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Abstract In this paper, we have studied the effect of Born–
Infeld electrodynamics in holographic p-wave superconduc-
tors with massive vector condensation. We have analysed this
model in the probe limit using a variational method known
as the Stürm–Liouville eigenvalue approach. For this p-wave
holographic superconductor model, we have calculated the
critical temperature Tc as well as the value of the condensa-
tion operator for two different choices of m2. We have also
pointed out the similarities and dissimilarities between this
model for m2 = 0 and p-wave holographic superconductor
model constructed out of Einstein–Yang–Mills theory. We
have then computed the conductivity of these holographic
superconductor models using a self-consistent approach and
have shown that the DC conductivity diverges.

1 Introduction

In the last two decades gauge/gravity duality has emerged as
a powerful tool to study various condensed matter systems
which are strongly correlated [1,2]. This apparent connection
between a gravity theory and a gauge theory was expected for
many years in the form of holographic principle and has been
precisely conjectured for a particular gauge theory relating
classical gravity theory in anti de-Sitter (AdS) spacetime [1].
Although the conjecture was about a duality between a grav-
ity theory in AdS spacetime and a conformal field theory in
one lower dimension spacetime, that is, at the boundary of
AdS spacetime where gravity theory lives, later researches
conceded to a more general form of the strong/weak duality
between asymptotically AdS spacetime and nearly confor-
mal field theory at the boundary of AdS. Later on, this dual-
ity has been utilised to study various physical systems from
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both sides. However, it turns out that there are many strongly
correlated systems in condensed matter physics which are
difficult to deal with traditional field theoretic methods. For-
tunately, gauge/gravity duality provides us with an oppor-
tunity to study such difficult systems via their gravity dual
models in one higher dimensional spacetime. These gravita-
tional duals are far easy to deal with as we can study them in
the classical general relativistic senario.

Inspired by the simple model of Abelian symmetry break-
ing around a charged black hole in AdS spacetime proposed
in [3], a gravity dual model that mimicked the properties of
a s-wave superconductor was developed in [4]. Since then
so many investigations have been around investigating such
gravity duals mimicking various types of superconductors in
numerous physical situations [5–15]. One particular interest-
ing study in this regard has been to see the effect of nonlinear
electrodynamics in these gravity duals. There are many ways
to incorporate such nonlinearity in these models but the inclu-
sion of the Born–Infeld (BI) electrodynamics [16–19] is of
profound interest as it is the only nonlinear theory that has
duality symmetry just like ordinary Maxwell electrodynam-
ics. Several studies have been carried out incorporating the
effect of BI electrodynamics in holographic superconductors
[20–28]. Another motivation to consider the BI electrody-
namics comes straight from the string theory where the BI
electrodynamics describes the low energy behaviour of D
branes [23].

There is another important gravity model with a charged
vector field in the bulk as the vector order parameter that cor-
responds to the holographic p-wave superconductor. Such a
model for holographic p-wave superconductor using SU (2)

Yang-Mills field in the bulk was first provided in [5]. In
this model a gauge boson generated by one SU (2) gener-
ator works as a dual to the vector order parameter. Unlike
in a s-wave holographic superconductor, here the onset of
the condensate spontaneously breaks not only theU (1) sym-
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metry but also SO(2) rotational symmetry in the x-y plane
[13].

Recently a new gravity dual model has been proposed
for the p-wave superconductor using a complex vector field
non-minimally coupled to the Maxwell field [14]. A detailed
analysis of the phase diagram for this model was also pro-
vided in [14]. A similar phase diagram analysis has been
done for a slightly modified version of this model where
the effect of non-linearity was incorporated in the Maxwell
field via Born–Infeld parameter [25]. However, explicit ana-
lytic calculations for the condensation and conductivity in
this model has not been carried out in the literature. In this
paper we have analytically obtained the critical temperature,
the condensation operator value and the conductivity for the
holographic p-wave superconductor model proposed in [14]
in the presence of Born–Infeld electrodynamics.

We have organised this paper in the following manner. In
Sect. 2, we have developed the model and have found the
equations of motion for the matter field and the gauge field
with appropriate ansatz. Then, in Sect. 3, we have used the
Stürm–Liouville method to find the critical temperature and
the condensation operator. We have calculated the conductiv-
ity for this model in Sect. 4. Finally, we have summarised our
findings and draw relevant conclusions in Sect. 5. We have
performed all our computations in the probe limit, where we
can ignore the backreaction of the matter field in the metric.

2 Set up for p-wave holographic superconductors

Holographic superconductors with p-wave gap are based on
the solutions to field equations of Einstein–Yang–Mills the-
ory with a cosmological constant. The action for this model
reads

S = 1

2G2

∫
d4x

(
R − 1

4
(Fa

μν)
2 + 6

L2

)
(1)

where Fa
μν is the field strength tensor of an SU (2) gauge

field.
We work with the metric of a planar black hole in AdS3+1

spacetime arising from the solution of Einstein gravity

ds2 = − f (r)dt2 + r2(dx2 + dy2) + dr2

f (r)
(2)

where

f (r) =
(
r2 − r3

0

r

)

with r0 being the event horizon of the black hole, and the
AdS radius has been set to unity. The Hawking temperature
associated with the above black hole geometry is given by

T = 3r0

4π
. (3)

We now write down the model for holographic p-wave
superconductor with the Lagrangian density consisting of
a Maxwell field Aμ and a massive complex vector field ρμ.
The action for this model reads

S = 1

16πG

∫
d4x

√−g

(
R − 2� + L

)
(4)

where

L = 1

b

(
1 −

√
1 + b

2
FμνFμν

)
− 1

2
ρ†

μνρ
μν − m2ρ†

μρμ

Fμν ≡ ∂[μAν], Dμ ≡ (∂μ − i Aμ), ρμν ≡ Dμρν − Dνρμ.

(5)

The Lagrangian densityL consists of Born–Infeld electrody-
namics and b is the Born–Infeld parameter. Since the metric
gμν depends only on r , we take the following ansatz for the
matter field and the gauge field respectively

ρμ = δxμ ρ(r), Aμ = δtμ�(r).

Now varying the action S in Eq. (4), we get the equations of
motion for the matter field ρ(r) and the gauge field �(r)

ρ′′ + f ′

f
ρ′ +

(
�2

f 2 − m2

f

)
ρ = 0 (6)

�′′ + 2

r
�′(1 − b�′2) − 2�ρ2

r2 f
(1 − b�′2)3/2 = 0 (7)

where prime denotes the derivative with respect to r .

We now make the change of coordinate, z = r0

r
, such that

the horizon is at z = 1 while the AdS boundary is at z = 0. In
this coordinate, the field Eqs. (6, 7) take the following form

ρ′′ − 3z2

(1 − z3)
ρ′ + 1

z2(1 − z3)

(
z2�2

r2
0 (1 − z3)

− m2
)

ρ = 0

(8)

�′′ + 2bz3

r2
0

�′3 − 2�ρ2

r2
0 (1 − z3)

(
1 − bz4

r2
0

�′2
)3/2

= 0 (9)

where prime denotes derivative with respect to the new coor-
dinate z.

From the gauge/gravity duality dictionary, the behaviour
of �(z) and ρ(z) near the AdS boundary are known to be of
the following form

�(z) = μ − ρ̃

r0
z (10)

ρ(z) � ρ+
r	+

0

z	+ + ρ−
r	−

0

z	− (11)

where μ is the chemical potential and ρ̃ is the charge density.
	± are roots of the equation

	 = 1

2
(1 ±

√
1 + 4m2) . (12)
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Here 	 is known as the conformal dimension and it depends
on m2 through the above relation.1 It is apparent from Eq.
(11) that 	 must be real and positive. With this condition
on 	, the choice of m2 is also restricted. To fulfil the above
mentioned condition for 	, m2 needs to satisfy the following
lower bound.

m2 ≥ −1

4
. (13)

Equation (13) is famously known as the Breitenlohner–
Freedman (BF) bound [29]. The BF bound implies that the
vector field, even if it has negative mass, is stable in AdS
spacetime as long as Eq. (13) is satisfied.

With this set up in hand, we shall proceed to carry out the
Stürm–Liouville analysis in the next section.

3 Stürm–Liouville analysis

3.1 Critical temperature

In this section, we shall apply the Stürm–Liouville eigenvalue
method to find the critical temperature and the value of the
condensation operator. We first recall that the matter field
ρ(z) vanishes at the critical temperature Tc. Hence, at T =
Tc, Eq. (9) simplifies to the following form

�′′ + 2bz3

r2
0

�′3 = 0. (14)

The analytic solution of Eq. (14) up to first order in the Born–
Infeld parameter b is given by [21]

�(z) = λr0(1 − z)

[
1 − b(λ2|b=0)

10
ζ(z)

]
(15)

where ζ(z) = (1 + z + z2 + z3 + z4) and λ = ρ̃

r2
0c

, r0c being

the horizon radius at the critical temperature. From Eq. (3),
we find the expression for the critical temperature to be

Tc = 3

4π

√
ρ̃

λ
. (16)

Now using Eq. (15) in Eq. (8), we get the following field
equation for ρ

ρ′′ − 3z2

(1 − z3)
ρ′ + λ2

(1 + z + z2)2

(
1 − b(λ2|b=0)

5
ζ(z)

)
ρ

− m2

z2(1 − z3)
ρ = 0. (17)

1 This relation can be obtained using Eq. (11) in Eq. (8).

To proceed further, we consider the following non-trivial
form of the field ρ(z)

ρ(z) = 〈O	〉√
2r	

0

z	F(z) (18)

with the conditions F(0) = 1 and F ′(0) = 0. These bound-
ary conditions on F(z) are consistent with the behaviour of
ρ(z) near the AdS boundary given by Eq. (11). Substituting
the form of the field ρ(z) given in Eq. (18) in Eq. (17), we
obtain

(z2	(1 − z3)F ′)′ − (3	z2	+1 + m2z2	−2

−	(	 − 1)z2	−2(1 − z3))F

+λ2z2	(1 − z)

(1 + z + z2)

(
1 − b(λ2|b=0)

5
ζ(z)

)
F = 0 . (19)

Comparing Eq. (19) with the standard form of the Stürm–
Liouville eigenvalue equation given by

d(p(z)F ′)
dz

− q(z)F + λ2r(z)F = 0 (20)

we can identify the form of the functions p(z), q(z) and r(z)
to be

p(z) = z2	(1 − z3)

q(z) = 3	z2	+1 + m2z2	−2 − 	(	 − 1)z2	−2(1 − z3)

r(z) = z2	(1 − z)

(1 + z + z2)

(
1 − b(λ2|b=0)

5
ζ(z)

)
. (21)

We can now find the eigenvalue λ2 in Eq. (19) from the
following relation

λ2 =

∫ 1

0
dz

(
p(z)F ′2 + q(z)F2)

∫ 1

0
dzr(z)F2

. (22)

To estimateλ2, we choose a trial function for F(z) as Fα(z) =
(1 − αz2). The eigenvalue λ2 is determined by minimizing
Eq. (22) with respect to α. The value of λαmin.

can then be
used in Eq. (16) to determine the critical temperature of the
p-wave holographic superconductor from the equation

Tc = 3

4π

√
ρ̃

λαmin.

. (23)

To move ahead, we select some particular conformal dimen-
sion via Eq. (12). We would focus on the following two
choices of m2 and its corresponding conformal dimensions
	 = (	+, 	−).

m2 = 0 → 	 = (1, 0) (24)

m2 = − 3

16
→ 	 =

(
3

4
,

1

4

)
. (25)
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We know that near the AdS boundary ρ(z) takes the form
given by Eq. (11). In order to have spontaneous symmetry

breaking, we set the source term ρ− = 0 for the above
choices. Therefore the boundary behaviour of ρ(z) is now
given as

ρ(z) � ρ+
r	+

0

z	+ . (26)

As the subscript is no longer needed in the above equation,
we would simply drop it from now onwards.

Case(I): m2 = 0, 	 = 1

In this case, the functions p(z), q(z) and r(z) are obtained
by substituting m2 = 0 and 	 = 1 in Eq. (21) and are given
as
p(z) = z2(1 − z3)

q(z) = 3z3

r(z) = z2(1 − z)

(1 + z + z2)

(
1 − b(λ2|b=0)

5
ζ(z)

)
. (27)

Using Eq. (22) with trial function Fα(z) = (1 − αz2) and
Eq. (27), the eigenvalue λ2 reads

λ2
α =

1∫

0

dz
(
4α2z4(1 − z3) + 3z3(1 − αz2)2)

1∫

0

dz
z2(1 − z)

(1 + z + z2)

(
1 − b(λ2|b=0)

5
ζ(z)

)
(1 − αz2)2

. (28)

Thus we obtain

λ2
α =

60

(
α − 3

4
− 27α2

40

)

[
(30 ln 3 − 10

√
3π + 21)α2 + (120 ln 3 − 130)α + (30 ln 3 + 10

√
3π − 90) + b(λ2|b=0)

5(
(30 ln 3 + 10

√
3π − 85.91)α2 + (−60 ln 3 + 20

√
3π − 48.14)α + (72 − 60 ln 3)

)]
. (29)

For b = 0, the eigenvalue expression (29) reduces to the
following form

λ2
α|b=0 =

60

(
α − 3

4
− 27α2

40

)

(30 ln 3 − 10
√

3π + 21)α2 + (120 ln 3 − 130)α + (30 ln 3 + 10
√

3π − 90)
(30)

which attains minima at α ≈ 0.50775. The minimum value
of λ2

α|b=0 is found to be

λ2
αmin.

|b=0 ≈ 13.7674. (31)

The critical temperature is then determined using Eq. (23)
and reads

Tc = 3

4π

√
ρ̃

λαmin.
|b=0

≈ 0.1239
√

ρ̃. (32)

It is interesting to note that the critical temperature obtained
in this case, with the BI parameter b = 0, is matching exactly
with the critical temperature obtained for the holographic p-
wave superconductor constructed out of the Einstein–Yang–
Mills theory [11].

Note that in Eq. (28) we would now use λ2
αmin.

|b=0 in place
of λ2|b=0 for successive computations of the eigenvalues for
different values of the BI parameter b. In that case, we can
write Eq. (29) as below

λ2
α =

60

(
α − 3

4
− 27α2

40

)
[
(30 ln 3 − 10

√
3π + 21)α2 + (120 ln 3 − 130)α + (30 ln 3 + 10

√
3π − 90) + b(13.7674)

5(
(30 ln 3 + 10

√
3π − 85.91)α2 + (−60 ln 3 + 20

√
3π − 48.14)α + (72 − 60 ln 3+)

)]
(33)

where we have substituted λ2|b=0 = 13.7674.
We now take some small value for BI parameter b in Eq.

(33) and minimize it with respect to α to find the correspond-
ing eigenvalue λ2

αmin.
|b �=0. We then determine the critical tem-

perature using Eq. (23). The critical temperature Tc for some
values of the BI parameter b are given in Table 1.

123
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Case(II): m2 = −3/16, 	 = 3/4

In this case as well, we shall first find out the critical tem-
perature when there is no BI correction, that is, b = 0 and
shall then provide the critical temperature for some small
values of the BI parameter b. To do so, we first write the
functions p(z), q(z) and r(z) deduced from Eq. (21) for this
case. These functions have the following form for the present
case

p(z) = z3/2(1 − z3)

q(z) = 33

16
z5/2

r(z) = z3/2(1 − z)

(1 + z + z2)

(
1 − b(λ2|b=0)

5
ζ(z)

)
. (34)

Now we use the same trial function Fα(z), as in the previous
case, along with the above functions to find eigenvalue given
by

λ2
α =

∫ 1

0
dz

(
4α2z7/2(1 − z3) + 33

16
z5/2(1 − αz2)2)

∫ 1

0
dz

z3/2(1 − z)

(1 + z + z2)

(
1 − b(λ2|b=0)

5
ζ(z)

)
(1 − αz2)2

.

(35)

Upon solving for the integrals in the above expression, we
get

λ2
α =

3465

5040

(
3780α − 2970 − 3178α2

)

D . (36)

where D =
[
(−3465 ln 3 + 3776)α2 + (−3465 ln 3 +

3465
√

3π−14916)α+(1732.5 ln 3+1732.5
√

3π−1150)+
b(λ2|b=0)

5

(
(1732.5 ln 3+1732.5

√
3π −11234.1667)α2 +

(6930 ln 3 − 7974.1538)α + (1732.5 ln 3 − 1732.5
√

3π +
7994)

)]
.

To find out the critical temperature in this case, we again
put in some small values for the BI parameter b in the above
expression for the eigenvalue and then we go on to minimize
it with respect to α. After finding corresponding minimum
values λ2

αmin.
, we use Eq. (23) to determine the critical tem-

perature Tc.
In Table 1, we have provided tabular summary for the

critical temperature with the Born–Infeld correction for both
the cases we have discussed above. It should be noted that
the presence of the BI parameter is weakening the critical
temperature for both the cases.

Table 1 Critical temperature with the Born–Infeld correction

Born–Infeld parameter, b The critical temperature, Tc

m2 = 0, 	 = 1 m2 = −3/16, 	 = 3/4

0.0 0.1239
√

ρ̃ 0.1425
√

ρ̃

0.01 0.1221
√

ρ̃ 0.1414
√

ρ̃

0.02 0.1201
√

ρ̃ 0.1402
√

ρ̃

0.03 0.1182
√

ρ̃ 0.1390
√

ρ̃

3.2 Condensation operator

Now we move on to find the condensation operator value.
To calculate it we notice that near the critical temperature,
we have ρ(z) given by Eq. (18). We have also found the
solution for the field �(z) at the critical temperature Tc (Eq.
(15)). Now we expect that near the critical temperature, �(z)
would slightly differ from Eq. (15). For this reason, we add a
small fluctuation χ(z) in the solution given in Eq. (15) with
appropriate boundary conditions. Hence, we have

�(z) = λr0(1 − z)

[
1 − b(λ2|b=0)

10
ζ(z)

]
+ 〈O	〉2

r2	−1
0

χ(z)

(37)

where χ(1) = 0 and χ ′(1) = 0.
To determine the specific form of the field �(z) near the

critical temperature, we substitute Eq. (37) in Eq. (9) keeping
terms only of O(b) and O(〈O	〉2). This gives the following
equation for the fluctuation field χ(z)

χ ′′ + 6bλ2z3χ ′ = λz2	F2

r2
0 (1 + z + z2)

×
[

1 − b

2

(
(λ|b=0)

2

5
ζ(z) + 3λ2z4

)]
. (38)

As the BI parameter b is very small, we approximate λ2 in
Eq. (38) with (λ|b=0)

2 whenever it appears with b. In that
case, Eq. (38) reduces to

χ ′′ + 6b(λ|b=0)
2z3χ ′ = λz2	F2

r2
0 (1 + z + z2)

×
[

1 − b

2
(λ|b=0)

2
(

ζ(z)

5
+ 3z4

)]
. (39)

To find the solution of the above equation, we multiply it with

e
(
3b

2
(λ|b=0)

2z4)
and simplify it further to get the following

form

(
e

(
3b

2
(λ|b=0)

2z4

)
χ ′

)′
= λz2	F2

r2
0 (1 + z + z2)

123
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×
[

1 − b

2
(λ|b=0)

2
(

ζ(z)

5
+ 3z4

)]
e

(
3b

2
(λ|b=0)

2z4

)
. (40)

Integrating Eq. (40) between z = 0 and z = 1 with the
boundary conditions on χ(z) and χ ′(z), we find the following
condition on the fluctuation field near the AdS boundary

χ ′(0) = − λ

r2
0

A	 (41)

where

A	 =
1∫

0

dz
z2	F2

(1 + z + z2)

[
1 − b

2
(λ|b=0)

2
(

ζ(z)

5
+ 3z4

)]

exp

(
3b

2
(λ|b=0)

2z4
)

. (42)

Taylor expanding χ(z) near the AdS boundary

χ(z) = χ(0) + zχ ′(0) + · · · (43)

and comparing the coefficients of z of Eqs. (37, 10) consid-
ering the above expansion of the field χ(z), we get

− ρ̃

r0
= −λr0 + 〈O	〉2

r2	−1
0

χ ′(0). (44)

Now we use Eq. (41) to substitute for χ ′(0) in the above
equation. This yields

ρ̃

r2
0

= λ

(
1 + 〈O	〉2

r2	+2
0

A	

)
. (45)

Finally we replace r0 in terms of the Hawking temperature
T using Eq. (3) and λ in terms of the critical temperature

Tc using the relation λ = ρ̃

r2
0c

. This gives the condensation

operator in the following form

〈O	〉
T (	+1)
c

=
√

2

A	

(
4π

3

)(	+1)
√(

1 − T

Tc

)
. (46)

In the above result 	 can take any positive value consistent
with Eqs. (12, 13). It is also important to note that the con-
densation operator shows the second order phase transition
with the critical exponent 1/2.

We have discussed two particular cases by choosing m2

and the corresponding value for the conformal dimension 	

in the previous section. For those cases, the expression for
the value of the condensation operator is given below.

3.2.1 m2 = 0, 	 = 1

In this case, Eq. (46) reduces to the following form

〈O1〉
T 2
c

=
√

2

A1

(
4π

3

)2
√(

1 − T

Tc

)
(47)

Table 2 Condensation operator value for different values of BI param-
eter

Born–Infeld
parameter (b)

The condensation operator value, 〈O	〉/T	+1
c

m2 = 0, 	 = 1 m2 = −3/16, 	 = 3/4

0.0 87.2482 49.509

0.01 89.4636 50.1235

0.02 92.5642 50.8645

0.03 96.9787 51.7611

where

A1 =
1∫

0

dz
z2F2

(1 + z + z2)

[
1 − b

2
(λ|b=0)

2
(

ζ(z)

5
+ 3z4

)]

exp

(
3b

2
(λ|b=0)

2z4
)

. (48)

Now we find the value of
〈O1〉
T 2
c

near T → 0 such that Eq.

(49) gives

〈O1〉
T 2
c

�
√

2

A1

(
4π

3

)2

≈ 24.8137√A1
(49)

Taking the trial function Fα = (1 − αz2) with the value of α

that minimizes the eigenvalue λ2
αmin.

in A1 given by Eq. (48),
we get

A1 =
1∫

0

dz
z2(1 − αz2)2

(1 + z + z2)

[
1 − b

2
(λ|b=0)

2
(

ζ(z)

5
+ 3z4

)]

× exp

(
3b

2
(λ|b=0)

2z4
)

. (50)

We first consider the case when b = 0. In this case, Eq. (50)
becomes

A1 =
1∫

0

dz
z2(1 − 0.50775z2)2

(1 + z + z2)
. (51)

In the above Eq. (51) we have used the value α ≈ 0.50775
which we have obtained in the previous section. We have
shown there that at this value of α, the eigenvalue attains its
minimum value, λ2

αmin.
|b=0 ≈ 13.7674, when there is no BI

correction. Using Eq. (51) in Eq. (49), we find the value of
〈O1〉
T 2
c

is approximately 87.2482.

We have also considered the BI correction to the value
of the condensation operator. These corrections are listed in
Table 2 for some small values of the BI parameter b.
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3.2.2 m2 = −3/16, 	 = 3/4

We now present the value of the condensation operator for

m2 = − 3

16
and 	 = 3

4
. From Eq. (46), we get the following

form of the condensation operator value in the present case

〈O3/4〉
T 7/4
c

=
√

2

A3/4

(
4π

3

)7/4
√(

1 − T

Tc

)
(52)

where

A3/4 =
1∫

0

dz
z3/2F2

(1 + z + z2)

[
1 − b

2
(λ|b=0)

2
(

ζ(z)

5
+ 3z4

)]

× exp

(
3b

2
(λ|b=0)

2z4
)

. (53)

As in the previous case, we find that near T → 0 the value

of
〈O3/4〉
T 7/4
c

is

〈O3/4〉
T 7/4
c

�
√

2

A3/4

(
4π

3

)7/4

≈ 17.3448√A3/4
. (54)

We now take the trial function Fα = (1−αz2) with the value
of α that minimizes the eigenvalue λ2

αmin.
in A3/4 given by

Eq.(48) which gives

A3/4 =
1∫

0

dz
z3/2(1 − αz2)2

(1 + z + z2)

[
1 − b

2
(λ|b=0)

2
(

ζ(z)

5
+ 3z4

)]

× exp

(
3b

2
(λ|b=0)

2z4
)

. (55)

We have considered the BI correction to the value of the
condensation operator in this case as well which are listed in
Table II for some small values of the BI parameter b.

In the Table 2, we display the value of condensation oper-
ator near T = 0 for two different cases (m2 = 0,	 = 1)
and (m2 = −3/16,	 = 3/4). We have noted earlier in
Table 1 that the critical temperature Tc matches exactly for
both the holographic p-wave superconductor models for the
case (m2 = 0,	 = 1) when the BI parameter b is zero. How-
ever, the value of the condensation operator given in Table 2
shows a departure by a factor of

√
2 from the value of conden-

sation operator obtained in the Einstein–Yang–Mills p-wave
holographic superconductor [11]. It is also worth noting that
the BI correction is increasing the values of the condensation
operator in both the cases we have discussed.

4 Conductivity

In this section, we obtain the holographic conductivity, which
is accomplished by perturbing the gauge field in the bulk

along the boundary, as a function of frequency. We consider
the perturbation in the gauge field along y-direction

Aμ = (0, 0, φ(r, t), 0)

where φ(r, t) = A(r) e−iωt . However, we take the previous
ansatz for the matter field which is given by

ρμ = (0, ρ(r), 0, 0)

Varying the action S in Eq. (4) with respect to A(r) and
ignoring terms of O(b2) and O(ω2b), we get the following
equation of motion corresponding to A(r)(

1 − 3b

2r2 f (r)A′2
)
A′′ + f ′(r)

f (r)

(
1 − b

r2 f (r)A′2
)
A′

+ b

r3 f (r)A′3 +
(

ω2

f 2(r)
− 2ρ2

r2 f (r)

)
A = 0 (56)

where prime denotes derivative with respect to r . Eq. (56) is
highly nonlinear and is very difficult to solve. So for simplic-
ity, we would ignore all the nonlinear terms in Eq. (56). This
can be done because nonlinear terms in Eq. (56) appear with
the BI parameter b which is very small. However, one should
note that the effect of the BI parameter would still enter in the
solution through ρ(z) which we have found in the previous
section. We shall now solve Eq. (56) after ignoring all the
nonlinear terms. This gives

A′′ + f ′(r)
f (r)

A′ +
(

ω2

f 2(r)
− 2ρ2

r2 f (r)

)
A = 0 . (57)

Now changing the coordinate to z = r0

r
, Eq. (57) becomes

A′′ +
(

f ′(z)
f (z)

+ 2

z

)
A′ + r2

0

z4

(
ω2

f 2(z)
− 2z2ρ2

r2
0 f (z)

)
A = 0 .

(58)

We now move to the tortoise coordinate given by

r∗ =
∫

dr

f (r)
(59)

which can be written in the z coordinate as

r∗ = −
∫

dz

r0(1 − z3)
. (60)

From Eq. (60) we find that

r∗ = − 1

r0

(
ln(1 + z + z2)1/6 − ln(1 − z3)1/3

)

− 1√
3r0

arctan

(
1 + 2z√

3

)
. (61)

In that above equation the integration constant is chosen so
that the AdS boundary appears at r∗ = 0. Considering lead-
ing order behaviour of Eq. (61), we get

r∗ � ln(1 − z)1/3r0 . (62)
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In the tortoise coordinate, Eq. (57) leads to the following
equation

d2A

dr2∗
+ (ω2 − V )A = 0 (63)

where V is given by

V = 2(1 − z3)ρ2. (64)

The solution to the above equation for V = 0 is straightfor-
ward and is given by

A ∼ e−iωr∗ . (65)

Using Eq. (62) in the above solution, we get

A ∼ (1 − z)−iω/3r0 . (66)

We shall now generalize this solution for the case V �= 0. In
this case, we obtain

A(z) = (1 − z)−(i
√

ω2−〈V 〉)/3r0 (67)

where 〈V 〉 is defined as

〈V 〉 =
∫
dr∗V |A(r∗)|2∫
dr∗|A(r∗)|2 . (68)

Now using Eq. (18), with F(z) � 1 near the boundary, we
get

V = (1 − z3)z2	 〈O	〉2

r2	
0

. (69)

Now using V from Eq. (69) in Eq. (68) and using the fact that

r∗ = − z

r0
near the boundary, we get the following expression

for 〈V 〉

〈V 〉 = 〈O	〉2

22	

(
�(2	 + 1)

(−i
√

ω2 − 〈V 〉)2	

)
. (70)

At low frequency, we can set ω = 0, which leads to

〈V 〉	+1 = 〈O	〉2

22	
�(2	 + 1). (71)

For the two choices of 	 that we made earlier, we have the
following expressions for 〈V 〉

	 = 1 −→ 〈V 〉 = 〈O1〉√
2

(72)

	 = 3

4
−→ 〈V 〉 = 3〈O3/4〉8/7

8

√
π

2
. (73)

Near z → 0, we can expand A(z) in Eq. (67) as

A(z) � A(0) + zA′(0) + O(z2) + · · · . (74)

On the other hand, we know that we can expand gauge field
near z → 0 in the following manner

Ax (z) � A(0)
x + A(1)

x

r0
z + · · · . (75)

Now comparing Eqs. (74, 75), we get the following relations

A(0)
x = A(0), A(1)

x = r0A
′(0). (76)

The expression for conductivity reads

σ(ω) = 〈Jx 〉
Ex

= − i A(1)
x

ωA(0)
x

.

Then using Eq. (76), we get the following expression for
conductivity

σ(ω) = − ir0

ω

A′(0)

A(0)
. (77)

Using Eq. (67) in Eq. (77), we find that

σ(ω) = 1

3

√
1 − 〈V 〉

ω2 . (78)

Substituting 〈V 〉 from Eq. (71) in Eq. (78), we obtain the fol-
lowing expression for the conductivity in the low frequency
limit,

σ(ω) = i

3

〈O	〉1/(	+1)

2	/(	+1)

�(2	 + 1)1/2(	+1)

ω
. (79)

It is clear from Eq. (79) that σ(ω) has a pole of order one. This
implies that the DC conductivity diverges in this holographic
p-wave superconductor model. Explicit expressions for DC
conductivity for the cases we have considered in this paper
are the following

	 = 1 −→ σ(ω) = i

3ω

√
〈O1〉√

2
(80)

	 = 3

4
−→ σ(ω) = i

3ω

(
9π〈O3/4〉4

128

)1/7

. (81)

5 Conclusions

In this paper, we have studied a holographic model of a p-
wave superconductor constructed from a massive vector field
with the nonlinear Born–Infeld electrodynamics in the mat-
ter sector of the Lagrangian. Considering probe approxima-
tion, where matter does not backreact with the spacetime
geometry of the background, we have worked with a planar
Schwarzschild-AdS metric. We have observed that the con-
densation gets suppressed due to presence of the Born–Infeld
parameter b. In fact, we have found that the critical temper-
ature for two choices of m2, that is, (m2 = 0, − 3/16)
decreases, making condensation harder, as we increase the
value of b. We have also analysed the effect of Born–Infeld
parameter in the condensation operator value. It turns out
that the Born–Infeld correction to the condensation operator
value is very nontrivial. It is found that the value of the con-
densation operator increases with the increase in the value of
b for both choices of m2.
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We would like to point out that for the choice of m2 = 0,
our result for the critical temperature, without Born–Infeld
correction, matches with the earlier non-Abelian model of
the holographic p-wave superconductor, which is concep-
tually very different with the model we have considered in
this paper. However, as we have pointed out earlier that the
value of the condensation operator is different from the earlier
model of holographic p-wave superconductor [11]. This is
because the two theories are quite different in form at the level
of the action, although both exhibit a p-wave characteristic.
With these observations, we conclude that the presence of
Born–Infeld parameter is making the condensation difficult
in the holographic p-wave superconductor model considered
in this paper.

We have finally calculated the conductivity following a
self-consistent approach developed in [10] and have explic-
itly shown that the DC conductivity in this model indeed
diverges. We would like to stress that such an analysis was
absent in the context of p-wave holographic superconduc-
tors.
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