
Eur. Phys. J. C (2020) 80:186
https://doi.org/10.1140/epjc/s10052-020-7747-7

Regular Article - Theoretical Physics

The light CP-even MSSM Higgs mass including N3LO+N3LL
QCD corrections

R. V. Harlander, J. Klappert, A. Voigta

Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52074 Aachen, Germany

Received: 21 October 2019 / Accepted: 16 February 2020 / Published online: 28 February 2020
© The Author(s) 2020

Abstract We present a calculation of the light neutral CP-
even Higgs boson pole mass in the real MSSM which com-
bines state-of-the-art EFT and fixed-order results, including
the three-loop fixed-order QCD corrections as well as the
resummation of logarithmic terms in the ratio of the weak to
the SUSY scale up to fourth logarithmic order. This hybrid
calculation should be valid for arbitrary SUSY scales above
the weak scale. Comparison to the pure fixed-order and EFT
results provides an estimate of their individual validity range.
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1 Introduction

With the discovery of the Higgs boson with a mass of
Mh = (125.10 ± 0.14) GeV [1–4], the Standard Model
(SM) of particle physics is complete and appears to be a

a e-mails: alexander.voigt@physik.rwth-aachen.de (corresponding
author)

good description of nature around and below the electroweak
scale. However, the SM does not describe gravity and cannot
account for phenomena typically associated with dark mat-
ter, for example, or for CP-violation at the level required to
explain the observed baryon anti-baryon asymmetry. Super-
symmetry (SUSY) has been an attractive proposal to address
some of the deficits of the SM. One particular feature of the
Minimal Supersymmetric Standard Model (MSSM) is its con-
strained Higgs sector which, for a given set of SUSY parame-
ters, results in a theoretical value of the lightest Higgs boson
mass. Comparison to the measured mass of the observed
Higgs boson as quoted above provides a stringent constraint
of the MSSM. It is well known that this theory value of the
lightest Higgs boson mass receives large radiative correc-
tions, so that higher-order calculations are required in order
to achieve a precision which is competitive with the experi-
mental accuracy.

There are different methods to calculate the Higgs pole
mass in the MSSM, which can be divided into fixed-order
(FO), effective field theory (EFT) and hybrid approaches. In
the fixed-order calculation, loop corrections to the Higgs
mass are calculated in the full MSSM, and the perturba-
tion series is truncated at a fixed order of the coupling con-
stants. If the SUSY particles have masses not too far above
the electroweak scale, the FO calculation typically leads to
a reliable value. However, if (some of) the SUSY particles
are very heavy, then the perturbative coefficients receive
large logarithmic contributions, which spoil the perturbative
series. Currently, loop corrections up to the two-loop level
are known in the on-shell scheme [5–21] and up to three-
loop level in the DR

′ scheme [10–13,16,22–37]. The corre-
sponding FO Higgs pole mass results are available through
implementations into publicly available spectrum generators
[8,38–47].

An EFT calculation, on the other hand, is based on the
assumption that the SUSY particles are very heavy compared
to the electro-weak scale. Integrating them out leaves the SM
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as an EFT. The latter retains the SUSY constraints through the
matching conditions between the MSSM and the SM parame-
ters, which are imposed at some large mass scale. The Higgs
pole mass is then calculated from the SM MS parameters after
evolving them down to the electro-weak scale through SM
renormalization group equations (RGEs), thereby resumming
contributions which are logarithmic in the ratio of the SUSY
and the electro-weak scale (“large logarithms”). This proce-
dure has been implemented through third logarithmic order
(NNLL) in several publicly available pure-EFT spectrum gen-
erators [47–49]. Resummation through fourth logarithmic
order (N3LL) has recently been achieved through the evalu-
ation of the three-loop matching coefficient for the quartic
coupling [50], which complemented the available two-loop
matching relations [48,49,51–55].

It turns out that, in order for the theoretical value of the
light MSSM Higgs mass to be compatible with the observed
Higgs mass of Mh ≈ 125 GeV, the SUSY spectrum requires
TeV-scale stops (see Refs. [48,52,56–58], for example). It is
not clear a priori whether a FO or an EFT approach provides
the best value for the Higgs mass at these mass scales. For
this reason, so-called hybrid approaches have been devised
[41,47,56,57,59–61]. They combine the virtues of a FO and
an EFT calculation, and lead to a reliable value for the Higgs
pole mass at all SUSY scales. So far, they rely on two-loop FO
results with a resummation of the large logarithms at NNLL
level at most. Comparison to the highest available FO result
shows good agreement up to remarkably large SUSY scales
of the order of 5–10 TeV [62], in accordance with earlier
comparisons of FO and EFT results [35].

In this paper, we adopt a hybrid approach for the real
MSSM by including the next perturbative order in the strong
coupling. More precisely, we combine the FO and the EFT
results at order y4

t g
4
3, resulting in a value at fourth per-

turbative order (N3LO) with N3LL resummation.1 By com-
paring our three-loop hybrid result with the individual FO
and EFT approximations, we infer the size of the terms of
O(v2/M2

S) which are usually neglected in a pure EFT
approach. This allows us to derive an estimate for the SUSY
scale above which a pure EFT calculation is sufficient (see
also Ref. [58]).

The remaining part of this paper is structured as follows: in
Sect. 2 we describe our procedure to combine the three-loop
FO and EFT results. The numerical implications of the result-
ing hybrid result are discussed in Sect. 3. Section 4 contains
our conclusions.

1 Note that, in our notation, the one-loop top-quark induced corrections
to the light MSSM Higgs mass are of order y4

t , while other authors would
denote them as O(αt ) (see, e.g., Refs. [10,11]).

2 Matching procedure

2.1 General outline

So far, two approaches to combine FO and EFT results in the
context of the SUSY Higgs mass have been pursued in the
literature:

• Subtraction approach: Here one writes the squared
Higgs pole mass as

(Msubtr
h )2 = (MFO

h )2 − (M logs
h )2 + (M res

h )2, (1)

where (MFO
h )2 denotes the FO result, (M logs

h )2 are the
large logarithmic FO corrections, and (M res

h )2 are the
resummed logarithmic corrections.
An advantage of this approach is that existing fixed-order
results can be used and different effective theories can be
considered in a straightforward way. The generalization
of this approach to models beyond the MSSM is non-
trivial, because it requires model-specific FO and EFT
loop calculations.
This approach is implemented in FeynHiggs at the two-
loop level, for example [41,56,57].

• FlexibleEFTHiggs approach [47,59,60]: Here one
employs the identity

(MSM
h )2 = (MMSSM

h )2 , (2)

where MSM
h denotes the Higgs pole mass expressed

through SM MS parameters, and MMSSM
h is the Higgs pole

mass calculated in the MSSM in the DR
′ scheme. The MS

and DR
′ parameters appearing in Eq. (2) depend on the

renormalization scale QS , which is set close to the SUSY
scale. This determines the SM quartic Higgs coupling in
the MS scheme at the scale QS , which is then evolved
down to the electro-weak scale using SM RGEs in order
to evaluate the Higgs pole mass from it.
Due to the simplicity of the matching condition (2),
this approach can be generalized to other models in a
rather straightforward way. However, the extension of
the approach to the two-loop level is non-trivial, because
care must be taken to cancel potential large logarithmic
corrections in the matching.
The FlexibleEFTHiggs approach is implemented at one-
loop level into FlexibleSUSY [47,59], and at two-loop
level into SARAH/SPheno [60].2

2 Note that in the implementation of the FlexibleEFTHiggs approach
in SARAH/SPheno, large higher-order logarithmic corrections are
induced at the matching scale. As a result, SARAH/SPheno resums
large logarithms only up to (including) the leading-log level.
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In this paper, we adopt a hybrid scheme which is similar
to the subtraction approach of Eq. (1). However, we work in
the DR

′ scheme and go one loop level higher, combining the
FO and EFT approximations which include three-loop level
QCD corrections. In our scheme, we calculate the (squared)
Higgs pole mass as

(Mhyb
h )2 = (MEFT

h )2 + �v, (3)

where MEFT
h denotes the three-loop EFT result of Flexib-

leSUSY/HSSUSY+Himalaya [50]; it resums large loga-
rithms of order y4

t g
6
3 to N3LL, while others are resummed to

NNLL.3 Its fixed-order expansion would reproduce the full
fixed-order result in the limit v2/M2

S → 0, including the
known two-loop corrections in the gaugeless limit and the
three-loop terms of order y4

t g
4
3 from Himalaya [31,32,35],

including non-logarithmic terms. �v supplies the terms that
are suppressed by powers of v2/M2

S as MS � v at fixed
order up to the two-loop level. We separate �v into a tree-
level+one-loop and a two-loop part,

�v = �0�+1�
v + �2�

v . (4)

These terms are extracted from the FlexibleEFTHiggs result
implemented in FlexibleSUSY, and from the two-loop con-
tributions included in the Himalaya library, as described
in what follows. The tree-level and one-loop contribution
�0�+1�

v is obtained by taking the difference between the one-
loop FlexibleEFTHiggs result MFEFT

h and the one-loop pure
EFT result obtained from HSSUSY as

�0�+1�
v =

[
(MFEFT

h )2 − (MEFT
h )2

]
0�+1�

. (5)

Due to the structure of the FlexibleEFTHiggs calculation,
this difference contains all tree-level and one-loop SUSY
contributions of higher order in v2/M2

S , and formally two-
loop non-logarithmic electroweak SUSY terms (see below).
In particular, large logarithmic corrections as well as two-
loop non-electroweak SUSY contributions are absent. The
two-loop contribution �2�

v is obtained as

�2�
v = �2�

O(y4
t g

2
3+y6

t )
− �2�

O(y4
t g

2
3+y6

t )

∣∣∣
v2�M2

S

. (6)

The terms on the r.h.s. of Eq. (6) represent the difference
between the two-loop fixed-order contribution O(y4

t g
2
3 + y6

t )

calculated with Himalaya, and the same two-loop fixed-
order contribution where all O(v2/M2

S) terms are neglected.
This difference thus contains all two-loopO(v2/M2

S) terms at

3 Our identification of the logarithmic order refers to the required order
of the β function of the SM Higgs self coupling λ. Specifically, our
NnLL terms involve the β function to O(y4

t g
2n
3 ).

O(y4
t g

2
3 + y6

t ). Large logarithmic as well as non-electroweak
three-loop corrections of order (v2/M2

S)
0 are absent.

2.2 Explicit result in the degenerate-mass case

Himalaya includes �2�

O(y4
t g

2
3+y6

t )

∣∣∣∣
v2�M2

S

for a general

SUSY spectrum, but we find that the full analytic expression is
too long to be displayed in this paper. For reference, however,
we include the results for the case of degenerate DR

′
SUSY

mass parameters at the SUSY scale MS , i.e., mq̃3(MS) =
mũ3(MS) = mg̃(MS) = mA(MS) = μ(MS) = MS . Here
mq̃3 and mũ3 denote the left- and right-handed third gen-
eration squark mass parameters, mg̃ the gluino mass, mA

the CP-odd Higgs boson mass, and μ the superpotential μ-
parameter. We parameterize our expressions in terms of the
DR

′ stop mixing parameter Xt = At − μ/ tan β, where At

is the trilinear Higgs-stop-stop coupling, and tan β = vu/vd
with vu and vd being the running vacuum expectation values
of the MSSM up- and down-type Higgs doublets, respectively.
Furthermore we define the short-hand notation xt = Xt/MS ,
sβ = sin β, cβ = cos β, s2β = sin 2β, κ = 1/(4π)2,

lSS = log(M2
S/Q

2
S) and lSt = log(M2

S/m
2
t ). Here, QS

denotes the renormalization scale at which the matching is
performed, mt = yt sβv/

√
2 is the running top quark mass,

yt denotes the top Yukawa coupling, g3 is the strong gauge
coupling, and v = (v2

u + v2
d)

1/2 is the SM-like Higgs vac-
uum expectation value, all defined in the MSSM in the DR

′

scheme.
Following the procedure described in Ref. [50], the two-

loop subtraction term on the r.h.s. of Eq. (6) can be expressed
in terms of threshold corrections as

�2�

O(y4
t g

2
3+y6

t )

∣∣∣
v2�M2

S

= �2�

O(y4
t g

2
3)

∣∣∣
v2�M2

S

+ �2�

O(y6
t )

∣∣∣
v2�M2

S

(7)

with

�2�

O(y4
t g

2
3)

∣∣∣
v2�M2

S

= κ2y4
t g

2
3v2s4

β

2

{
�2�

(y4
t g

2
3)

λ − 8
[
�1�

(g2
3)
yt (3 + 6lSS − 6lSt )

− 4 (1 + 3lSS − 3lSt ) (lSS − lSt )
]}

, (8)

�2�

O(y6
t )

∣∣∣
v2�M2

S

= κ2y6
t v

2s4
β

2

{
4�1�

(y2
t )
yt

(
−6 + �1�

(y4
t )

λ + 12lSt − 12lSS
)

+ s2
β

[
− 12 + 2�2�

(y6
t )

λ

+ �1�

(y4
t )

λ
(

2 + 2�1�

(y2
t )

v − 3lSt + 3lSS
)
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+ 24�1�

(y2
t )

v(lSt − lSS − 1)

− 18(lSt − lSS)(1 + 3lSt − 3lSS) − 2π2
]}

, (9)

and the one- and two-loop threshold factors [30,52]

�1�

(g2
3)
yt = 4

3
(1 + lSS − xt ) , (10a)

�1�

(y2
t )
yt = 1

8

[
6lSS + c2

β (−3 + 6lSS) − 2s2
βx

2
t

]
, (10b)

�1�

(y2
t )

v = x2
t

4
, (10c)

�1�

(y4
t )

λ = 12lSS + 12x2
t − x4

t , (10d)

�2�

(y4
t g

2
3)

λ = −8

3

[
12l2SS + xt

(
24 − 12xt − 4x2

t + x3
t

)

+8lSS
(
−3 − 3xt + 3x2

t + x3
t

)]
. (10e)

The two-loop correction �2�

(y6
t )

λ is given by Eq. (21) of

Ref. [48] (without the prefactor). Inserting the threshold cor-
rections, the subtraction terms become

�2�

O(y4
t g

2
3 )

∣∣∣
v2�M2

S

= κ2y4
t g

2
3s

4
βv2

[
− 16 + 16lSt − 64lSSlSt + 48l2St

+ xt (−16 + 64lSS − 32lSt ) + x2
t (16 − 32lSS)

+ x3
t (16 − 32lSS)

3
− 4x4

t

3

]
, (11)

�2�

O(y6
t )

∣∣∣
v2�M2

S

= κ2y6
t s

2
βv2

16

{
− 144 − 768K + 144lSS

+ s2
2β

(
48 + 720K − 36lSS − 36lSt + 144lSSlSt + 12π2

)

+ s4
β

(
336 − 288lSS − 144lSt + 864lSSlSt − 432l2St − 16π2

)

− xt s2β (432 + 2304K − 432lSS)

− x2
t

[
− 224 − 1152K + 144lSS + s2

2β (228 + 1248K − 432lSS)

+ s4
β (576 − 2160lSS + 336lSt )

]

− x3
t s2β (−320 − 1536K + 192lSS)

− x4
t

[
76 + 384K − 24lSS − s2

2β (110 + 480K − 90lSS)

− s4
β (248 − 408lSS + 24lSt )

]

− x5
t s2β (76 + 384K − 24lSS)

− x6
t

[
s2

2β (19 + 96K − 6lSS) + s4
β (20 − 24lSS)

]}
, (12)

where K = −√
1/3

∫ π/6
0 dx ln(2 cos x) ≈ −0.1953256.

3 Numerical results

3.1 Size of the O(v2/M2
S) terms

In this section, we study the effect of the O(v2/M2
S) terms

�v on the Higgs pole mass as a function of the SUSY scale.
Even though our approach is applicable to a general SUSY
mass spectrum, we focus on the degenerate mass case in our
numerical examples. For convenience we define the (non-
squared) contribution of these terms as

�̄v = �̄0�+1�
v + �̄2�

v , (13a)

�̄0�+1�
v =

[
(MEFT

h )2 + �0�+1�
v

]1/2 − MEFT
h , (13b)

�̄2�
v =

[
(MEFT

h )2 + �0�+1�
v + �2�

v

]1/2

−
[
(MEFT

h )2 + �0�+1�
v

]1/2
. (13c)

Setting tan β = 20, we find that the O(v2/M2
S) terms can be

sizable below MS � 0.5 TeV, while they are small as long as
MS � 1 TeV, see Fig. 1. Specifically, we find for tan β = 20
and MS � 1 TeV:

xt = 0 : |�̄v| � 0.10 GeV, (14a)

xt = −√
6 : |�̄v| � 0.15 GeV, (14b)

xt = √
6 : |�̄v| � 0.25 GeV. (14c)

Other values of tan β lead to similar observations.
The sign and the order of magnitude of these results are in

agreement with the contribution due to higher-dimensional
operators as presented in Ref. [53]. Since the remaining
uncertainty on the Higgs pole mass is dominated by the uncer-
tainty induced by the extraction of the running top Yukawa
coupling, which has been estimated to be between 0.2 and
0.6 GeV [48,53,58,63], we conclude that for MS � 1 TeV
the O(v2/M2

S) terms are negligible and the EFT approach
leads to a more precise value of the Higgs pole mass than
the fixed-order result. These findings are compatible with
the transition region of Mequal

S = 1.0–1.3 TeV estimated in
Ref. [58].

3.2 Comparison of fixed-order, EFT, and hybrid results

3.2.1 Convergence for high SUSY scales

In Fig. 2, we compare the hybrid result defined through Eq. (3)
(red solid line) with the three-loop DR

′ fixed-order approx-
imation MFO

h of FlexibleSUSY+Himalaya [35] (blue
dashed line) and the three-loop EFT result MEFT

h of Flex-

ibleSUSY/HSSUSY+Himalaya [50] (black dash-dotted
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Fig. 1 Size of the O(v2/M2
S) terms

line), which resums large logarithms through N3LO. The
red band is our uncertainty estimate on the hybrid result (see
Sect. 3.2.3 below for details). Since �v → 0 for MS → ∞,
the hybrid curve converges towards the EFT curve in this
limit. Note that in the scenario with xt = −√

6 for val-
ues of MS below ∼ 600 GeV, no suitable mass hierarchy is
available in Himalaya. The three-loop fixed-order contri-
bution is set to zero in this case, which means that the EFT
curve and the hybrid calculation is formally consistent only
at the two-loop level for lower scales. On the other hand,
for MS → MZ one may expect the hybrid curve to converge
towards the three-loop fixed-order curve. However, we find a
finite offset at low energies of up to ∼ 0.5 GeV for xt = 0 and

∼ 1.5 GeV for xt = −√
6. This offset results from higher

order O(v2/M2
S) terms, which are not suppressed in the low

MS region. The origin of these will be investigated in the
following sub-section.

In Fig. 3 a comparison of the hybrid results with the three-
loop FO and EFT ones is shown as a function of xt for the
degenerate scenario with tan β = 20 and MS = 3 TeV, where
the MSSM value of the Higgs pole mass can be in agreement
with the experimentally measured value. As our derivation
of the �v terms from above suggests, we find agreement of
the hybrid result with the EFT within 0.5 GeV for such a large
SUSY scale. The largest deviations of 0.5 GeV occur in the
region |xt | > 3, while in the region |xt | < 3 the deviation
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Fig. 2 Comparison of the three-loop FO, EFT, and hybrid results

is smaller than 0.1 GeV. However, this region suffers from a
problematic feature of the fixed-order calculation, which is
the occurrence of tachyonic DR

′ masses of the heavy CP-even,
the CP-odd, and the charged Higgs bosons at the electroweak
scale for xt > 0; this will be discussed in more detail in
Sect. 3.3.

3.2.2 Convergence for low SUSY scales

As described in Refs. [47,59], the (hybrid) FlexibleEFT-
Higgs calculation implemented in FlexibleSUSY since ver-
sion 2.0.0 includes all one-loop contributions and resums all
large logarithmic corrections at the next-to-leading logarith-
mic level (NLL). When compared to the one-loop fixed-order

DR
′ result of FlexibleSUSY, one finds very good agreement

in the limit MS → MZ if tan β → 1 and xt = 0. However, for
larger values of tan β or xt the FlexibleEFTHiggs calculation
does not converge well towards the fixed-order calculation
for MS → MZ due to larger incomplete higher-order terms
picked up by both calculations, as can be seen in Fig. 2. In
the following we give examples of sources of such incom-
plete higher-order terms. We start from a scenario with small
tan β and xt = 0, where the incomplete higher-order terms
are small. We then step-wise increase tan β and MS and dis-
cuss the occurring deviations between the two calculations.
Note, that the incomplete higher-order terms are also sensi-
tive to the value of xt . However, their xt dependence at the
electroweak scale cannot be properly studied for large values
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Fig. 3 Comparison of the three-loop FO, EFT, and hybrid results as functions of Xt/MS

of xt with the DR
′ calculation implemented in Flexible-

SUSY due to the occurrence of a tachyonic DR
′ stop mass at

MS ∼ MZ , see Sect. 3.3.
The first row in Table 1 shows the scenario with tan β = 3,

MS = MZ , and xt = 0, where both results agree within
5 MeV (0.01%). When increasing tan β, the two-loop dif-
ferences between the two Higgs mass values become more
sizable, increasing to 0.089 GeV (0.1%) for tan β = 20, see
the second row of Table 1. There are multiple sources of such
tan β-dependent higher-order terms in both calculations: In
the fixed-order calculation, for example, an iteration over the
squared momentum p2 is used to find the solution of the
equation

0 = det

{
p2δi j − (mMSSM

h )2
i j + Re

[

h(p

2)i j − (th)i
vi

δi j

]}
,

(15)

where 
h(p2) is the momentum-dependent CP-even Higgs
self-energy matrix and th the tadpole vector (see Ref. [64],
for example). This iteration leads to higher-order SUSY con-
tributions of O(ynt y

m
b v2/M2

S) (n + m ≥ 6) which increase
with tan β, for example due to the increasing bottom Yukawa
coupling yb. In the FlexibleEFTHiggs approach such terms
are absent because p2-terms are taken into account only at
the one-loop level, and thus no momentum iteration needs to
be performed. However, in theFlexibleEFTHiggs calculation
other tan β-dependent higher-order terms are generated, for
example by inserting the one-loop threshold corrections for
the MSSM DR

′ electroweak gauge couplings g1 and g2 into
the tree-level term (mMSSM

h )2 on the r.h.s. of Eq. (2) in order
to express the quartic Higgs coupling of the SM in terms of

SM MS gauge couplings:

(MMSSM
h )2 = (mMSSM

h )2 + �1�(mMSSM
h )2, (16a)

(mMSSM
h )2 = 1

4

(
3

5
g2

1 + g2
2

)
c2

2β v2

×
[

1 +
(

3

5
g2

1 + g2
2

)
(c2

2β − 1)
v2

4m2
A

]

+ O
(

v4

m4
A

)
. (16b)

Since the tree-level MSSM DR
′ Higgs mass (mMSSM

h )2 initially
depends on g2

1, g2
2, and c2β ≡ cos 2β, the insertion of the

threshold corrections generates two-loop terms, which are of
electroweak order O(gn1g

m
2 c2k

2βv2/m2
A) and depend on tan β.

Note that these are just two of several possible sources for
incomplete higher-order tan β-dependent terms by which the
two formally one-loop approximations differ.

When the SUSY scale is increased to MS = Mt (third row
in Table 1), renormalization group running effects come into
play, because the scale at which the running couplings are
extracted (Q = MZ ) is no longer identical to the scale where
the Higgs pole mass is calculated at (Q = MS = Mt ). While
in FlexibleEFTHiggs the SM RGEs are used to evolve the
running couplings from MZ → Mt , the fixed-order calcula-
tion uses MSSM RGEs. This raises the difference between
the two results to −0.387 GeV (−0.4%) in our example.
For larger SUSY scales, this difference increases further, as
shown in 4th and 5th rows of Table 1 for MS = 200 GeV
and MS = 500 GeV, respectively. For these scales, logarith-
mic corrections of the form log(MS/Mt ) occur, which get
resummed in the FlexibleEFTHiggs calculation, but not in
the fixed-order one. In the latter, the inclusion of two-loop

123



186 Page 8 of 12 Eur. Phys. J. C (2020) 80 :186

Table 1 Comparison of the
one-loop FlexibleEFTHiggs and
n-loop fixed-order DR

′ Higgs
pole mass with FlexibleSUSY

n tan β MS xt MFEFT
h (GeV) MFS

h (GeV) (MFEFT
h − MFS

h )(GeV )

1 3 MZ 0 57.584 57.590 −0.005

1 20 MZ 0 88.725 88.636 +0.089

1 20 Mt 0 95.612 95.999 −0.387

1 20 200 GeV 0 96.733 97.378 −0.645

1 20 500 GeV 0 105.489 107.059 −1.570

2 20 500 GeV 0 105.489 105.411 −0.078

corrections must account for this difference. In fact, when
two-loop corrections are included in the fixed-order calcula-
tion, see the bottom row of Table 1, the difference is reduced
again to −0.078 GeV (−0.07%).

This analysis shows that one cannot expect perfect agree-
ment between the FlexibleEFTHiggs and the fixed-order
results at low SUSY scales MS � 200 GeV, even though
both calculations are formally consistent at their respective
accuracy level. Since the FlexibleEFTHiggs result is part of
our hybrid scheme (3)–(6), the described deviation translates
into a non-convergence of Mhyb

h towards the three-loop fixed-
order result at low SUSY scales in Fig. 2.

3.2.3 Uncertainty estimate

We estimate the uncertainty of the hybrid result by taking
the minimum uncertainty of the FO and EFT results for each
parameter point,

�Mhyb
h = min

{
�MFO

h ,�MEFT
h

}
. (17)

The uncertainty of the three-loop fixed-order calculation,
�MFO

h , is estimated by (a) varying the renormalization scale
QS at which the Higgs pole mass is calculated and (b) by in-
/excluding the two-loop threshold correction for the strong
gauge coupling in the MSSM [65–67]:

�MFO
h = �(QS)MFO

h + �(g3)MFO
h , (18)

with

�(QS)MFO
h = max

QS∈[Mt ,MS ]
∣∣MFO

h (QS) − MFO
h (MS)

∣∣ , (19a)

�(g3)MFO
h =

∣∣∣MFO
h (g1�

3 ) − MFO
h (g2�

3 )

∣∣∣ . (19b)

Even though this uncertainty estimate implicitly assumes a
common SUSY mass MS , in accordance with our numerical
examples in this paper, its application is not restricted to
the exactly degenerate mass case, of course. A general SUSY
spectrum may require more sophisticated estimates of the FO
and the EFT uncertainties though, but Eq. (17) should remain
applicable.

We emphasize that the scale variation of QS in Eq. (19a)
leads to an enhanced sensitivity of �(QS)MFO

h to terms of
the order O(log4(MS/Mt )), compared to the correspond-
ing uncertainty estimates of Refs. [58,59], for example. For
SUSY scales below 0.7–0.8 TeV, the resulting fixed-order
uncertainty is the smaller of the two on the r.h.s. in Eq. (17).
Due to the occurrence of large logarithmic loop corrections,
�MFO

h becomes larger when MS is increased and reaches
about �MFO

h ≈ 2 GeV for MS ≈ 0.7 TeV and xt = −√
6.

The uncertainty of the three-loop EFT calculation,�MEFT
h ,

is estimated by (a) varying the renormalization scale Qt at
which the Higgs pole mass is calculated, (b) varying the
renormalization scale QS at which the MSSM is matched to
the SM, (c) ex-/including the four-loop QCD threshold correc-
tion for the SM top Yukawa coupling [68], and (d) estimating
the effect of O(v2/M2

S) terms from the quartic Higgs cou-
pling along the lines of Refs. [48,52,58]:4

�MEFT
h = �(Qt )MEFT

h + �(QS)MEFT
h + �(ySM

t )MEFT
h

+ �(v2/M2
S)MEFT

h , (20)

with

�(Qt )MEFT
h = max

Q∈[Mt/2,2Mt ]
∣∣MEFT

h (Q) − MEFT
h (Mt )

∣∣ ,
(21a)

�(QS)MEFT
h = 0.5 GeV, (21b)

�(ySM
t )MEFT

h =
∣∣∣MEFT

h (ySM,3�
t ) − MEFT

h (ySM,4�
t )

∣∣∣ , (21c)

�(v2/M2
S)MEFT

h =
∣∣∣MEFT

h − MEFT
h (v2/M2

S)

∣∣∣ . (21d)

�(Qt )MEFT
h is approximately independent of the SUSY scale

and amounts to about 0.2 GeV. The matching scale uncer-
tainty �(QS)MEFT

h has been estimated in Refs. [48,52,58].
It was found that for scenarios as those considered here, the
uncertainty does not exceed 0.5 GeV for MS � 1 TeV. A
generalization of this uncertainty estimate to our result would
require the extension of the underlying procedure to N3LL,

4 I.e. MEFT
h (v2/M2

S) of Eq. (21d) is obtained by scaling the individual
terms in the one-loop threshold correction �λ1� for the quartic coupling
by factors of the order (1 + v2/M2

S).

123



Eur. Phys. J. C (2020) 80 :186 Page 9 of 12 186

which would involve the logarithmic terms at N4LO and their
implementation intoHSSUSY. As long as this is not available,
we content ourselves to conservatively associate the maximal
value of 0.5 GeV (see above) with the matching scale uncer-
tainty, independent of MS . For the uncertainty �(ySM

t )MEFT
h

induced by the SM top Yukawa coupling we follow the pre-
scription of Refs. [48,58], but apply it at the next order in
perturbation theory as required by our results. It amounts to
approximately 0.1 GeV and increases slightly with the SUSY
scale. For SUSY scales above 1–2 TeV, the total uncertainty
of the EFT calculation �MEFT

h is dominated by these three
contributions and amounts to slightly less than 1 GeV, while
�(v2/M2

S)MEFT
h is negligible. This is in agreement with the

results from Sect. 3.1, where it was found that the O(v2/M2
S)

terms are below 0.25 GeV for MS � 1 TeV. Finally, we find
that the uncertainty |δxt + δexp| of the three-loop calculation
of λ given in Ref. [50] is below 2 MeV for the degenerate-
mass scenarios considered here with MS � 1 TeV, and is
thus negligible.

Our combined (hybrid) uncertainty (17) is shown as red
band in Figs. 2 and 3. For degenerate mass scenarios with
tan β = 20, the uncertainty for large MS is fairly constant
and slightly below 1 GeV. Part of this behavior is implied
by our constant choice for �(QS)MEFT

h , of course, but this
accounts only for about 60% of the full band in this region.
The uncertainty increases towards lower MS , according to
the decreasing accuracy of the EFT approach, until Eq. (17)
switches to the FO uncertainty to determine �Mhyb

h . This
happens around MS ∼ 0.7–0.8 GeV, where the hybrid uncer-
tainty reaches up to 2–2.5 GeV for large values of xt . Note
that the numerical values of the FO and the EFT result are
compatible with each other in this region, which underlines
the validity of our approach. Further decreasing MS leads to
a significant improvement of the hybrid uncertainty, reflect-
ing the increasing reliability of the FO approach in low-scale
SUSY scenarios.

Very rarely it happens that the central value of the approach
(EFT or FO) that determines the hybrid uncertainty through
Eq. (17) is not itself contained in the resulting uncertainty
band. In this case, we widen the band correspondingly.

Quite generally, we find that the SUSY scale Mequal
S , where

both the FO and the EFT calculation have the same uncer-
tainty, is between MS ∼ 0.7–0.8 TeV. This region is slightly
lower than our estimate from Sect. 3.1. Due to our differ-
ent uncertainty estimate of the fixed-order calculation, this
region is also below the region of Mequal

S = 1.0–1.3 TeV
estimated in Ref. [58]. For larger values of MS the EFT cal-
culation deviates not more than 0.5 GeV from the hybrid cal-
culation. The behavior of the curves and the associated uncer-
tainty also justifies our estimate with hindsight. For example,
the FO result visibly impacts the hybrid result only for rather
low values of MS � 1 TeV, but there the interval [Mt , MS]

for the renormalization scale variation is sufficiently close to
the weak scale to provide a reasonable estimate of the theory
uncertainty.

3.3 Tachyonic Higgs bosons at the electroweak scale

As described in the previous section, in the fixed-order calcu-
lation the DR

′ masses of the heavy CP-even, the CP-odd, and
the charged Higgs bosons are tachyonic at the scale Q = MZ

for xt � 0. The reason for this is the Bμ parameter, which is
negative at that scale due to the renormalization group run-
ning, see Fig. 4a. In our scenario, the value of Bμ is fixed at
the SUSY scale by the DR

′
CP-odd Higgs mass mA(MS) as

Bμ(MS) = 1

2
sin[2β(MS)]m2

A(MS) ≈ 0.05M2
S, (22)

where we have set tan β(MS) = 20 and m2
A(MS) = M2

S in
the last step. For such a large value of tan β, the one-loop
β-function of the Bμ parameter is approximately given by

βBμ ≈ 3κy2
t (Bμ + 2μAt ) ≈ 3κy2

t (0.05 + 2xt ) M
2
S . (23)

For xt < −0.025 the β-function is negative, which means
that Bμ increases during the renormalization group running
from MS down to MZ , see the green dashed line in Fig. 4a.
However, if xt > −0.025 the β-function is positive so that
Bμ decreases when running down and changes sign at some
low scale Qtach (green dotted line). The value of the scale
Qtach can be larger than MZ if xt and/or MS are large enough,
for example for xt > 0 and MS � 3 TeV. When this happens,
the DR

′ masses of the heavy CP-even, the CP-odd, and the
charged Higgs bosons are tachyonic at Q = MZ , because

m2
H (MZ ) ≈ m2

H±(MZ ) ≈ m2
A(MZ ) = 2Bμ(MZ )

sin[2β(MZ )] < 0.

(24)

In Fig. 4b the value of Bμ(MZ ) is shown as a function of xt
as green dash-dotted line for the scenario with tan β = 20
and MS = 3 TeV. In accordance with the estimate above,
Bμ(MZ ) is in fact negative for positive values of xt , and
the FO Higgs mass calculation (blue dashed/dotted lines)
involves tachyonic DR

′ masses at the electroweak scale. At
the very least, this implies that the loop corrections to the
heavy Higgs boson masses are very large. In some spec-
trum generators, the occurrence of heavy Higgs tachyons is
bypassed by using the pole masses of the heavy Higgs boson
masses in the loop calculations at the low scale, instead of the
DR

′ masses. In FlexibleSUSY, on the other hand, an error
is flagged by default if DR

′ tachyons appear at any scale.
Optionally, FlexibleSUSY uses the absolute values of the
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Fig. 4 Left panel: renormalization group running of Bμ(Q) for different values of Xt . Right panel: three-loop fixed-order Higgs pole mass (blue
dashed and dotted lines) and Bμ(Q = MZ ) as a function of Xt/MS (green dash-dotted line)

tachyonic masses in the loop integrals.5 This option was used
in Figs. 3 and 4b for xt > 0, which explains the kink at xt = 0
in the fixed-order curve in Fig. 3b, as replacing negative by
positive squared masses is not a smooth transition.

In general, the occurrence of these tachyonic states due
to higher order effects appears to make the approach [64] of
matching SM and MSSM parameters at the scale MZ ques-
tionable. For SUSY scales above the TeV scale it might thus be
advisable to perform the matching at a larger scale to avoid
tachyonic states. To our knowledge, this program has not
been pursued in all generality up to now (see Ref. [69], how-
ever). For very large SUSY scales, the FO approach is bound
to fail anyway due to the large logarithms as discussed in the
introduction.

4 Conclusions

We presented a hybrid calculation of the light CP-even Higgs
boson pole mass in the real MSSM by combining FO and EFT
results. Our procedure is based on the DR

′ scheme. Beyond
the relevant two-loop FO corrections and the corresponding
resummation of large logarithms through NNLL, our result
includes the three-loop FO corrections and the resummation
through N3LL w.r.t. the strong coupling.

The estimated uncertainty of our hybrid result is below
1 GeV in most of the relevant parameter space. An exception
is the transition region MS = 0.7–2 TeV, where both the
fixed-order and the EFT calculation are less precise and the
uncertainty can be up to ∼ 2 GeV.

By comparing the hybrid calculation with the pure EFT
calculation, we can estimate the size of the terms of

5 This is achieved by setting the flag FlexibleSUSY[12] = 1 in
the SLHA input or forceOutput -> 1 in theMathematica inter-
face.

O(v2/M2
S) which are typically neglected in a pure EFT

approach. For degenerate SUSY mass parameters we find
that these terms are smaller than 0.25 GeV as long as MS �
1 TeV, which is the region where the degenerate scenarios
can be compatible with the experimental value for the Higgs
mass [52]. Combining this with the fact that for MS � 0.7–
0.8 TeV the pure EFT calculation has a smaller uncertainty
than the FO calculation (see also Ref. [58]), we conclude that
a pure EFT calculation provides an excellent approximation
in the MSSM for the degenerate SUSY mass parameter sce-
narios.
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