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Abstract We use gravitational decoupling to establish a
connection between the minimal geometric deformation
approach and the standard method for obtaining anisotropic
fluid solutions. Motivated by the relations that appear in the
framework of minimal geometric deformation, we give an
anisotropy factor that allows us to solve the quasi–Einstein
equations associated to the decoupling sector. We illustrate
this by building an anisotropic extension of the well known
Tolman IV solution, providing in this way an exact and physi-
cally acceptable solution that represents the behavior of com-
pact objects. We show that, in this way, it is not necessary
to use the usual mimic constraint conditions. Our solution is
free from physical and geometrical singularities, as expected.
We have presented the main physical characteristics of our
solution both analytically and graphically and verified the
viability of the solution obtained by studying the usual crite-
ria of physical acceptability.

1 Introduction

In 1916, Karl Schwarzschild obtained the first interior solu-
tion of the Einstein field equations [1]. This solutions describe
a self-gravitating object sustained by a perfect and incom-
pressible fluid which is embedded in a static and spher-
ically symmetric vacuum space-time. Following the strat-
egy of Schwarzschild, other interior solutions can be con-
structed providing suitable equations of state to close the
system. However, in some cases the system obtained can not
be analytically integrated and numerical models are required.
Besides proposing an equation of state to relate thermody-
namical quantities, we can use geometrical constraints on the
functions. Indeed, following this program Tolman obtained
a family of eight isotropic solutions [2].
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For many years isotropic solutions were considered as
well posed models to study stellar interiors. However, as was
shown by Delgaty and Lake [3], very few of this solutions
can be considered physically acceptable (for a list of physical
conditions of interior solutions see, for example, [4]). Never-
theless, even when acceptable solutions can be found the per-
fect fluid model is evidently not valid when local anisotropy
of pressure is assumed. Regardingly, anisotropic models have
been considered as very reasonable for describing the matter
distribution under a variety of circumstances [5–21]. Now,
as it is well known, assumption of local anisotropy in the
fluid leads to the introduction of an extra unknown quantity
in the system. In this sense, we need to imposse two condi-
tions, either equations of state or geometric links between
the metric variables in order to integrate the system. For
example, in Ref. [6] Bowers and Liang besides assuming the
Schwarzschild constraint on the density, they impossed that
in order to avoid singularities in the Tolman–Oppenheimer–
Volkoff (TOV) equation

p′
r = −(ρ + pr )

ν′

2
+ 2

p⊥ − pr
r

, (1)

the anisitropy, p⊥ − pr must satisfy, for example, the follow-
ing constraint

p⊥ − pr = C f (pr , r)(ρ + pr )r
n . (2)

In the above expression ρ is the energy density of the fluid
and p⊥ and pr stand for the transverse and radial pressure of
the fluid, respectively. The function f encodes the informa-
tion of the anisotropy of the system which is no necessarily
a linear function of the radial pressure and C a parameter
which measures the anisotropy strength. Finally, the expo-
nent is constrained to n > 1 in order to aviod singularities in
(1). In the same spirit, Cosenza et al. [7] proposed a method
which allowed them to find a family of non-isotropic models
from any isotropic model which depends continuously on the
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constantC . The protocol consists in to take the energy density
of any perfect fluid as the density of the anisotropic system
and consider the following anisotropic function, f (pr , r)

f (pr , r) = ν′

2
r1−n . (3)

Following this procedure they were able to extend the
Schwarzshild interior solution, Tolman IV, V and VI, and
the Adler model to anisotropic domains. However, it is
worth mentioning that in some cases numerical analysis were
required to obtain the solution. The procedure just explained
corresponds to the standard way in which problems have been
solved in the presence of anisotropy.

Recently, the so-called Minimal Geometric Deformation
(MGD) method [22–67,69–71] has emerged as an alternative
to extend isotropic solutions in a straightforward and analyti-
cal way given the number of ingredients which convert it in a
versatile and powerful tool to solve the Einstein’s equations.

For example, the method has been used to obtain anisotropic
like-Tolman IV solutions [35,39], anisotropic Tolman VII
solutions [67] and a model for neutron stars [68]. In other
contexts, MGD has been used to extend black holes in 3 + 1
and 2 + 1 dimensional space-times [42,53,56]. Moreover, in
the context of modified theories of gravitation, the method
has been used to obtain solutions in f (G) gravity [46], Love-
lock [64], f (R, T ) [62] and more recently interior solutions
in the context of braneworld [70].

It is worth mentioning that in contrast to the standard
strategy followed in Ref. [7] where the information of the
isotropic solution entered via the energy density of a well
known model, in the MGD method the isotropic solution is
a sector of the total solution. More precisely, the isotropic
solution is used as a seed to obtain anisotropic solutions of
the Einstein equations as follows.

Let us consider the Einstein field equations

Rμν − 1

2
Rgμν = −κ2T (tot)

μν , (4)

and assume that the total energy-momentum tensor, T (tot)
μν ,

can be decomposed as

T (tot)
μν = T (m)

μν + αθμν , (5)

where T (m)
μν is the matter energy momentum for a perfect

fluid and θμν an anisotropic source interacting with T (m)
μν .

Note that, since the Einstein tensor is divergence free, the
total energy momentum tensor T (tot)

μν satisfies

∇μT
(tot)μν = 0. (6)

It is important to point out that, as this equation is fulfilled
and given that for a perfect fluid we also have ∇μT (m)μν = 0,
then the following condition necessarily must be satisfied

∇μθμν = 0. (7)

In this sense, there is no exchange of energy-momentum ten-
sor between the perfect fluid and the anisotropic source and
henceforth interaction is purely gravitational.

In what follows, we shall consider a static, spherically
symmetric space-time with line element parameterized as

ds2 = eνdt2 − eλdr2 − r2dΩ2, (8)

where ν and λ are functions of the radial coordinate r only.
Now, considering Eq. (8) as a solution of the Einstein equa-
tions, we obtain

κ2ρ̃ = 1

r2 + e−λ

(
λ′

r
− 1

r2

)
, (9)

κ2 p̃r = − 1

r2 + e−λ

(
ν′

r
+ 1

r2

)
, (10)

κ2 p̃⊥ = e−λ

4

(
ν′2 − ν′λ′ + 2ν′′ + 2

ν′ − λ′

r

)
, (11)

where the primes denote derivation with respect to the radial
coordinate and we have defined

ρ̃ = ρ + αθ0
0 , (12)

p̃r = p − αθ1
1 , (13)

p̃⊥ = p − αθ2
2 . (14)

Note that, at this point, the decomposition (5) seems as a sim-
ple separation of the constituents of the matter sector. Even
more, given the non-linearity of Einstein’s equations, such a
decomposition does not lead to a decoupling of two set of
equations, one for each source involved. However, contrary to
the broadly belief, the decoupling is possible in the context
of MGD. The method consists in to introduce a geometric
deformation in the metric functions given by

ν = ξ + αg, (15)

e−λ = μ + α f , (16)

where {g, f } are the so-called decoupling functions and α is
a free parameter that “controls” the deformation. It is worth
mentioning that although a general treatment considering
deformation in both components of the metric is possible (see
Ref. [55]), in this work we shall concentrate in the particular
case g = 0 and f �= 0. Doing so, we obtain two sets of differ-
ential equations: one describing an isotropic system sourced
by the conserved energy-momentum tensor of a perfect fluid
T (m)

μν and the other set corresponding to quasi-Einstein field
equations sourced by θμν . More precisely, we obtain

κ2ρ = 1 − rμ′ − μ

r2 , (17)

κ2 p = rμν′ + μ − 1

r2 , (18)

κ2 p = μ′ (rν′ + 2
) + μ

(
2rν′′ + rν′2 + 2ν′)

4r
, (19)
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with

∇μT
(m)μν = p′ − ν′

2
(ρ + p) = 0, (20)

for the perfect fluid and

κ2θ0
0 = −r f ′ + f

r2 , (21)

κ2θ1
1 = −r f ν′ + f

r2 , (22)

κ2θ2
2 = − f ′ (rν′ + 2

) + f
(
2rν′′ + rν′2 + 2ν′)

4r
, (23)

for the source θμν that, whenever θ1
1 �= θ2

2 , induce local
anisotropy in the system as can be seen in Eqs. (13) and (14).
It is worth noticing that the conservation equation ∇μθ

μ
ν = 0

leads to

(θ1
1 )′ − ν′

2
(θ0

0 − θ1
1 ) − 2

r
(θ2

2 − θ1
1 ) = 0 . (24)

which is a linear combination of Eqs. (21), (22) and (23).
Note that unlike quasi–Einstein equations, which differ from
the Einstein equations, this equation is completely analogous
to an anisotropic TOV equation as can be seen in Ref. [7].

Now, given metric functions {ν, μ} sourced by a perfect
fluid {ρ, p} that solve Eqs. (17), (18) and (19), the defor-
mation function f can be found from Eqs. (21), (22) and
(23) after choosing suitable conditions on the anisotropic
source θμν . It is worth mentioning that the case we are deal-
ing with demands for an exterior Schwarzschild solution. In
this case, the matching condition leads to the extra informa-
tion required to completely solve the system.

Defining μ(r) = 1 − 2m(r)
r in (16), the interior solution

parameterized with (8) reads

ds2 = eνdt2 −
(

1 − 2m(r)

r
+ α f

)−1

dr2 − r2dΩ2 . (25)

Now, outside of the distribution the space–time is that of
Schwarzschild, given by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2dΩ2. (26)

In order to match smoothly the two metrics above on the
boundary surface Σ , we must require the continuity of the
first and the second fundamental form across that surface.
Then it follows

eνΣ = 1 − 2M

rΣ
, (27)

e−λΣ = 1 − 2M

rΣ
, (28)

p̃rΣ = 0 . (29)

Note that, the condition on the radial pressure leads to

p(rΣ) − αθ1
1 (rΣ) = 0 . (30)

Regardingly, if the original perfect fluid match smoothly with
the Schwarzschild solution, i.e, p(rΣ) = 0, Eq. (30) can be
satisfied by demanding θ1

1 ∼ p. Of course, the simpler way
to satisfy the requirement on the radial pressure is assuming
the so–called mimic constraint [35] for the pressure, namely

θ1
1 = p, (31)

in the interior of the star. Remarkably, this condition leads
to an algebraic equation for f such that, in principle, any
isotropic solution can be extended with this constraint.
Another possibility is to use the mimic constraint for the
density which leads to a differental equation for f which
can be solved in some situations (see for example [39]).
However, as far as we know, no physical requirements on
the anisotropy function induced by the decoupling sector,
θ2

2 − θ1
2 , have been considered up to now. In this work we

find an anisotropic solution assuming a regularity condition
on the anysotropy function of the decoupling sector following
Bowers–Liang constraint, given by Eq. (2) and the Cosenza–
Herrera–Esculpi–Witten anisotropy defined in Eq. (3). In this
sense, we propose the following condition on the decoupling
sector reads,

θ2
2 − θ1

1 = C f (θ1
1 , r)(−θ0

0 + θ1
1 )rn, (32)

with f (θ1
1 , r)rn−1 = ν′/2 and C , as usual, is a constant that

gauge the anisotropy strength. This ansatz is inspired by the
relation between the components of the anisotropic energy–
momentum tensor θμν and the effective quantities given by
Eqs. (12), (13) and (14). Note that the function f in Eq. (32)
is not the deformation function that appears in Eq. (16). It
is clear that the replacement of (21), (22) and (23) in (32),
leads to a differential equation for the deformation function,
f , where the only required information is the metric function
ν, which in the context of MGD is common for the three
sectors involved.

This work is organized as follows. In the next section
we study the regularity condition on the decoupling sector
induced by MGD. In Sect. 3, we study the conditions for
physical viability in interior solutions. Finally, the last sec-
tion is devoted to final remarks.

2 Regularity condition on the decoupling sector

In the context of MGD the anisotropy is induced by the decou-
pling sector sourced by θμν which satisfy a conservation
equation given by (24). Now, from Eq. (32) and after imposs-
ing the Consenza–Herrera–Esculpi–Witten anisotropy we
obtain[

(2C + 1)rν′ + 2
]
f ′

+
{[
r(1 − 2C)ν′ − 2

]
ν′ + 2rν′′ − 4

r

}
f = 0, (33)
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which can be formally solved to obtain

f = c1e
∫ u(ν′((2C−1)uν′+2)−2uν′′)+4

u((2C+1)uν′+2)
du

, (34)

where c1 is a constant of integration. Of course, finding an
analytical solution of the above integral will depend on the
particular form of the metric function ν.

As a particular case of application we shall consider the
Tolman IV solution given by

eν = B2
(

1 + r2

A2

)
, (35)

μ =
(

1 + r2

A2

) (
1 − r2

d2

)

1 + 2r2

A2

, (36)

where A, B and d are constants. Next, replacing (35) in (34)
we obtain

f = c1r2
(
A2 + r2

)
A2 + 2(C + 1)r2 , (37)

which determines the decoupling sector completely and
enusure the regularity of the anisitropy θ2

2 − θ1
1 . To com-

plete the MGD program, the rest of the section is devoted
to obtain the total like-Tolman IV anisitropic solution. From
Eq. (16), the grr component of the metric reads

e−λ =
(
A2 + r2

) [
αc1r2

A2 + 2(C + 1)r2 + d2 − r2

d2
(
A2 + 2r2

)
]

.

(38)

Now, from (9), (10) and (11) we obtain the effective quantities

ρ̃ = r2
(
7A2 + 2d2

) + 3A2
(
A2 + d2

) + 6r4

8πd2
(
A2 + 2r2

)2

−αc1
[
3A4 + A2(2C + 7)r2 + 6(C + 1)r4

]
8π

[
A2 + 2(C + 1)r2

]2 , (39)

p̃r = d2 − A2 − 3r2

8πd2
(
A2 + 2r2

) + αc1
(
A2 + 3r2

)
8π [A2 + 2(C + 1)r2] , (40)

p̃⊥ = d2 − A2 − 3r2

8πd2
(
A2 + 2r2

)

+αc1
[
A4 + 5A2r2 + 6(C + 1)r4

]
8π

[
A2 + 2(C + 1)r2

]2 . (41)

In order to match the interior solution with the Schwarz-
schild exterior solution, we proceed to impose the continuity
of the first and the second fundamental (see Eqs. (27), (28)
and (29)) from where

d2 = (A2 + 3R2)(A2 + 2(C + 1)R2)

[A2 + αc1
(
A4 + 5A2R2 + 6R4

) + 2(C + 1)R2] , (42)

B2 = R − 2M

R + R3

A2

, (43)

(a) (b)

(c) (d)

Fig. 1 Energy density ρ̃ for M = 0.2, R = 1, c1 = 0.5 and a
C = −0.1, b C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red line),
α = 0.3, (green line), α = 0.5 (blue line), α = 0.7 (black line)

A2 = R2(R − 3M)

M
. (44)

In this sense, the solution is parameterized by the mass
M , the radius R, the parameter of anisotropy strength C , the
MGD parameter α, and the constant of integration c1. In the
next section we shall study the acceptability conditions for
the like–Tolman IV anistropic solution obtained here.

3 Conditions for physical viability of interior solutions

In this section we perform the physical analysis of the prop-
erties of the star solution by fixing the free parameters of
the solution and providing plots. More precisely, in order to
obtain a useful model for a compact anisotropic star we spec-
ify the mass M and the radius R of the star and impose some
suitable conditions that the model should satisfy. The follow-
ing conditions have been typically recognized as decisive for
anisotropic fluid spheres.

3.1 Matter sector

A requirement on the matter sector to ensure acceptable
interior solutions is that the density and pressures should
be positive quantities. Besides, it also demanded that the
density and pressures reach a maximum at the center and
decrease monotonously toward the surface so that p̃⊥ ≥ p̃r .
In Figs. 1, 2 and 3we show the behaviour of ρ̃, p̃r and p̃⊥
respectively.

It is worth noticing that the anisotropy factor C has an
appreciable effect on the plots in the sense that the separation
of each graphic parametrized withα increases asC decreases.
To be more precise, in all the cases the profiles in panel (a)
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(a) (b)

(c) (d)

Fig. 2 Effective radial pressure p̃r for M = 0.2, R = 1, c1 = 0.5 and
a C = −0.1, b C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red
line), α = 0.3, (green line), α = 0.5 (blue line), α = 0.7 (black line)

(a) (b)

(c) (d)

Fig. 3 Effective tangential pressure p̃t for M = 0.2, R = 1, c1 = 0.5
and a C = −0.1, b C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red
line), α = 0.3, (green line), α = 0.5 (blue line), α = 0.7 (black line)

are almost indistinguishable in contrast to panel (c) where
the behaviour for different α is appreciable different.

To study the extra condition p̃⊥ > p̃r , in Fig. 4 it is shown
the anisotropy Δ = p̃⊥ − p̃r . Note that the anisotropy Δ is
a positive and increasing function, as expected.

3.2 Energy conditions

Another physical requirement we demand for interior solu-
tions involve the energy conditions. As it is well known, an
acceptable interior stellar should satisfy the dominant energy
condition (DEC), which implies that the speed of energy flow
of matter is less than the speed of light for any observer. This
condition reads

ρ̃ − p̃r ≥ 0, (45)

ρ̃ − p̃⊥ ≥ 0. (46)

(a) (b)

(c) (d)

Fig. 4 Anisotropy Δ = p̃t − p̃r for M = 0.2, R = 1, c1 = 0.5 and a
C = −0.1, b C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red line),
α = 0.3, (green line), α = 0.5 (blue line), α = 0.7 (black line)

(a) (b)

(c) (d)

Fig. 5 DEC for M = 0.2, R = 1, c1 = 0.5 and a C = −0.1, b
C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red line), α = 0.3,
(green line), α = 0.5 (blue line), α = 0.7 (black line)

In Fig. 5, it is shown that DEC is fulfilled by all the parameters
considered here.

Another condition is that the solution satisfies the strong
energy condition (SEC) also, namely

ρ̃ +
∑
i

p̃i ≥ 0, (47)

As can be seen in Fig. 6, the SEC is satisfied in the cases
under consideration.

3.3 Causality

Causality is important to avoid superluminal motion. In
other words, the causality condition demands that either the
radial and tangential sound velocities, vr = d p̃r/dρ̃ and
vt = d p̃⊥/dρ̃ respectively, are less than the speed of light.
Given the behaviour of the radial and the traverse velocities
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(a) (b)

(c) (d)

Fig. 6 SEC for M = 0.2, R = 1, c1 = 0.5 and a C = −0.1, b
C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red line), α = 0.3,
(green line), α = 0.5 (blue line), α = 0.7 (black line)

(a) (b)

(c) (d)

Fig. 7 Radial velocity v2
r for M = 0.2, R = 1, c1 = 0.5 and a

C = −0.1, b C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red line),
α = 0.3, (green line), α = 0.5 (blue line), α = 0.7 (black line)

illustrated in Figs. 7 and 8, we conclude that our model satisfy
the causality condition requirement.

3.4 Adiabatic index

The adiabatic index, γ , serves as a criterion of stability of the
interior solution. It can be shown that for anisotropic fluids
the adiabatic index takes the form

γ = ρ̃ + p̃r
p̃r

d p̃r
dρ̃

, (48)

It is said that an interior configuration is stable whenever
γ ≥ 4/3. In Fig. 9 we show the adiabatic index for different
values of the free parameters involved. It is clear that the
solution is stable regarding the adiabatic index criterion.

(a) (b)

(c) (d)

Fig. 8 Tangential velocity v2
t for M = 0.2, R = 1, c1 = 0.5 and a

C = −0.1, b C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red line),
α = 0.3, (green line), α = 0.5 (blue line), α = 0.7 (black line)

(a) (b)

(c) (d)

Fig. 9 Adiabatic index γ for M = 0.2, R = 1, c1 = 0.5 and a
C = −0.1, b C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red line),
α = 0.3, (green line), α = 0.5 (blue line), α = 0.7 (black line)

3.5 Stability against gravitational cracking

The appearance of non-vanishing total radial force with dif-
ferent signs in different regions of the fluid is a sign of insta-
bility. When this radial force, running from the center to the
outside of the star, shifts from pointing to the center to point-
ing outward, the phenomenon has been called gravitational
cracking [75]. In Ref. [76] it is stated that a simple require-
ment to avoid gravitational cracking is

− 1 ≤ d p̃⊥
dρ̃

− d p̃r
dρ̃

≤ 0. (49)

In Fig. 10 we show that in all the cases considered the solution
is stable against gravitational cracking.
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(a) (b)

(c) (d)

Fig. 10 Anti–cracking condition for M = 0.2, R = 1, c1 = 0.5 and
a C = −0.1, b C = −0.2, c C = −0.3, d C = −0.4. α = 0.1 (red
line), α = 0.3, (green line), α = 0.5 (blue line), α = 0.7 (black line)

4 Final remarks

The minimal geometric deformation method has proven to
be a simple and powerful tool for obtaining solutions of
Einstein’s field equations. The model studied in this article
describing anisotropic fluid spheres meets all the require-
ments to be an acceptable solution.

In this work we established a connection between stan-
dard approaches to obtain anisotropic stellar solutions and
the minimal geometric deformation method. The standard
approach usually provides the anisotropy factor Δ, so we
incorporate this information in the MGD method and in
this way, the use of the mimic constraint condition becomes
unnecessary.

Using the analytical Tolman IV perfect fluid solution in
the MGD approach we get a new solution that represents
the anisotropic extension of Tolman IV solution. This new
analytical solution satisfies all the usual criteria of physical
acceptability. We have evaluated the physical consistency
of our solution by examining the structure of matter sector,
energy conditions, causality, the adiabatic index and stability
against gravitational cracking. Therefore, this could be used
to model actual stellar compact structures, such as neutron
stars.

As a continuation of the study presented here, we suggest
to explore of anisotropic solutions using the conservation
equation obtained from the decoupling sector. This and other
aspects will be considered in future works.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Our work is
theoretical so we don’t have data to be deposited.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you

give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. K. Schwarzschild, Sitz. Deut. Akad. Wiss. Berlin K1. Math. Phys
1916, 189 (1916)

2. R. Tolman, Phys. Rev. 55, 354 (1939)
3. M. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998)
4. B.V. Ivanov, Eur. Phys. J. C 77, 738 (2017)
5. G. Lemaitre, Ann. Soc. Sci. Bruxelles, Ser. 153, 51 (1933)
6. R. Bowers, E. Liang, Astrophys. J. 188, 657 (1974)
7. M. Cosenza, L. Herrera, M. Esculpi, L. Witten, J. Math. Phys. 22,

118 (1981)
8. M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Phys. Rev. D 25,

2527 (1982)
9. L. Herrera, Phys. Lett. A 165, 206 (1992)

10. H. Bondi, Mon. Not. R. Astron. Soc. 262, 1088 (1993)
11. W. Barreto, Astrophys. Space Sci. 201, 191 (1993)
12. J. Martínez, D. Pavón, L. Núñez, Mon. Not. R. Astron. Soc. 271,

463 (1994)
13. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)
14. L. Herrera, A. Di Prisco, J. Hernández-Pastora, N.O. Santos, Phys.

Lett. A 237, 113 (1998)
15. H. Bondi, Mon. Not. R. Astron. Soc. 302, 337 (1999)
16. H. Hernández, L. Núñez, U. Percoco, Class. Quant. Gravit. 16, 897

(1999)
17. L. Herrera, A. Di Prisco, J. Ospino, E. Fuenmayor, J. Math. Phys.

42, 2129 (2001)
18. A. Pérez Martínez, H.P. Rojas, H.M. Cuesta, Eur. Phys. J. C 29,

111 (2003)
19. L. Herrera, J. Ospino, A. Di Prisco, Phys. Rev. D 77, 027502 (2008)
20. H. Hernández, L. Núñez, A. Vázques, Eur. Phys. J. C 78, 883 (2018)
21. E. Contreras, E. Fuenmayor, P. Bargueño, arXiv:1905.05378
22. J. Ovalle, Mod. Phys. Lett. A 23, 3247 (2008)
23. J. Ovalle, Int. J. Mod. Phys. D 18, 837 (2009)
24. J. Ovalle, Mod. Phys. Lett. A 25, 3323 (2010)
25. R. Casadio, J. Ovalle. Phys. Lett. B 715, 251 (2012)
26. J. Ovalle, F. Linares, Phys. Rev. D 88, 104026 (2013)
27. J. Ovalle, F. Linares, A. Pasqua, A. Sotomayor, Class. Quant.

Gravit. 30, 175019 (2013)
28. R. Casadio, J. Ovalle, R. da Rocha, Class. Quant. Gravit.31, 045015

(2014)
29. R. Casadio, J. Ovalle. Class. Quant. Gravit. 32, 215020 (2015)
30. J. Ovalle, L.A. Gergely, R. Casadio, Class. Quant. Gravit. 32,

045015 (2015)
31. R. Casadio, J. Ovalle, R. da Rocha, EPL 110, 40003 (2015)
32. J. Ovalle, Int. J. Mod. Phys. Conf. Ser. 41, 1660132 (2016)
33. R.T. Cavalcanti, A. Goncalves da Silva, R. da Rocha, Class. Quant.

Gravit. 33, 215007 (2016)
34. R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016)
35. J. Ovalle, Phys. Rev. D 95, 104019 (2017)
36. R. da Rocha, Phys. Rev. D 95, 124017 (2017)
37. R. da Rocha, Eur. Phys. J. C 77, 355 (2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1905.05378


177 Page 8 of 8 Eur. Phys. J. C (2020) 80 :177

38. R. Casadio, P. Nicolini, R. da Rocha, Class. Quant. Gravit. 35,
185001 (2018)

39. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Eur. Phys. J. C
78, 122 (2018)

40. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, EPL
124, 20004 (2018)

41. M. Estrada, F. Tello-Ortiz, Eur. Phys. J. Plus 133, 453 (2018)
42. J. Ovalle, R. Casadio, R. da Rocha, A. Sotomayor, Z. Stuchlik, Eur.

Phys. J. C 78, 960 (2018)
43. C. Las Heras, P. Leon, Fortschr. Phys. 66, 1800036 (2018)
44. L. Gabbanelli, A. Rincón, C. Rubio, Eur. Phys. J. C 78, 370 (2018)
45. M. Sharif, S. Sadiq, Eur. Phys. J. C 78, 410 (2018)
46. M. Sharif, S. Saba, Eur. Phys. J. C 78, 921 (2018)
47. M. Sharif, S. Sadiq, Eur. Phys. J. Plus 133, 245 (2018)
48. A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, Eur. Phys.

J. C 78, 631 (2018)
49. A. Fernandes-Silva, R. da Rocha, Eur. Phys. J. C 78, 271 (2018)
50. E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 558 (2018)
51. E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78, 841 (2018)
52. E. Morales, F. Tello-Ortiz, Eur. Phys. J. C 78, 618 (2018)
53. E. Contreras, Eur. Phys. J. C 78, 678 (2018)
54. G. Panotopoulos, Á. Rincón, Eur. Phys. J. C 78, 851 (2018)
55. J. Ovalle, Phys. Lett. B 788, 213 (2019)
56. E. Contreras, P. Bargueño, Eur. Phys. J. C 78, 985 (2018)
57. M. Estrada, R. Prado, Eur. Phys. J. Plus 134, 168 (2019)
58. E. Contreras, Class. Quant. Gravit. 36, 095004 (2019)
59. E. Contreras, Á. Rincón, P. Bargueño, Eur. Phys. J. C 79, 216 (2019)

60. S. Maurya, F. Tello, Eur. Phys. J. C 79, 85 (2019)
61. E. Contreras, P. Bargueño, Class. Quant. Gravit. 36(21), 215009

(2019)
62. S. Maurya, F. Tello-Ortiz, arXiv:1905.13519
63. C. Las Heras, P. León, Eur. Phys. J. C 79(12), 990 (2019)
64. M. Estrada, Eur. Phys. J. C 79(11), 918 (2019)
65. L. Gabbanelli, J. Ovalle, A. Sotomayor, Z. Stuchlik, R. Casadio,

Eur. Phys. J. C 79, 486 (2019)
66. J. Ovalle, C. Posada, Z. Stuchlik, Class. Quant. Gravit. 36(20),

205010 (2019)
67. S. Hensh, Z. Stuchlík, Eur. Phys. J. C 79(10), 834 (2019)
68. V. Torres, E. Contreras, Eur. Phys. J. C 70, 829 (2019)
69. F. Linares, E. Contreras, arXiv:1907.04892
70. P. Leon, A. Sotomayor, arXiv:1907.11763
71. S. Maurya, F. Tello-Ortiz, Phys. Dark Univ. 27, 100442 (2020)
72. J. Ovalle, R. Casadio, Beyond Einstein Gravity. The Minimal Geo-

metric Deformation Approach in the Brane-World. Springer, New
York (2020). https://doi.org/10.1007/978-3-030-39493-6

73. G. Estevez-Delgado, J. Estevez-Delgado, N. Montelongo, M.
Pineda, Can. J. Phys. 97(9), 988 (2019)

74. C.C. Moustakidis, Gen. Relat. Gravit. 49, 68 (2017)
75. L. Herrera, Phys. Lett. A 165, 206 (1992)
76. H. Abreu, H. Hernández, L. Nuñez, Class. Quant. Gravit. 24, 4631

(2007)

123

http://arxiv.org/abs/1905.13519
http://arxiv.org/abs/1907.04892
http://arxiv.org/abs/1907.11763
https://doi.org/10.1007/978-3-030-39493-6

	Regularity condition on the anisotropy induced by gravitational decoupling in the framework of MGD
	Abstract 
	1 Introduction
	2 Regularity condition on the decoupling sector
	3 Conditions for physical viability of interior solutions
	3.1 Matter sector
	3.2 Energy conditions
	3.3 Causality
	3.4 Adiabatic index
	3.5 Stability against gravitational cracking

	4 Final remarks
	References




