T ),
the effective potential has two negative wells on both sides
of the origin and the zero mode is localized between the two
sub-branes. Finally, for fT = ∑N

n=0 αnT n , in some values
for the α parameters, the potential has a negative well at the
origin and the zero mode is localized on the center of the brane
but by changing the parameters, the negative well splits into
two negative wells on both sides of the origin, so the zero
mode instead of being localized on the center of brane, is
localized between the two sub-branes. We also showed that
in the case of fT = ∑N

n=0 αnT n , if we set α0 = 1 and the
other α parameters are set to very small numbers so that in
the extreme state, fT converts to f (T ) = T , then the effec-
tive potential instead of two negative wells at the sides of the
origin has a negative well at the origin and the brane split-
ting will disappear. This is an expected result because it is
consistent with Einstein’s general relativity.

After the graviton, we have investigated the fermion local-
ization in both models. In order to localize fermions on a
brane, it is necessary to introduce a Yukawa coupling between
the bulk fermion field and the background scalar fields. In
this paper, we have selected the Yukawa coupling as a func-
tion of the warp factor, i.e. F(y) = −η∂y A(y). In the first
model, we found that the zero mode of left-handed fermion
is localized on the center of the brane. We also assumed the
form of the function f (T ) in the second braneworld model as
one of the three forms mentioned above. Under this assump-
tion and by investigating the shapes of the mass-independent
potentials of KK modes in the corresponding schrodinger-
like equations, we have found that the potentials for each of
three forms of fT are volcano-like and therefore the fermion
field spectrum consists of a bound zero mode and a series of
the continuous massive modes. On the other hand, by calcu-
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lating the localization conditions in both models, we showed
that the left-chiral fermion zero mode can be localized on the
branes with F(y) = −η∂y A(y) when η > 1

2 . On the other
hand, considering that the parameter a is the main parameter
of the DBI kinetic energy term, we were interested in study-
ing the effect of this parameter on the graviton and fermion
localization. So, throughout the paper, we plotted the graphs
of the effective potentials and the zero modes for different
values of parameter a. By examining these graphs, we found
that by increasing the parameter a, the localization of gravi-
ton and fermion zero modes are strengthened. As a result,
we can say that the zero mode of graviton and fermion are
proportional to the parameter a, that is, as we get closer to the
standard case, the localization of the zero mode of graviton
and fermion are strengthened.

After thorough study of the zero mode, we performed a
qualitative study of the massive KK modes. To do this, by
numerical calculations we showed that for mn � Vmax , the
wave function oscillates quickly and can be approximated
as a plane wave. Also, numerical investigations showed that
in the first model, increasing the parameter a increases the
amplitude and period of the wave functions of graviton and
fermion. On the other hand, in the second model we consider
the function f (T ) as fT = α0 +α1T and we showed that by
increasing the parameter a, both the amplitude and frequency
of the wave functions of graviton and fermion increase. Of
course, we need to find the resonant modes to fully investi-
gate the massive modes. But we have postponed the study of
resonant modes for future works.

Finally, due to the importance of solving the hierarchy
problem in braneworld models, we study it with a pertur-
bation method. That is, we considered non-standard kinetic
energy as a perturbation to the standard scenario. Also, by
considering two branes that are located at y = y1 (UV-
brane) and y = y2 (IR-brane), it was shown that if the
warp factor value at the IR-brane is of order A(y2) =
− 1

3 (λ1 + λ2)y2 + α
12 (λ1 + λ2)

2 ∼ −30, then the hierarchy
problem will be solved in the first DBI braneworld model.
We have also shown that solving the hierarchy problem in
the second DBI braneworld model can be done in a similar
way, and in the particular case f (T ) = T , the answer exactly
corresponds to the answer of the first model.
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