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Abstract Relativistic spin states are convention dependent.
In this work we prove that the zero momentum-transfer limits
of the leading two form factors in the decomposition of the
energy–momentum tensor matrix elements are independent
of this choice. In particular, we demonstrate that these con-
straints are insensitive to whether the corresponding states are
massive or not, and that they arise purely due to the Poincaré
covariance of the states.

1 Introduction

The form factors that appear in the Lorentz covariant decom-
position of the energy–momentum tensor (EMT), the so-
called gravitational form factors (GFFs), enter into the
physics of many different phenomena, including gravita-
tional scattering [1,2] and the internal properties of hadrons,
such as mass, spin and pressure [3–15]. In recent years
there has been a significant drive to characterise the prop-
erties of these objects for target states of different spin
[6,7,10,12,13,16–20], due to their connection to generalised
parton distributions (GPDs) [21]. By constraining GPDs via
the GFFs, this could help, for example, in providing new
insights into the dynamics of quarks and gluons within com-
posite states.

In [22] it was first pointed out that whilst previous stud-
ies had correctly identified the constraints imposed on the
GFFs in the spin- 1

2 case, these analyses suffered from var-
ious technical problems, leading to incorrect physical con-
clusions. The main issues concerned the treatment of bound-
ary terms, and the non-normalisable momentum eigenstates
appearing the EMT matrix elements. These issues were sub-
sequently addressed in [23] by adopting a non-perturbative
distributional approach. This allowed the GFF constraints to
be derived in an explicit manner without having to make ref-
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erence to a particular frame. An important conclusion was
that the constraints imposed on the GFFs were not specif-
ically related to linear or angular momentum conservation,
but in fact arose due to the Poincaré transformation proper-
ties of the states. A natural question to ask is whether these
constraints continue to hold for massive states of higher spin.
Higher spin states have a greater number of potential struc-
tures appearing in the EMT matrix element decomposition,
as shown for example in [19] for the spin-1 case. Applying
the approach of [23] on a case-by-case basis would therefore
inevitably lead to increasingly more complicated calculations
as the spin increased. In [24] it was demonstrated that the GFF
decomposition can in fact be written in a spin-representation-
independent manner, and this ultimately enabled the GFF
constraints to be derived for massive states of arbitrary spin.
It turned out that the constraints observed in [23] for the
spin- 1

2 case continued to hold for states of any spin, and this
similarly followed from the Poincaré covariance of the states.

It is well-known that relativistic spin states are convention-
dependent. In all previous studies in the literature, includ-
ing [24], it was implicitly assumed that the states in the
EMT matrix elements corresponded to canonical spin states,
defined by the action of a specific boost on a rest-frame state
[22,25]. Although not explicitly stated, the form of this boost
transformation played an essential role in deriving the con-
straints in [24]. It therefore remains unclear as to whether the
GFF constraints are actually dependent upon the spin-state
convention. Moreover, in each of these analyses the states
were always assumed to be massive. For massless states sev-
eral complications are known to arise, including the non-
existence of a rest frame, and the necessity to use helicity to
define the dynamical degrees of freedom [26,27]. As with
the spin convention, this naturally leads to the question of
whether the GFF constraints are also sensitive to whether
the states in the EMT matrix elements are massive or not.
The purpose of this work is to address these two questions,
and in doing so complete the full classification of constraints
imposed on the GFFs.
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The remainder of this paper is structured as follows. In
Sect. 2 we outline the construction of arbitrary on-shell states,
and use this general formulation to define the correspond-
ing EMT matrix element decomposition. Using an analogous
approach to that developed in [24], in Sect. 3 we derive the
general form factor constraints. In Sect. 4 we summarise our
key findings.

2 Gravitational form factors for arbitrary states

The goal of this work is to build on the insights developed in
[24], where general constraints were derived on the GFFs for
massive canonical states with arbitrary spin. In particular, we
will focus on the generalisation of these results to all possible
on-shell states, with any mass, spin representation, or spin
definition. The foundation of this analysis comes from the
fact that any spin state |p, σ 〉 can be defined in the following
manner [26,27]

|p, σ 〉 = U (L(p))|k, σ 〉, (1)

where L(p) is a choice of Lorentz transformation which maps
some reference frame four-vector k to an arbitrary (on-shell)
four-momentum p

�(L(p))k = p, (2)

and thus depends implicitly on the choice of k.U is a unitary
representation of the Lorentz group, and � is the correspond-
ing four-vector representation. For massive states, σ labels
the rest frame spin projection along some axis, whereas for
massless states σ corresponds to the helicity projection of
the state along the direction of motion. Eq. (1) emphasises
that any spin state is uniquely characterised by both the refer-
ence vector k and the transformation L(p). Some important
examples include [22,25]:

• Canonical spin states States with mass m where k is the
rest frame four-vector (m, 0, 0, 0), and Lc(p) is a pure
boost along the direction p̂ = p

| p| .• Wick helicity states Massive or massless states where
LW(p) is a pure boost along the z-direction followed
by a rotation into p̂. In the massless case the reference
four-vector is defined by k = (κ, 0, 0, κ), where κ > 0.

• Light-front spin states Massive or massless states where
LLF(p) corresponds to a pure boost along the z-direction,
followed by a transverse light-front boost.

With these general state definitions one can now define the
form factor decomposition of the EMT in an analogous man-
ner to [24]. Before doing so, it is important to first consider
the general transformation properties satisfied by these states.

Firstly, for any state |p, σ 〉 of total spin s one can prove from
the definition of this state that it transforms under general
Lorentz transformations α [26,27] as:

U (α)|p, σ 〉 =
∑

σ ′
D(s)

σ ′σ (W (α, p))|�(α)p, σ ′〉, (3)

where W (α, p) defines a subgroup of reference-frame-
preserving Lorentz transformations

�(W (α, p))k = k. (4)

This subgroup ofWigner rotations W (α, p) is called the little
group; for massive states this is SU (2) (the double cover of
SO(3)) and for massless states this is the Euclidean group
E(2). The p-dependence of W (α, p) non-trivially depends
on the choice of L(p) in the following manner:

W (α, p) = L−1(�(α)p) · α · L(p). (5)

D(s)
σ ′σ is the so-called the Wigner rotation matrix, and defines

a representation of the little group due to the relation

U (W (α, p))|k, σ 〉 =
∑

σ ′
D(s)

σ ′σ (W (α, p))|k, σ ′〉. (6)

Since the generalised polarisation tensors1 (GPTs) ησ (p)
appear in the form factor decomposition of the EMT, it is
important to understand how these objects transform under
Lorentz transformations. It turns out that in order for general
fields ϕi (x) (with internal index i) to transform in a covariant
manner

U (α)ϕi (x)U
−1(α) =

∑

j

Di j (α
−1)ϕ j (�(α)x), (7)

with D the finite-dimensional Lorentz representation of the
field, the GPTs ησ (p) must satisfy analogous properties to
the spin states in Eqs. (1) and (3):

ησ (p) = D(L(p))ησ (k), (8)

D(W )ησ (k) =
∑

σ ′
D(s)

σ ′σ (W )ησ ′(k), (9)

where the internal indices are omitted here for convenience.
In this case though, the action of the Lorentz group on ησ (p)
is determined by the field representation D, as opposed to
the state representation U . By defining the GPTs to have

1 Here we coin the term generalised polarisation tensor (GPT) to
refer to the Lorentz-index-carrying coefficients ησ (p) that appear in
the canonical free field decomposition. For example, for spin- 1

2 Dirac
fields the GPT is simply the Dirac spinor uσ (p), and in the spin-1 case
the GPT corresponds to the polarisation vector εσ (p).
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the reference frame normalisation: ησ ′(k)ησ (k) = δσ ′σ , it
immediately follows that

ησ ′(k)D(W )ησ (k) = D(s)
σ ′σ (W ), (10)

which is an important relation for the calculations later in
this work.

Now that the general transformation properties of the
states have been outlined, one can proceed to define the cor-
responding EMT form factor decomposition. For the trans-
formation properties of the states |p, σ 〉 to make sense one
must implicitly assume that they are on shell. To make this
explicit one can define the states by

|p, σ ; M〉 = δ
(+)
M (p)|p, σ 〉 ≡ 2π θ(p0) δ(p2 − M2)|p, σ 〉,

(11)

where either M > 0 or M = 0, and |p, σ 〉 has unrestricted
momentum p. All of the previously derived relations in this
section continue to hold with these states. For our purposes
we are interested in the symmetric EMT matrix element. It
turns out that due to the conservation of Tμν , together with
the assumption that the current is both hermitian and invariant
under discrete (P and T) symmetries, the matrix element of
the EMT has the decomposition [1,24]:

〈p′, σ ′; M |Tμν(0)|p, σ ; M〉
= ησ ′(p′)Oμν(p′, p)ησ (p) δ

(+)
M (p′) δ

(+)
M (p), (12)

where Oμν(p′, p) is a Lorentz covariant operator which
acts on the GPTs and has the following representation-
independent form:

Oμν(p′, p) = p̄{μ p̄ν}A(q2)

+ i p̄{μ D̃(Sν}ρ)qρ G(q2) + · · · (13)

The · · · represent contributions with an explicitly higher-
order dependence on the four-momentum transfer q =
p′ − p. The index symmetrisation is defined: a{μbν} =
aμbν + aνbμ, and p̄ = 1

2 (p′ + p). EMT conservation
demands that each term in Eq. (13) vanishes when contracted
with q, hermiticity requires invariance under complex conju-
gation and q → −q, and the discrete symmetries imply that
the second term must involve both p̄ and q.

Sμν in Eq. (13) are the abstract Lorentz group generators,
and D̃ is the corresponding Lie algebra representation of
D introduced in Eq. (7), defined via the exponential map:
D (exp(X)) = exp

(
D̃(X)

)
for any Lorentz generator X .

As will be demonstrated in the remainder of this work, the
subtle differences between the various Lorentz group and
algebra representations play an important role in the analysis
of the GFF constraints. In the next section we will perform

an analogous procedure to [24], using the matrix elements of
both the non-covariant and covariant Lorentz generators to
derive constraints on A(q2) and G(q2), but this time using
the state-independent quantities defined in this section.

3 Lorentz generator matrix elements for arbitrary
states

3.1 Angular momentum matrix element

Following the same logic as in [24], the decomposition in
Eq. (12) implies that the angular momentum matrix element
has the form.2

〈p′, σ ′; M |Ũ (J i )|p, σ ; M〉 = (2π)4δ
(+)
M ( p̄)J i

σ ′σ ( p̄, q),

(14)

with the reduced matrix element

J i
σ ′σ ( p̄, q) = −iεi jk p̄k

[
δσ ′σ ∂ jδ4(q)

−∂ j [ησ ′(p′)ησ (p)
]
q=0 δ4(q)

]
A(q2)

+
[
ησ ′( p̄)D̃(J i )ησ ( p̄)

]
δ4(q)G(q2). (15)

Here we make explicit that the abstract rotation generator
J i acts on the states via the Lie algebra representation Ũ
associated withU , and on the GPTs via the representation D̃.
Using Eq. (8) one can now write the reduced matrix element
in a manner that explicitly depends on the choice of L(p).
Firstly, one has that

ησ ′(p′)ησ (p)

= ησ ′(k)D−1(L(p′))D(L(p))ησ (k)

= ησ ′(k)D
(
L−1(p′)L(p)

)
ησ (k)

= ησ ′(k)D
(
L−1( p̄ + 1

2q)L( p̄ − 1
2q)

)
ησ (k), (16)

where we have used the fact that D is a Lie group homo-
morphism and switched to the coordinates ( p̄, q). In order to
further simplify Eq. (15) one needs to evaluate the following
expression:

∂

∂q j

∣∣∣∣
q=0

D
(
L−1( p̄ + 1

2q)L( p̄ − 1
2q)

)
. (17)

2 See [24] for more details about the specific calculation, including the
definition of the rotation generator J i .
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To do so one can make use of the general representation
theory identity3:

d

dt

∣∣∣∣
t=0

φ ( f (t)) = φ̃

(
d f

dt

∣∣∣∣
t=0

)
, (18)

where f is a Lie group-valued function with f (0) =
1, and φ is a Lie group representation which (uniquely)
defines a corresponding Lie algebra representation φ̃. Since
L−1( p̄)L( p̄) = 1, one can apply the multi-dimensional gen-
eralisation of Eqs. (18)–(17). Doing so, one obtains

∂

∂q j

∣∣∣∣
q=0

D
(
L−1( p̄ + 1

2q)L( p̄ − 1
2q)

)

= D̃

(
1

2

∂L−1( p̄)

∂ p̄ j
L( p̄) − 1

2
L−1( p̄)

∂L( p̄)

∂ p̄ j

)

= D̃

(
∂L−1( p̄)

∂ p̄ j
L( p̄)

)
, (19)

where the final equality follows from the fact that: ∂L−1( p̄)
∂ p̄ j

L( p̄) = −L−1( p̄) ∂L( p̄)
∂ p̄ j

. By also making use of the represen-

tation theory identity: D(L−1)D̃(J i )D(L) = D̃
(
L−1 J i L

)
,

the reduced matrix element can finally be written

J i
σ ′σ ( p̄, q)

= −iεi jk p̄kδσ ′σ ∂ jδ4(q)A(q2)

+ iεi jk p̄k ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄ j
L( p̄)

)
ησ (k) δ4(q)A(q2)

+ ησ ′(k)D̃
(
L−1( p̄)J i L( p̄)

)
ησ (k) δ4(q)G(q2), (20)

where the dependence on the state definition L is now
explicit.

To derive constraints on the form factors one can use the
transformation properties of the states under a pure rotation
about the i axis (α = Ri = e−iβ J i ) to write an alternative
representation of the reduced matrix element J i

σ ′σ . In this
notation, one finds that

J i
σ ′σ ( p̄, q) = −iεi jk p̄kδσ ′σ ∂ jδ4(q)

+ i δ4(q)
d

dβ

∣∣∣∣
β=0

D(s)
σ ′σ (W (Ri , p̄)), (21)

where the two terms arise due to the Lorentz transformation
dependence of both the Wigner rotation matrix and the state
in Eq. (3). To compare this with Eq. (20) one needs to rewrite

3 This relation follows from the fact that φ̃ is the differential of the map
φ at the identity [28].

this in terms of the GPTs ησ (p). For this purpose one can
apply Eq. (10), which gives

J i
σ ′σ ( p̄, q) = −iεi jk p̄kδσ ′σ ∂ jδ4(q)

+ i δ4(q)
d

dβ

∣∣∣∣
β=0

ησ ′(k)D(W (Ri , p̄))ησ (k).

(22)

In this case the corresponding Wigner rotation has the form

W (Ri , p̄) = L−1 (� (Ri ) p̄) e
−iβ J i L( p̄). (23)

Since W (β = 0) = 1, one can similarly apply Eq. (18) in
order to simplify the second term in Eq. (22). Applying the
chain rule one finds that

i
d

dβ

∣∣∣∣
β=0

W (Ri , p̄) =
[
�̃(J i ) p̄

]μ ∂L−1( p̄)

∂ p̄μ
L( p̄)

+ L−1( p̄)J i L( p̄), (24)

where �̃ is the Lie algebra representation associated with
the four-vector representation �. Since

[
�̃(J i ) p̄

]μ =
−igμ

l ε
ilk p̄k and D̃ is a linear map, one can write

i
d

dβ

∣∣∣∣
β=0

D(W (Ri , p̄))

= D̃

(
iεi jk p̄k

∂L−1( p̄)

∂ p̄ j
L( p̄) + L−1( p̄)J i L( p̄)

)

= iεi jk p̄k D̃

(
∂L−1( p̄)

∂ p̄ j
L( p̄)

)
+ D̃

(
L−1( p̄)J i L( p̄)

)
.

(25)

Finally, combining Eqs. (22) and (25) one obtains

J i
σ ′σ ( p̄, q)

= −iεi jk p̄kδσ ′σ ∂ jδ4(q)

+ iεi jk p̄k ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄ j
L( p̄)

)
ησ (k) δ4(q)

+ ησ ′(k)D̃
(
L−1( p̄)J i L( p̄)

)
ησ (k) δ4(q). (26)

Comparing this representation with Eq. (20) it immediately
follows that the form factors must satisfy the following con-
straints

A(q2) δ4(q) = δ4(q), (27)

A(q2) ∂ jδ4(q) = ∂ jδ4(q), (28)

G(q2) δ4(q) = δ4(q), (29)
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which are identical to those derived in [24] for massive canon-
ical states. By using the most general representation of on-
shell relativistic spin states we have proven that A(0) and
G(0) are completely independent of the characteristics of
the states which define them. This result emphasises that the
Poincaré transformation properties of the states alone are
sufficient to constrain that: A(0) = G(0) = 1. Among other
things, this implies that Ji’s sum rule [5] is completely inde-
pendent of the states used in the definition of the correspond-
ing GPDs, and that the vanishing of the anomalous gravito-
magnetic moment [29] is not only true for arbitrary spin, but
is also a mass-independent condition. In other words, these
results demonstrate that the implications for massive canon-
ical states derived in [24] are actually a specific realisation
of the fact that the GFF constraints are state universal. In
contrast to [24], these constraints were derived without ever
having to make reference to the explicit form of the transfor-
mation L(p). This circumvents the significant complications
required in taking the derivative of L(p), as well as having
to determine the angular momentum matrix element in dif-
ferent spin conventions, which in the massless Wick helicity
case is known to be particularly complicated [22].

3.2 Boost matrix element

Similarly to the angular momentum matrix element, in the
boost case one can write

〈p′, σ ′; M |Ũ (Ki )|p, σ ; M〉 = (2π)4δ
(+)
M ( p̄)Ki

σ ′σ ( p̄, q),

(30)

with the reduced matrix element4 given by

Ki
σ ′σ ( p̄, q)

= i
[
δσ ′σ ( p̄0∂ i − p̄i∂0)δ4(q)

−( p̄0∂ i − p̄i∂0)
[
ησ ′(p′)ησ (p)

]
q=0 δ4(q)

]
A(q2)

+
[
ησ ′( p̄)D̃(Ki )ησ ( p̄)

]
δ4(q)G(q2). (31)

Analogously to the angular momentum case this can be
rewritten as

Ki
σ ′σ ( p̄, q)

= iδσ ′σ ( p̄0∂ i − p̄i∂0)δ4(q) A(q2)

− i p̄0 ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄i
L( p̄)

)
ησ (k) δ4(q) A(q2)

4 In [24] the term involving the temporal derivative of the GPT product
in Eq. (31) was not written because it explicitly vanishes for massive
canonical spin states (L = Lc). However, for general spin-states L(p)
this term need not vanish.

+ i p̄i ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄0
L( p̄)

)
ησ (k) δ4(q) A(q2)

+ ησ ′(k)D̃
(
L−1( p̄)Ki L( p̄)

)
ησ (k) δ4(q)G(q2). (32)

This time one must instead use the transformation proper-
ties of the states under a pure boost along the i-direction
(α = Bi = eiξK

i
) to write the reduced matrix element in an

alternative representation. After applying Eq. (10) one finds
that

Ki
σ ′σ ( p̄, q) = iδσ ′σ ( p̄0∂ i − p̄i∂0)δ4(q)

− i δ4(q)
d

dξ

∣∣∣∣
ξ=0

ησ ′(k)D(W (Bi , p̄))ησ (k).

(33)

The next step is to calculate the derivative of the Wigner
rotation for Bi , which gives

−i
d

dξ

∣∣∣∣
ξ=0

W (Bi , p̄) =
[
�̃(Ki ) p̄

]μ ∂L−1( p̄)

∂ p̄μ
L( p̄)

+ L−1( p̄)Ki L( p̄). (34)

By using the relation
[
�̃(Ki ) p̄

]μ = igμ0 p̄i − igμi p̄0

together with Eq. (18) and the linearity of D̃, the reduced
matrix element can finally be written in the form

Ki
σ ′σ ( p̄, q)

= iδσ ′σ ( p̄0∂ i − p̄i∂0)δ4(q)

− i p̄0 ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄i
L( p̄)

)
ησ (k) δ4(q)

+ i p̄i ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄0
L( p̄)

)
ησ (k) δ4(q) A(q2)

+ ησ ′(k)D̃
(
L−1( p̄)Ki L( p̄)

)
ησ (k) δ4(q). (35)

Comparing Eqs. (32) and (35) one is then immediately led
to identical constraints to those in Eqs. (27)–(29), together
with the condition: A(q2)∂0δ4(q) = ∂0δ4(q).

3.3 Pauli–Lubanski matrix element

As opposed to J i and Ki , the operator form of the Pauli–
Lubanski operator Wμ depends on whether the states are
massive or massless. Using the form factor decomposition
formassive states, the reduced matrix element of Wμ is given
by

Wμ

σ ′σ ( p̄, q)

= ησ ′(k)D̃
(
L−1( p̄)WμL( p̄)

)
ησ (k) δ4(q)G(q2), (36)
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where5 Wμ = 1
2ε

μ
ρσλS

ρσ p̄λ. Since Wμ depends on both
the angular momentum and boost operators, one can use the
state-independent relations in Eqs. (26) and (35) to derive a
general representation for the matrix elements of Wμ. For
μ = 0

W0
σ ′σ ( p̄, q)

= p̄iJ i
σ ′σ ( p̄, q)

= p̄i
[
−iεi jk p̄kδσ ′σ ∂ jδ4(q)

+iεi jk p̄k ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄ j
L( p̄)

)
ησ (k) δ4(q)

]

+ p̄i ησ ′(k)D̃
(
L−1( p̄)J i L( p̄)

)
ησ (k) δ4(q)

= ησ ′(k)D̃
(
L−1( p̄) p̄i J i L( p̄)

)
ησ (k) δ4(q), (37)

where the first term vanishes due to the contraction with
εi jk p̄k . For μ = i one finds

W i
σ ′σ ( p̄, q)

= p̄0J i
σ ′σ ( p̄, q) + εi jk p̄kK j

σ ′σ ( p̄, q)

= p̄0
[
−iεi jk p̄kδσ ′σ ∂ jδ4(q)

+iεi jk p̄k ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄ j
L( p̄)

)
ησ (k) δ4(q)

]

+ ησ ′(k)D̃
(
L−1( p̄) p̄0 J i L( p̄)

)
ησ (k) δ4(q)

+ εi jk p̄k
[
iδσ ′σ ( p̄0∂ j − p̄ j∂0)δ4(q)

− i p̄0 ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄ j
L( p̄)

)
ησ (k) δ4(q)

+ i p̄ j ησ ′(k)D̃

(
∂L−1( p̄)

∂ p̄0
L( p̄)

)
ησ (k) δ4(q)

]

+ ησ ′(k)D̃
(
L−1( p̄)εi jk p̄k K j L( p̄)

)
ησ (k) δ4(q)

= ησ ′(k)D̃
(
L−1( p̄)

[
p̄0 J i + εi jk p̄k K j

]
L( p̄)

)

ησ (k) δ4(q). (38)

Taken together, Eqs. (37) and (38) therefore imply the general
representation

Wμ

σ ′σ ( p̄, q) = ησ ′(k) D̃
(
L−1( p̄)WμL( p̄)

)
ησ (k) δ4(q).

(39)

Comparing this with Eq. (36) one is then led to the constraint

G(q2) δ4(q) = δ4(q). (40)

5 Here we use the convention ε0123 = +1.

This calculation generalises the findings in [24], proving that
the covariantised operatorWμ constraining onlyG(q2) is not
just a characteristic of massive canonical spin states, but in
fact occurs for any choice of massive spin state.

For massless states one has instead that the Pauli–
Lubanski operator is proportional to the energy–momentum
vector

Wμ = HPμ = P · J
|P | Pμ (41)

where H is the helicity operator. Inserting this between mass-
less states, and comparing it with the corresponding form
factor expression, one obtains Eq. (40), analogously to the
W 0 component in the massive case.

3.4 Covariant boost matrix element

To complete the analysis in this section we consider the
matrix elements of the covariant boost operator Bμ, defined
by

Bμ = 1

2

[
SνμPν + PνS

νμ
]
. (42)

It follows from this definition that the temporal and spatial
components of the reduced matrix elements have the form

B0
σ ′σ ( p̄, q) = p̄i Ki

σ ′σ ( p̄, q), (43)

Bi
σ ′σ ( p̄, q) = p̄0 Ki

σ ′σ ( p̄, q) + εi jk p̄ j J k
σ ′σ ( p̄, q). (44)

After substituting in the form factor expressions for the
reduced matrix elements in Eqs. (20) and (32) one finds that
the coefficient of G(q2) has the following general form

ησ ′(k) D̃
(
L−1( p̄)BμL( p̄)

)
ησ (k). (45)

For massive states the covariant boost Bμ is related to the
rest frame boost Bμ

k ≡ (0, Ki ) by

Bμ
k = L−1( p̄)BμL( p̄). (46)

The coefficient of G(q2) therefore reduces to: ησ ′(k) D̃
(Bμ(k)) ησ (k), which vanishes,6 and hence the covariant
boost matrix element only results in constraints on A(q2).
Taken together with the results for Wμ, this proves that the
diagonalisation of constraints observed for canonical spin
states in [24] is actually independent of the (massive) spin
state convention. For massless states though, the coefficient
in Eq. (45) will generally not vanish, and so an analogous
diagonalisation does not occur.

6 This occurs because massive physical states have a vanishing intrinsic
energy dipole moment [30].
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4 Conclusions

Although the constraints imposed on the gravitational form
factors have been explored for massive canonical spin states
of lower spin, and more recently for arbitrary spin [24], it
remained an open question as to whether these constraints
depended on the choice of spin state definition, or if the states
were massive or not. In this work we definitively answer
this question, proving that the zero-momentum transfer con-
straint A(0) = G(0) = 1 of the leading two form factors is
independent of both of these conditions, and arises purely due
to the Poincaré covariance of the states. Besides the relevance
for hadronic physics, the universality of this constraint could
also potentially have important implications for the under-
standing of gravitational scattering amplitudes.
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properties of the nucleon. Eur. Phys. J. C 79, 89 (2019). https://doi.
org/10.1140/epjc/s10052-019-6572-3. arXiv:1810.09837

14. V.D. Burkert, L. Elouadrhiri, F.X. Girod, The pressure distribution
inside the proton. Nature 557, 396 (2018). https://doi.org/10.1038/
s41586-018-0060-z

15. K. Kumeric̆ki, Measurability of pressure inside the proton. Nature
570, E1 (2019). https://doi.org/10.1038/s41586-019-1211-6

16. S. Kumano, Q.-T. Song, O.V. Teryaev, Hadron tomography by gen-
eralized distribution amplitudes in pion-pair production process
γ ∗γ → π0π0 and gravitational form factors for pion. Phys. Rev. D
97, 014020 (2018). https://doi.org/10.1103/PhysRevD.97.014020.
arXiv:1711.08088

17. Z. Abidin, C.E. Carlson, Gravitational form factors of vector
mesons in an AdS/QCD model. Phys. Rev. D 77, 095007 (2008).
https://doi.org/10.1103/PhysRevD.77.095007. arXiv:0801.3839

18. S.K. Taneja, K. Kathuria, S. Liuti, G.R. Goldstein, Angular momen-
tum sum rule for spin one hadronic systems. Phys. Rev. D
86, 036008 (2012). https://doi.org/10.1103/PhysRevD.86.036008.
arXiv:1101.0581

19. W. Cosyn, S. Cotogno, A. Freese, C. Lorcé, The energy-
momentum tensor of spin-1 hadrons: formalism. Eur. Phys. J. C
79, 476 (2019). https://doi.org/10.1140/epjc/s10052-019-6981-3.
arXiv:1903.00408

20. M.V. Polyakov, B.-D. Sun, Gravitational form factors of a spin one
particle. arXiv:1903.02738

21. M. Diehl, Generalized parton distributions. Phys. Rep. 388, 41
(2003). https://doi.org/10.1016/j.physrep.2003.08.002. https://doi.
org/10.3204/DESY-THESIS-2003-018. arXiv:hep-ph/0307382

22. B.L.G. Bakker, E. Leader, T.L. Trueman, A critique of the angu-
lar momentum sum rules and a new angular momentum sum
rule. Phys. Rev. D 70, 114001 (2004). https://doi.org/10.1103/
PhysRevD.70.114001. arXiv:hep-ph/0406139

23. P. Lowdon, K.Y.-J. Chiu, S.J. Brodsky, Rigorous constraints on
the matrix elements of the energy–momentum tensor. Phys. Lett.
B 774, 1 (2017). https://doi.org/10.1016/j.physletb.2017.09.050.
arXiv:1707.06313

24. S. Cotogno, C. Lorcé, P. Lowdon, Poincaré constraints on the grav-
itational form factors for massive states with arbitrary spin. Phys.
Rev. D 100, 045003 (2019). https://doi.org/10.1103/PhysRevD.
100.045003. arXiv:1905.11969

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0003-4916(75)90302-4
https://doi.org/10.1016/0003-4916(75)90302-4
https://doi.org/10.1016/S0370-2693(02),01246-7
https://doi.org/10.1016/S0370-2693(02),01246-7
https://doi.org/10.1016/j.physletb.2005.03.018
https://doi.org/10.1016/j.physletb.2005.03.018
http://arxiv.org/abs/hep-th/0112237
https://doi.org/10.1103/PhysRevLett.74.1071
https://doi.org/10.1103/PhysRevLett.74.1071
http://arxiv.org/abs/hep-ph/9410274
https://doi.org/10.1103/PhysRevD.52.271
https://doi.org/10.1103/PhysRevD.52.271
http://arxiv.org/abs/hep-ph/9502213
https://doi.org/10.1103/PhysRevLett.78.610
https://doi.org/10.1103/PhysRevLett.78.610
http://arxiv.org/abs/hep-ph/9603249
https://doi.org/10.1016/S0370-2693(03)00036-4
https://doi.org/10.1016/S0370-2693(03)00036-4
http://arxiv.org/abs/hep-ph/0210165
https://doi.org/10.1103/PhysRevD.75.094021
http://arxiv.org/abs/hep-ph/0702030
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1016/j.physrep.2014.02.010
http://arxiv.org/abs/1309.4235
https://doi.org/10.1007/s00601-016-1168-z
https://doi.org/10.1007/s00601-016-1168-z
http://arxiv.org/abs/1606.03909
https://doi.org/10.1016/j.physletb.2017.11.018
https://doi.org/10.1016/j.physletb.2017.11.018
http://arxiv.org/abs/1704.08557
https://doi.org/10.1140/epjc/s10052-018-5561-2
http://arxiv.org/abs/1706.05853
https://doi.org/10.1142/S0217751X18300259
http://arxiv.org/abs/1805.06596
https://doi.org/10.1140/epjc/s10052-019-6572-3
https://doi.org/10.1140/epjc/s10052-019-6572-3
http://arxiv.org/abs/1810.09837
https://doi.org/10.1038/s41586-018-0060-z
https://doi.org/10.1038/s41586-018-0060-z
https://doi.org/10.1038/s41586-019-1211-6
https://doi.org/10.1103/PhysRevD.97.014020
http://arxiv.org/abs/1711.08088
https://doi.org/10.1103/PhysRevD.77.095007
http://arxiv.org/abs/0801.3839
https://doi.org/10.1103/PhysRevD.86.036008
http://arxiv.org/abs/1101.0581
https://doi.org/10.1140/epjc/s10052-019-6981-3
http://arxiv.org/abs/1903.00408
http://arxiv.org/abs/1903.02738
https://doi.org/10.1016/j.physrep.2003.08.002
https://doi.org/10.3204/DESY-THESIS-2003-018
https://doi.org/10.3204/DESY-THESIS-2003-018
http://arxiv.org/abs/hep-ph/0307382
https://doi.org/10.1103/PhysRevD.70.114001
https://doi.org/10.1103/PhysRevD.70.114001
http://arxiv.org/abs/hep-ph/0406139
https://doi.org/10.1016/j.physletb.2017.09.050
http://arxiv.org/abs/1707.06313
https://doi.org/10.1103/PhysRevD.100.045003
https://doi.org/10.1103/PhysRevD.100.045003
http://arxiv.org/abs/1905.11969


207 Page 8 of 8 Eur. Phys. J. C (2020) 80 :207

25. W.N. Polyzou, W. Glöckle, H. Witala, Spin in relativistic quantum
theory. Few Body Syst. 54, 1667 (2013). https://doi.org/10.1007/
s00601-012-0526-8. arXiv:1208.5840

26. R. Haag, Local quantum physics: Fields, particles, algebras.
(1992)

27. S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations
(Cambridge University Press, Cambridge, 2005)

28. F.W. Warner, Foundations of differentiable manifolds and Lie
groups (Springer, Berlin, 1983)

29. O.V. Teryaev, Spin structure of nucleon and equivalence principle.
arxiv:hep-ph/9904376

30. C. Lorcé, The relativistic center of mass in field theory with
spin. Eur. Phys. J. C 78, 785 (2018). https://doi.org/10.1140/epjc/
s10052-018-6249-3. arXiv:1805.05284

123

https://doi.org/10.1007/s00601-012-0526-8
https://doi.org/10.1007/s00601-012-0526-8
http://arxiv.org/abs/1208.5840
http://arxiv.org/abs/hep-ph/9904376
https://doi.org/10.1140/epjc/s10052-018-6249-3
https://doi.org/10.1140/epjc/s10052-018-6249-3
http://arxiv.org/abs/1805.05284

	Universality of the Poincaré gravitational form factor constraints
	Abstract 
	1 Introduction
	2 Gravitational form factors for arbitrary states
	3 Lorentz generator matrix elements for arbitrary states
	3.1 Angular momentum matrix element
	3.2 Boost matrix element
	3.3 Pauli–Lubanski matrix element
	3.4 Covariant boost matrix element

	4 Conclusions
	Acknowledgements
	References




