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Abstract We consider the structure of halos of the axionic
dark matter, which surround massive relativistic objects
with static spherically symmetric gravitational field and
monopole-type magneto-electric fields. We work with the
model of pseudoscalar field with the extended periodic poten-
tial, which depends on additional arguments proportional to
the moduli of the Killing vectors; in our approach they play
the roles of model guiding functions. The covariant model of
the axion field with this modified potential is equipped with
the extended formalism of the Killing vector fields, which is
established in analogy with the formalism of the Einstein–
Aether theory, based on the introduction of a unit timelike
dynamic vector field. We study the equilibrium state of the
axion field, for which the extended potential and its derivative
vanish, and illustrate the established formalism by the anal-
ysis of two-level axionic dark matter profiles, for which the
stage delimiters relate to the critical values of the modulus
of the timelike Killing vector field.

1 Introduction

Dark matter is one of the key elements of modern scenaria
of the Universe evolution, of the galactic formation and rota-
tion [1–3]. Dark matter forms halos and subhalos, filaments
and walls; their structures give a significant part of informa-
tion about the gravitational field of the central bodies, which
are surrounded by these galactic units. It is impossible to
observe dark matter directly, since it neither emits, nor scat-
ters light, that is why theoretical predictions based on the
structure modeling of the dark matter halos, subhalos, fila-
ments and walls play the important role in the investigations
of these enigmatic cosmological units.
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We follow the line that the axions, massive pseudo-
Goldstone bosons, predicted in the works [4–6], are the par-
ticles, which are responsible for the phenomena, associated
with the dark matter. During the last forty years the basic
aspects of the axion theory, the cosmological and astrophys-
ical applications of the axion models were well documented
in many works (see, e.g., [7–16]). During the last decade new
trends in the theory of the axionic dark matter appeared. First
of all, we mean the non-minimal extensions of the axion mod-
els, which are based on the F(R) modifications of the theory
of gravity (see, e.g., [17–21]), on the non-minimal extensions
of the theory of the axion-photon coupling [22], and on the
axionically extended models of the dynamic aether [23]. The
second trend is associated with the recent surge of interest
to the black hole mergers and supermassive black holes: the
axionic dark matter can play the role of a marker revealing
specific features of the strong gravitational field (see, e.g.,
[24,25] as illustrations). The third trend is connected with
the modeling of axionic structures of different scales, associ-
ated with the galactic halos, miniclusters, halos surrounding
the magnetars, dyons, etc. (see, e.g., [26–29]). We have to
emphasize, that one of the most influential idea in these new
models is the idea of internal self-interaction in the axionic
systems. The axionic dark matter, apparently, is not a sim-
ple collisionless gas without pressure, which interacts by the
gravitational field only; probably, the axions form correlated
systems. The most known model of this type is the model
of axionic Bose–Einstein condensate, presented in [30]. The
alternative description of correlated axionic systems is based
on the models containing the potential of the pseudoscalar
field V (φ2), which can have the polynomial form φn , the
φ4 Higgs-type structure, or the nonlinear periodic form (see,
e.g., [31]).

We focus on the description of the axionic systems based
on the analysis of the equation for the pseudoscalar field φ,
associated with axions [32,33]. New aspects of this theory
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are connected with the structure of the pseudoscalar field
potential V . The standard potential is considered as an even
function of the argument φ only, i.e., V = V (φ2); we extend
the theory by introducing the function of s + 1 arguments
V (φ2, ξ(1), ξ(2), . . . ξ(s)), where

{
ξ(a)

}
is the set of some

scalars (a = 1, 2, . . . s). What can be the origin of these
scalars?

(i) Scalars associated with the Einstein–Aether theory.
The extension of the potential was prompted by the anal-
ogy with the Einstein–Aether theory [34–36], which is based
on the introduction of a timelike dynamic vector field Ui

normalized by unity (gikUiUk = 1). In the framework of
the Einstein–Aether theory one can introduce into the poten-
tial V four auxiliary scalars based on the decomposition of
the covariant derivative ∇mUn (see, e.g., [37–40] for details
and references). The first scalar is the divergence of the
vector field (ξ(1) → � ≡ ∇mUm). The second scalar is
the square of the acceleration four-vector ai = Uk∇kUi

(ξ(2) → a2 ≡ gikaiak). The third scalar is the square of
the symmetric shear tensor σpq (ξ(3) → σ 2 ≡ σikσ

ik), and
the fourth scalar is constructed using the square of the skew-
symmetric vorticity tensor ωik (ξ(4) → ω2 ≡ ωikω

ik). The
scalar coinciding with the modulus of the vector Ui is equal
to one and thus it can not be considered as a guiding function.
In other words, when the theory possesses intrinsic unit vec-
tor field, we can add four new arguments to the potential of
the pseudoscalar field V , and can use this covariant extension
for detailing the structure of the dark matter configuration.

There are three illustrations of this idea. The first one
relates to the Friedmann type cosmology, for which ai = 0,
σik = 0, ωik = 0, and the only scalar � proportional to the
Hubble function H(t) (� = 3H ) is the nonvanishing guid-
ing function (see, e.g., [41,42]). The second illustration is
connected with the pp-wave symmetric spacetimes with two
auxiliary nonvanishing scalars: � and σ 2 [43,44]. The third
example appeared in the Gödel type model, in the framework
of which the nonvanishing parameter ω2 can be considered
as the guiding function [45].

(ii) Scalars associated with the Killing vectors.
If the model does not contain vector field Ui associated with
the dynamic aether, but possesses some specific symmetries,
described by the set of Killing vectors and/or conformal
Killing vectors ξ i(a) (a = 1, 2, . . . s), we suggest to use the
new scalar quantities of two types. First, we can consider the

moduli of the Killing vectors, ξ(a) =
√

|gmnξ
m
(a)ξ

n
(a)| (or their

combinations) as the auxiliary arguments of the modified
axionic potential. It was impossible in the Einstein–Aether
theory, since the modulus of the velocity field Ui is equal to
one. The scalar quantities of the second type contain nonva-
nishing convolutions of the derivative ∇mξn . When we deal

with the standard Killing vector, which satisfies the equation
∇mξn+∇nξm = 0, the divergence ∇mξm is equal to zero, but
for the so-called conformal Killing vector, which satisfies
the equation ∇mξn+∇nξm = 1

2gmn∇sξ
s , the scalar ∇sξ

s is
nonvanishing and can be used for the physical modeling. In
its turn, for the standard Killing vector the skew-symmetric
quantity 1

2 [∇mξn−∇nξm] = ∇mξn is nonvanishing, and its
square can be used in analogy with the square of vorticity
tensor ωmn appeared in the Einstein–Aether theory. Illustra-
tion of this idea can be found in [28], where the model with
the static spherically symmetric spacetime of the Reissner–
Nordström type is analyzed.

(iii) Why the new guiding scalar functions are necessary for
the extended analysis?
In order to describe the new units in the dark matter halos
(filaments, walls, etc.), we need of covariant scheme to fix
some lines and surfaces. For instance, when we deal with
a static spherically symmetric gravitational field and try to
separate one spatial domain from the other, we could use the
well-known Heaviside function h; however, we can not insert
into the Lagrangian the term h(r−r∗), since the difference
of radial coordinates is non-invariant quantity. Nevertheless,
we can use the term h(ξ − ξ∗), where ξ is the appropriate
additional scalar, and ξ∗ is its critical value; this scheme is
the covariant one.

(iv) How the paper is organized?
In order to provide the self-consistency of the approach,
which is based on the extended formalism of Killing vectors,
we have to introduce the Killing vector field as the dynamic
field, i.e., we have to add into the Lagrangian the scalar terms
quadratic in the covariant derivative ∇mξn , and to develop the
variation formalism in analogy with the formalism used in the
Einstein–Aether theory. In Sect. 2.1 of this work we establish
the strict covariant formalism justifying this idea in general
case.

Since the additional scalars, based on the Killing vector
fields, are designed to be used for description of the pseu-
doscalar (axion) field, we have to modify the axionic periodic
potential and to derive the correspondingly modified master
equations for the axion, electromagnetic and gravitational
fields; in Sect. 2.2 we present these modified master equa-
tions and discuss the concept of the equilibrium state of the
axionic subsystem.

In Sect. 3 we apply the formalism for description of two-
level distribution of the axionic dark matter near the static
spherically symmetric objects with magnetic and electric
fields; the analysis of the obtained key equation is presented
in Sect. 4. In Sect. 5 we discuss the features of the profiles
of the axionic dark matter obtained in the framework of the
suggested model.
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2 Extended formalism, which includes Killing vector
fields

2.1 Analogy with the Einstein–Aether theory

2.1.1 Action functional

The action functional of the Einstein–Aether theory is known
to have the form

S(EA) =
∫

d4x
√−g

1

2κ

{
(R + 2�) + λ(UmUm − 1)

+Kabmn∇aUm∇bUn

}
, (1)

where R is the Ricci scalar; � is the cosmological constant;
Ui is the vector field, ∇k is the covariant derivative; Kabmn

is the Jacobson’s constitutive tensor:

Kabmn = C1g
abgmn+C2g

amgbn

+C3g
angbm+C4U

aUbgmn, (2)

which contains four phenomenological constants C1, C2, C3

and C4. The scalar quantity λ is the Lagrange multiplier;
variation with respect to λ gives the constraint gmnUmUn =
1; this quadratic relationship is, in fact, the normalization
condition for the vector field.

When the vector field Ui is absent, but there exists the
Killing vector field ξ i , we suggest to work with the action
functional similar to (1):

S(EK) =
∫

d4x
√−g

1

2κ

{
(R + 2�)

+λ̃

[
∇(kξm)∇(kξm)−1

4
(∇nξ

n)2
]

+Kabmn∇aξm∇bξn

}
, (3)

where the parentheses denote symmetrization: ∇(iξm) =
1
2 (∇iξm+∇mξi ), and the tensor Kabmn

Kabmn = K1g
abgmn + K2g

amgbn + K3g
angbm (4)

contains only three phenomenological constants K1, K2 and
K3 (we assume that the constitutive tensorKabmn contains the
metric tensor, but does not include the Killing vector itself).
In other words, we consider the vector field ξ i as a dynamic
quantity in analogy with the aether velocity field, however,
instead of the algebraic constraint we use the differential one.

2.1.2 Variation with respect to λ̃ and Killing equations

Variation of the action functional (3) with respect to the
Lagrange multiplier λ̃ gives the constraint

∇(kξm)∇(kξm) − 1

4
(∇nξ

n)2 = 0, (5)

which can be rewritten as follows:
[
∇(kξm)−1

4
gkm∇nξ

n
] [

∇(kξm)−1

4
gkm∇sξ

s
]

= 0. (6)

This equation is satisfied, if

∇kξm+∇mξk = 1

2
gkm∇nξ

n . (7)

Generally speaking, (7) can be classified as the sufficient but
not the necessary condition for the fulfillment of the quadratic
relationship (6), nevertheless, here we do not discuss this fine
mathematical detail.

Clearly, (7) are the equations for the so-called conformal
Killing vector, if ∇nξ

n �= 0, and for the standard Killing
vector, if ∇nξ

n = 0 (see, e.g., [46] for details). Calculation
of the divergence of the left and right-hand sides of (7) yields

∇m∇mξk + Rkjξ
j = −1

2
∇k(∇nξ

n). (8)

Also, when we deal with the standard Killing vector field
(i.e., ∇kξ

k = 0) we can use the relationships

∇s∇mξk + R jskmξ j = 0, (9)

as the integrability condition of the first order of the Killing
equation. Here, as usual, Rkj = Rm

kmj is the Ricci tensor,

and Ri
kmj is the Riemann tensor.

2.1.3 Variation with respect to ξ i

When one deals with the Einstein–Aether theory, the vari-
ation with respect to the velocity four-vector Ui gives the
master equation

∇a

[
Kabjn∇bUn

]
= λU j + C4U

b∇bUn∇ jUn . (10)

Thus, the normalization condition yields

λ = Um∇a

[
Kabmn∇bUn

]
− C4U

b∇bUn U
a∇aU

n . (11)

When we deal with the extended formalism, which includes
the Killing vector field, variation of the functional (3) with
respect to ξ j gives the equations

∇a

{
λ̃

[
∇(aξm) − 1

4
∇nξ

n
]

+ 2Kabjn∇bξn

}
= 0. (12)

Keeping in mind the relationships (4), (7) and (8) we can
reduce these equations to the relations

(K3−K1) R jsξ
s+

(
K2+K3−1

2
K1

)
∇ j∇mξm = 0, (13)

which does not include λ̃. The Eq. (13) is satisfied identically,
when

K2 = −1

2
K1, K3 = K1 (14)
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for arbitrary conformal Killing vector with ∇nξ
n �= 0. When

we deal with the standard Killing vector, i.e., ∇nξ
n = 0, the

parameter K2 remains arbitrary and hidden.

2.1.4 Variation with respect to metric

When one deals with the Einstein–Aether theory the contri-
bution of the vector field into the total stress-energy tensor is
known to have the following form

T (U)
ik = 1

2
gikJ am∇aUm

+∇m [
U(iJk)m

] −∇m [Jm(iUk)
] −∇m

[J(ik)U
m]

+C1
[
(∇mUi )(∇mUk)−(∇iUm∇kU

m)
]

+C4(U
a∇aUi )(U

b∇bUk), (15)

where the following definition is used:

J am = Kabmn∇bUn . (16)

In order to obtain the similar formula for our extended model,
let us find the corresponding analogies. We assume now that
K1 = K3, K2 = − 1

2K1, and obtain that

Kabmn = K1

(
gabgmn + gangbm − 1

2
gamgbn

)
, (17)

Kabmn∇bξn = 2K1

[
∇(aξm) − 1

4
gam∇nξ

n
]

, (18)

Kabmn∇aξm∇bξn = 2K1[
∇(aξm)∇(aξm)−1

4

(∇nξ
n)2

]
. (19)

This means that the corresponding term in the integral (3)
can be rewritten as follows

λ∗
[
∇(aξm)∇(aξm) − 1

4
∇nξ

n
]

, λ∗ ≡ (λ̃ + 2K1). (20)

Thus, the analogies are the following: first, we have to omit
C4; second, the analog of the term J am is symmetric and it
vanishes on the solutions to the Killing equations. In other
words, following this analogy we obtain the vanishing stress-
energy tensor associated with the Killing vector field.

If we fulfil the direct variation of the action functional
(3) with respect to metric, the corresponding effective stress-
energy tensor T (K)

pq associated with the contribution of the
Killing vector field can be written as follows:

T (K)
pq = (−2)√−g

δ

δgpq

{√−gλ∗gabgmn

×
[
∇(aξm)−1

4
gam(∇sξ

s)

] [
∇(bξn)−1

4
gbn(∇lξ

l)

]}
.

(21)

Using (7) and (8), we can show that this tensor takes zero
value, T (K)

pq = 0. This means that in the suggested scheme

there are no additional contributions to the equations of the
gravitational field associated with conformal and/ot standard
Killing vector fields.

2.1.5 Short summary

1. If we consider the proposed scheme of using of the
Killing vector field as a dynamic field based on the action
functional (3) with coupling parameters (14), constraint
(7) and its differential consequence (8), we obtain non-
violated equations for the gravitational field.

2. If we consider the s-parameter group and deal with
the set of Killing vector fields

{
ξ(a)

}
(a = 1, 2, ..s),

we can extend the model by inserting the term
∑

a λ∗
(a)

[
∇(mξ(a)n)∇(mξ

n)
(a) − 1

4 (∇nξ
n
(a))

2
]

instead of

λ∗ [∇(mξn)∇(mξn) − 1
4 (∇nξ

n)2
]

into the Lagrangian.
3. For the spatially homogeneous cosmological models of

the Friedmann type with the scale factor a(t) there are
one conformal time-like Killing vector ξ i(0) = a(t)δi0, and

three space-like divergence-free Killing vectors ξ i(α) =
δiα , where α = 1, 2, 3. Clearly, using the moduli of
these Killing vectors we can construct only one addi-
tional scalar ξ = a(t), or can choose more convenient
quantity x = a(t)

a(t0)
(see, e.g., [47–49]).

4. When we consider a static model, we can use the time-like
Killing vector ξ i(0) = δi0, so that its modulus ξ(0) = √

g00

can play the role of the guiding function (see [28]).
5. For spherically symmetric models we can take the

azimuthal Killing vector ξ i(ϕ) = δiϕ to obtain the addi-
tional scalar ξ(ϕ) = r sin θ , where, as usual, r is the radial
variable, θ is the meridional angle, ϕ is the azimuthal
angle.

6. When we deal with the spacetimes with the so-called pp-
wave symmetry, we obtain one covariant constant null
Killing vector ξ i(v) = δi0−δi1 and two space-like Killing

vectors ξ i(2) = δi2 and ξ i(3) = δi3. Thus, we can use two

moduli ξ(2) = √|g22| and ξ(3) = √|g33|, as well as, the
scalar product gikξ i(2)ξ

k
(3) = g23, as additional guiding

functions.

2.2 Total action functional and extended master equations
for interacting fields

2.2.1 Extended action functional

Let us consider now the total action functional

S(total) =
∫

d4x
√−g

{
L(matter) + 1

2κ
(R + 2�)

+ 1

2κ

∑

a

λ∗
(a)

[
∇(mξ(a)n)∇(mξ

n)
(a) − 1

4
(∇nξ

n
(a))

2
]
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+1

4

(
Fmn+φF∗

mn

)
Fmn

−1

2
�2

0

(∇mφ∇mφ−V
)}

. (22)

It describes the electromagnetic field, represented in terms
of the Maxwell tensor Fmn and its dual F∗

mn , which interacts
with the pseudoscalar (axion) field φ with the potential V ;
L(matter) is the Lagrangian of a baryonic matter; the quantity
�0 is reciprocal to the coupling constant of the axion-photon
interaction 1

�0
= gAγ γ (see, e.g., [50] for its observational

constraints).

2.2.2 Ansatz about an equilibrium state of the axion system

We assume now that the potential of the pseudoscalar field
has the periodic structure

V (φ, ξ(1), . . . ξ(s)) = m2
A�2∗

2π2

[
1 − cos

(
2πφ

�∗

)]
, (23)

where �∗ = �∗(ξ(1), . . . ξ(s)) is a function of the moduli
of the Killing vectors ξ(a). When φ = n�∗ with arbitrary
integer n, the potential and its derivative take zero values

V|φ=n�∗ = 0,

(
∂V

∂φ

)

|φ=n�∗
= 0, (24)

the values φ = n�∗ correspond to minima of the poten-
tial. The coefficient in front of the periodic function in (23)
is chosen so that, when φ has a small deviation from the
minimum value φ = n�∗ (i.e., when φ = n�∗+ψ and
|ψ | << 1), the potential converts into V → m2

Aψ2. Keep-
ing in mind the mechanical analogy that equilibrium states
of dynamic systems can be realized just in the minimum of
the corresponding potential, we use below the special term
equilibrium state of the axion field, φ(eq), if the potential of
the pseudoscalar field φ and its derivative with respect to φ

takes zero value at φ = φ(eq).

2.2.3 Extended master equations

The variation procedure gives the system of master equations
of the model, which contains four sub-sets.

(i) The first sub-set appears as the result of variation of the
total functional (22) with respect to the electromagnetic
potential Ai ; it includes the extended Maxwell equa-
tions

∇k

[
Fik+φF∗ik] = 0, (25)

Fik = ∇i Ak − ∇k Ai ⇒ ∇k F
ik∗ = 0. (26)

When the axion field is in the equilibrium state, we
have to replace φ with n�∗ in (25).

(ii) The second sub-set consists of one equation for the
pseudoscalar field:

∇k∇kφ + 1

2

∂V

∂φ
= − 1

4�2
0

F∗
mnF

mn, (27)

it is the result of variation of the total action functional
with respect to φ. When the axion field is in the equi-
librium state this equation converts into

∇k∇k�∗ = − 1

4n�2
0

F∗
mnF

mn . (28)

(iii) The third subset appears as the result of variation with
respect to the vector fields ξ i(a); it has the form

∇k

{
λ∗

(a)

[
∇(kξ

m)
(a) − 1

4
gkm(∇nξ

n
(a))

2
]}

= −κ�2
0

(
∂V

∂�∗

) (
∂�∗
∂ξ(a)

) (
ξm(a)

ξ(a)

)

. (29)

When we deal with the standard and/or conformal
Killing vectors ξ(a), the left-hand side of this equa-
tion vanishes, as it was shown in Section IIA. When
the axion field is in the equilibrium state, the quan-
tity ∂V

∂�∗ [see (23)] also is equal to zero. In this
sense, our scheme of extension of the potential of
the pseudoscalar (axion) field using the moduli of the
Killing vectors is self-consistent, when we assume that
the axion field takes one of the equilibrium values
±�∗,±2�∗, . . . ,±n�∗, . . . In other words, the equa-
tions for the fields ξ(a) coincide with the Killing equa-
tions (7).

(iv) Variation with respect to metric gives the equations for
the gravitational field in the following form:

1

κ

[
Rik−1

2
Rgik−�gik

]

= T (m)
ik +T (axion)

ik +T (em)
ik +T (V)

ik . (30)

Here the stress-energy tensors of the matter, of the pseu-
doscalar (axion) field and of the electromagnetic field
are given, respectively, by

T (m)
ik = − 2√−g

δ

δgik

[√−gL(matter)
]
, (31)

T (axion)
ik = �2

0

[
∇iφ∇kφ − 1

2
gik

(∇nφ∇nφ − V
)]

,

(32)

T (em)
ik = 1

4
gik FmnF

mn − Fin Fk
n . (33)
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The last term relates to the contribution of the interac-
tion between the axion field and Killing vector field; it
can be written as follows:

T (V)
ik = 1

2
�2

0

(
∂V

∂�∗

)∑

a

ξi(a)ξk(a)

ξ(a)

(
∂�∗
∂ξ(a)

)
. (34)

The term ∂V
∂�∗ can be presented in the form:

∂V

∂�∗
= 2

�∗
V − m2

Aφ

π
sin

(
2πφ

�∗

)
. (35)

Clearly, when the axion field is in the equilibrium state,
i.e., φ = n�∗, the term T (V)

ik vanishes, and the gravita-
tional field equations remain non-violated.

3 Master equations for the model of static spherically
symmetric gravitational field

3.1 Geometry of the outer zone and representation of the
guiding functions

Let us consider now an outer zone of a static spherically
symmetric object, which possesses a magnetic charge μ and
an electric charge q; the term |Q| ≡ √

μ2+q2 describes
the hybrid charge. The mentioned object can be presented,
for instance, by a charged black hole; in this case the outer
zone covers the spacetime domain from the outer black hole
horizon to the infinity. When we consider a dyon, we deal
with the zone, which covers the domain from the boundary
of the solid body of this object to the infinity. We assume that
in both cases the metric in the outer zone can be presented
as follows:

ds2 = N (r)dt2 − dr2

N (r)
− r2

(
dθ2 + sin2 θdϕ2

)
, (36)

and the metric coefficient N (r) is effectively described by
the Reissner–Nordström function

N = 1 − 2M

r
+ Q2

r2 . (37)

3.1.1 First guiding function, ξ

The static spacetime with the metric (36) is known to admit
the existence of the time-like Killing vector field ξ i = δi0,
and the modulus of this four-vector is ξ ≡ √

N (r). The value
of the modulus ξ on the outer Reissner–Nordström horizon
r+ = M+√

M2−Q2 is equal to zero, ξ(r+) = 0, and its
value at infinity is equal to one, ξ(∞) = 1. In other words,
the scalar ξ takes values in the interval (0, 1) and can be
used as the invariant delimiter of the first type. This means
that if one needs to distinguish the specific sphere r = r∗,

one can use this first scalar ξ and the appropriate delimiter

ξ = ξ∗ =
√

1 − 2M
r∗ + Q2

r2∗
.

3.1.2 Second guiding function, η

The spacetime with the metric (36) admits the so-called
azimuthal Killing vector ξ i(ϕ) = δiϕ , whose modulus is
ξ(ϕ) = r sin θ . Based on this fact we introduce the trans-
formed scalar quantity

η ≡ arcsin
ξ(ϕ)

(
1 − ξ2

)

[
M +

√
M2 − Q2

(
1 − ξ2

)] , (38)

which coincides with the meridional angle θ = η; it can be
used as a delimiter to distinguish some special value of the
angle θ = θ∗.

3.1.3 Third guiding function, ζ

Also, the spacetime with the metric (36) admits two Killing
vectors

ξ i(1) = sin ϕ δiθ+ctgθ cos ϕ δiϕ,

ξ i(2) = cos ϕ δiθ−ctgθ sin ϕ δiϕ. (39)

The difference of their squares

ξ2
(1) − ξ2

(2) = r2 sin2 θ cos 2ϕ (40)

gives the hint for reconstruction of the third guiding function
ζ :

ζ ≡ 1

2
arccos

[
ξ2
(1) − ξ2

(2)

ξ2
(ϕ)

]

, (41)

which coincides with the azimuthal angle ϕ = ζ . This scalar
can be used as a delimiter to distinguish some special value
of the angle ϕ = ϕ∗.

To conclude, one can say the following: first, when we
intend to introduce on the invariant level the special sphere
(e.g., to mark the dark matter wall) we have to use the first
invariant ξ and the delimiter ξ = ξ∗; second, when we intend
to describe the straight dark matter filament, we can use two
requirements η = θ∗ and ζ = ϕ∗ to fix the corresponding
line. In this paper we will illustrate the idea to use the scalar
ξ only; we plan to discuss the problem of filaments in the
next work.

3.2 Master equations of the axionic magneto-electro-statics

3.2.1 The key equation

The Eq. (25) for the electromagnetic field near the static
spherically symmetric dyon are known to be reduced to one
equation

123



Eur. Phys. J. C (2020) 80 :145 Page 7 of 12 145

d

dr

(
r2 d A0

dr
+ μφ

)
= 0, (42)

where A0(r) is the electrostatic potential, and the magnetic
charge μ is associated with the magnetic potential Aϕ =
μ(1− cos θ) (see, e.g., [28] for references). Integration of
(42) yields

d A0

dr
= Q(r)

r2 , Q(r) ≡ Q∗ − μφ(r), (43)

where Q(r) is the so-called effective charge, which depends
on the axion field, and Q∗ is the integration constant. When
we search for solutions continuous on the interval r+ < r <

∞, we can link the parameter Q(∞) = Q∗−μφ(∞) with a
total electric chargeq of the object, which could be found by a
distant observer. This means that the quantity −μφ(∞) plays
the role of an effective axionically induced electric charge,
and it is predetermined by the behavior of the pseudoscalar
field at infinity. When we search for solutions continuous on
the interval r+ < r < r∗, we have to link the constant Q∗ with
the value of the pseudoscalar field φ(r∗) on the delimiting
surface r = r∗. Clearly, the electric potential can be found in
quadratures, when the profile φ(r) is known:

A0(r) = A0(r0) + Q∗
(

1

r0
− 1

r

)
− μ

∫ r

r0

dρ

ρ2 φ(ρ). (44)

The equation for the axion field (27) with the potential (23)
can be reduced to the form:

d

dr

(
r2N

dφ

dr

)
− m2

Ar
2�∗

2π
sin

(
2πφ

�∗

)
= − μ

�2
0

d A0

dr
. (45)

Excluding A0 from this equation using (43), and applying
the ansatz concerning the equilibrium state (i.e., φ = n�∗,
n �= 0), we obtain the key equation of the model in terms of
the variable r :

r2 d

dr

(
r2N

d�∗
dr

)
= μ2

�2
0

(
�∗ − Q∗

nμ

)
. (46)

Since ξ = √
N (r), we can rewrite the Eq. (46) in terms of ξ

using the relationship

r = M + √
ξ2Q2 + (M2 − Q2)

1 − ξ2 . (47)

The sign in front of square root is chosen so that the outer
horizon r = r+ = M+√

M2−Q2 corresponds to the value
ξ = 0. We denote the derivative with respect to ξ as a prime,
and obtain the following differential equation:

�′′∗(ξ)+
(

1

ξ
+ ξ

ξ2+ν

)
�′∗(ξ) −

μ2
(
�∗− Q∗

nμ

)

�2
0 Q

2
(
ξ2+ν

) = 0, (48)

with the guiding parameter ν given by

ν = M2−Q2

Q2 . (49)

Below we indicate (48) as the key equation.

3.2.2 Stepwise equilibrium functions

The ansatz about the equilibrium function φ = n�∗(ξ) can
be extended as follows. We assume now, that there are two
domains 0 < ξ < ξ∗ and ξ∗ < ξ < 1, divided by the
spherical surface indicated by the value ξ∗ of the scalar ξ . We
assume that the integer n takes the values n1 and n2 in the first
and second domains, respectively. The equilibrium function
describing the pseudoscalar field can be now presented by
the stepwise function

φ = φ(eq) = �∗(ξ) [n1h(ξ∗ − ξ) + n2h(ξ − ξ∗)] , (50)

where h(z) is the Heaviside function, equal to one, when z ≥
0 and to zero, when z < 0. Why this extension is considered
to be interesting? From the mathematical point of view, this
extension keeps the fundamental properties of the potential
(23), i.e., the potential and its first derivative take zero values,
when the axion field is in the equilibrium state. Indeed, we
can easily check the following formulas:

2π2V (φ(eq))

m2
A�2∗

= 1− cos {2π [n1h(ξ∗−ξ)+n2h(ξ−ξ∗)]}
= 1− cos [2πn1h(ξ∗ − ξ)] cos [2πn2h(ξ − ξ∗)]

+ sin [2πn1h(ξ∗−ξ)] sin [2πn2h(ξ−ξ∗)] = 0, (51)
π

m2
A�∗

dV

dφ
(φ(eq)) = sin {2π [n1h(ξ∗−ξ)+n2h(ξ−ξ∗)]}

= sin [2πn1h(ξ∗−ξ)] cos [2πn2h(ξ − ξ∗)]
+ sin [2πn2h(ξ − ξ∗)] cos [2πn1h(ξ∗−ξ)] = 0. (52)

In principle, the mentioned unique properties of the periodic
potential allow us to extend the described procedure from
the example of the two-level profile to a multi-level profiles.
In other words, one can consider three, four, etc. levels in
the axionic dark matter profiles, using the extension of the
formula (50) for the set of integers n1, n2, n3, n4, etc. As for
the function �∗(ξ), its profile plays the role of a common
envelope.

3.2.3 Conditions on the boundary ξ = ξ∗

For the two-level profiles one has to solve the key equation
(48) in two domains 0 < ξ < ξ∗ and ξ∗ < ξ < 1 separately,
and to assume, that the parameter Q∗ takes different values
in these domains Q(1)∗ �= Q(2)∗ . The envelope function �∗(ξ)

is considered to be continuous near the surface ξ = ξ∗,

[�∗] ≡ lim
ε→0

{�∗(ξ∗ + ε) − �∗(ξ∗ − ε)} = 0. (53)

123



145 Page 8 of 12 Eur. Phys. J. C (2020) 80 :145

This is possible, when the parameters Q(1)∗ and Q(2)∗ are
linked as follows:

Q(1)∗
n1

= Q(2)∗
n2

≡ Q∗
n∗

, (54)

providing the key equation (48) to be the same in both spa-
tial domains. When n1 �= n2, we deal with the jump of the
pseudoscalar field (50) on the boundary ξ = ξ∗

[φ] ≡ lim
ε→0

{φ(ξ∗+ε)−φ(ξ∗−ε)} = (n2−n1)�∗(ξ∗). (55)

The value of this jump [φ] is equal to zero, if the delimiting
value ξ∗ coincides with the null of the envelope function,
i.e., �∗(ξ∗) = 0. Similarly, the jump of the derivative [φ′]
vanishes, when two conditions are satisfied: �∗(ξ∗) = 0 and
�′∗(ξ∗) = 0. Since the integer n1 appears in the denominator
[see (54)], the case n1 = 0 should be considered separately;
now the scheme of analysis is consistent, if we put Q(1)∗ = 0.

From the physical point of view, the condition [φ] �= 0
means that we deal with a wall with a non-zero surface den-
sity of axions. Modeling of the two-level distributions of the
axionic dark matter is also interesting for description of pro-
files near black holes. We mean that a radius can exist, say
r∗, which marks the specific boundary: ξ = ξ∗. When ξ < ξ∗
we find that n1 = 0 and thus φ(eq) = 0, i.e., all the dark mat-
ter particles are absorbed by the black hole. When ξ > ξ∗
the axionic dark matter profile is not empty, i.e. n2 �= 0,
and particles rotating around the black hole can resist to the
gravitational attraction.

4 Analysis of the key equation

4.1 The Heun equation

The key equation (48) is the particular case of the known
Heun equation

Y ′′ + Y ′
[

ε

x−a
+ δ

x−1
+γ

x

]
+ Y

αβx−ρ

(x−a)(x−1)x
= 0, (56)

(see, e.g., [51,52]), which is in its turn the particular case of
the Fuchs equation [53,54]. The solution of this equation is
regular at infinity, when ε+γ+δ = α+β+1. The equation
(48) can be transformed to (56) using the relationship x =
iξ√
ν

, if we put

ε = δ = 1

2
, γ = 1, a = −1, ρ = 0,

α = 1

2
+

√
1

4
+ μ2

�2
0 Q

2
, β = 1

2
−

√
1

4
+ μ2

�2
0 Q

2
. (57)

The dimensionless guiding parameter ν = M2−Q2

Q2 plays
essential role in the analysis of the key equation.

1. The standard model relates to the positive value ν > 0
(or M2 > Q2); in this case we deal with the object (e.g.,
the charged black hole), which has the inner and outer
horizons. The key equation (48) is characterized by one
real singular point only, ξ = 0, which is situated on the
left boundary of the admissible interval for ξ .

2. When ν is negative, we deal with the so-called naked
central singularity in the spacetime (singularity without
horizons). In this case in the key equation there are two
real singular points: ξ = 0 and ξ = √|ν| (we consider ξ

to be positive).
3. The intermediate case ν = 0 (or M2 = Q2) describes

the so-called extremal black hole, in which outer and
inner horizons coincide. Again, the key equation (48) is
characterized by one real singular point only, ξ = 0. First
of all, we consider in more detail this intermediate case.

4.2 M2 = Q2: extremal black hole

4.2.1 General solution to the key equation

When M2 = Q2, the inner and outer horizons of the object
coincide, and the equation (48) can be reduced to the Euler
equation

ξ2�′′∗(ξ) + 2ξ�′∗(ξ) − μ2

�2
0 M

2

(
�∗ − Q∗

n∗μ

)
= 0. (58)

The general solution to (58) has the following form:

�∗(ξ) = Q∗
n∗μ

+ C1ξ
σ1 + C2ξ

σ2 , (59)

where C1 and C2 are the constants of integration, and the
power indices σ1 and σ2

σ1 = 1

2

(√

1 + 4μ2

�2
0 M

2
− 1

)

≥ 0,

σ2 = −1

2

(√

1 + 4μ2

�2
0 M

2
+ 1

)

< 0, (60)

are of the opposite sign. Since σ1+σ2 = −1, we have only
one parameter of modeling, which is associated, in fact, with

the value of the ratio μ2

�2
0 M

2 .

4.2.2 The solution regular in the interval ξ0 < ξ < 1

Here we assume that at ξ = ξ0 > 0 the function �∗(ξ) takes
the value �∗(ξ0). Such a boundary condition is typical for the
case, when we deal with a magnetic star, and the parameter
ξ0 relates to its radius. The spatial infinity r → ∞ relates to
ξ → 1, and the corresponding value of the function �∗ is
indicated as �∗(1) ≡ �∞. Then the solution for the function
�∗(ξ) takes the analytical form
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Fig. 1 Typical profiles of the regular envelope function �∗(ξ) for the
case of extremal charged black hole (Q2 = M2) given by the formula
(61). The first number in the parentheses relates to the value of the

parameter μ2

�2
0 M

2 , the second one corresponds to the parameter Q∗
nμ

�∗(ξ) = Q∗
n∗μ

(
1 − ξσ2

) + �∞ξσ2

+
(

ξσ1−ξσ2

ξ
σ1
0 −ξ

σ2
0

) [
�∗(ξ0)− Q∗

n∗μ

(
1−ξ

σ2
0

)−�∞ξ
σ2
0

]
.

(61)

There are two guiding parameters in this formula: the ampli-
tude factor Q∗

n∗μ , which can be positive or negative with
respect to the signs of the constants Q∗ and μ, as well as,

the positive factor μ2

�2
0 M

2 . Typical behavior of these profiles

is illustrated in Fig. 1.

4.2.3 An example of the stepwise solution

Let us consider the illustration, which corresponds to the
equilibrium function (50) with the delimiter ξ∗ = 1

4 , and the

model parameters n1 = 0, n2 = 1, Q(1)∗ = 0

φ(eq) = �∗(ξ) × h

(
ξ − 1

4

)
, (62)

where the envelope function in the interval 1
4 < ξ < 1 is of

the form

�∗(ξ) = 1

81

(
1

ξ2 +128ξ−48

)
. (63)

This envelope function takes zero value at ξ = 1
4 ; its deriva-

tive

�′∗(ξ) = 2

81

(
64− 1

ξ3

)
(64)

Fig. 2 Three examples of the stepwise envelope function (62); the
profiles are distinguished by the parameters σ1 and σ2, indicated in the
parentheses. Graphs of all the functions have the delimiter ξ0 = ξ∗ = 1

4 ,
and tend to one at infinity

also vanishes at ξ = 1
4 . This function is the exact solution

to the key equation with the following values of the model
parameters:

Q(2)∗
n2μ

= −16

27
,

μ

�0M
= √

2, σ1 = 1, σ2 = −2. (65)

and takes the value �∞ = 1 at the spatial infinity. Mention
should be made that �(ξ) = 0 is the exact solution to the
key equation in the interval 0 < ξ < 1

4 . On the delimiting
sphere ξ = 1

4 the function (63) and the constant function
�(ξ) = 0 happen to be sewed. The profile of the function
(62) with (63), as well as, two additional ones are depicted
in Fig. 2.

4.3 Q = 0: the Schwarzshild type black hole

4.3.1 Key equation and its general solution

When Q2 << M2, the geometry of the background space-
time is close to the one of the Schwarzshild type; we mean
that the magnetic charge μ is non-vanishing and it plays an
important role in the axionic halo formation, however, in
the formation of the background gravitational field its con-
tribution is negligible. Now we can obtain the reduced key
equation from (48) as the limiting case Q → 0; we deal now
with the Bessel equation

ξ2�′′∗(ξ) + ξ�′∗(ξ) − μ2

�2
0 M

2
ξ2

(
�∗ − Q∗

n∗μ

)
= 0. (66)
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The general solution to (66) is

�∗(ξ) = Q∗
n∗μ

+ C1 I0

(
μξ

�0M

)
+ C2K0

(
μξ

�0M

)
. (67)

Here I0 and K0 are the Bessel functions of the third and
fourth type with indices equal to zero; they can be represented
standardly as follows:

I0(z) =
∞∑

m=0

( z
2

)2m

(m!)2 , I0(z → 0) ≈ 1 + z2

4
, (68)

K0(z) =
∫ ∞

0
dζe−z cosh ζ , K0(z → 0) ≈ log

z

2
. (69)

4.3.2 Regular solution in the interval 0 < ξ < 1

If we consider the requirement �∗(0) = 0 we find immedi-
ately the regular profile

�∗(ξ) = Q∗
n∗μ

[
1 − I0

(
μξ

�0M

)]
. (70)

Clearly, �′∗(0) = 0 and �∗(1) = Q∗
n∗μ

[
1 − I0

(
μ

�0M

)]
. In

other words, the values of the function �∗(ξ) and of its
derivative are equal to zero at the Schwarzschild horizon, and
the maximal value of the modulus of this function depends

on the following two ratios:
∣∣∣ Q∗
n∗μ

∣∣∣ and � ≡ μ
�0M

.

4.3.3 Stepwise equilibrium function

Again we assume that n1 = 0, n2 = 1 and Q(1)∗ = 0, so that
the stepwise equilibrium function is of the form

φ(eq) = �∗(ξ) × h (ξ − ξ∗) , (71)

with the envelope function

�∗(ξ) = Q∗
n∗μ

{
1− K ′

0(�ξ∗)I0(�ξ)−K0(�ξ)I ′
0(�ξ∗)

K ′
0(�ξ∗)I0(�ξ∗)−K0(�ξ∗)I ′

0(�ξ)

}
,

(72)

which is the exact solution to the key equation. The prime
denotes the derivative with respect to the argument of the
function. We introduced here the auxiliary parameter � =

μ
�0M

. Clearly, �∗(ξ∗) = 0 and �′∗(ξ∗) = 0. The delimiter
value ξ∗ satisfies the transcendent equation �∗(1) = �∞.
The typical behavior of the envelope function is presented in
Fig. 3.

4.4 M = 0: the spacetime with naked singularity

When M = 0 the spacetime has no horizons, and the variable
ξ takes values in the interval (1,∞). Now ν = −1, thus
the Eq. (48) can be reduced to the Heun equation (56) with
the parameters (57) by the replacement ξ → x . Now the

Fig. 3 Illustrations of the stepwise equilibrium function (71) with the
envelope function (72). For all profiles Q∗

n∗μ
= 1 and the delimiter

is ξ∗ = 0.25. The values of the parameter � = μ
�0M

are written in
parentheses

Fig. 4 Typical profiles of the envelope function �∗(ξ) for the mag-
netic naked singularity as the solutions to the Heun equation (48). The
scalar ξ takes values in the interval (1,∞); the point ξ = 1 corresponds
to the spatial infinity, and ξ → ∞, when r → 0. In the parentheses two

parameters are presented: the first is μ2

�2
0 Q

2 , the second is Q∗
nμ

. Asymp-

totically, at ξ → ∞, the solutions to the Heun equation tend to the
constants �0, which depend on the values of the chosen model param-
eters

key equation has no singular points in the interval (1,∞).
Illustrations are presented in Fig. 4.

4.5 Numerical analysis of the general case M2 > Q2

For illustration of the results of the numerical analysis of the
case ν > 0, the most physically motivated, we studied sys-
tematically the Heun equation (48) for various values of the

guiding parameters M2−Q2

Q2 > 0 and μ2

�2
0 Q

2 . Now, we deal

with the interval 0 < ξ < 1, and for the outer zone of the
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Fig. 5 Typical profiles of the envelope function �∗(ξ), the solutions
to the key equation (48), for the case M2 > Q2 and �(1) = 0.5;
the numbers in parentheses correspond to the values of the parameters
M2

Q2 −1 and μ2

�2
0 M

2 , respectively

object there are no real singular points in the key equation
(48). Typical profiles of the envelope function �∗(ξ) are pre-
sented in Fig. 5.

5 Discussion and conclusions

The authors of the work [30] have formulated the idea that
the dark matter axions form a Bose–Einstein condensate, and
thus the behavior of the axion systems differs from the one
of an ordinary cold dark matter, especially if the regime of
interaction is non-linear and the external fields are strong.
This idea emphasizes that the axion system is not a simple
collisionless, pressureless cold gas; the axion system has to
be characterized by some internal self-interaction. We also
follow the idea that axionic systems are self-interacting, and
we think that their internal structures are predetermined by
the modified periodic potential (23). Minima of this potential
predetermine the equilibrium states of the axions. Our modi-
fied periodic potential can be obtained from the standard one
by introduction of the so-called envelope function �∗, which
stands to emphasizes the fact that the equilibrium value of
the axion field depends on the position in the spacetime.

Since the strict variation formalism requires the enve-
lope function to depend on some scalar invariants, � =
�∗(ξ, η, ζ ), we have linked these scalars with moduli of three
Killing vectors, which are associated with static spherically
symmetric spacetime under consideration.

This extension of the axionic potential, in its turn, led us
to the necessity of the Lagrangian modification, in which
we considered new terms associated with the Killing vec-
tor field. Based on analogy with the Einstein–Aether theory,

we obtained the correspondingly extended master equations,
thus providing the whole model to be self-consistent. The
main conclusion of this first part of the work is the following:
when the axion field is in the equilibrium state, for which the
modified potential and its first derivative vanish, the presence
of dynamically defined Killing vector fields does not violate
the master equations for gravitational, electromagnetic and
axion fields.

In Sect. 3 we considered the application of the developed
formalism for the spacetime of the Reissner–Nordström type
and have found exact solutions, which describe axionic halo
profiles near the dyons and magnetic black holes. We have
found the envelope functions for several values of guiding
model parameters; the most interesting findings, from our
point of view, are the solutions of the stepwise type, which
describe two-level distributions of the axionic dark matter. In
principle, such model distributions can be considered in the
context of description of the magnetic black holes. Indeed,
because of the gravitational attraction the axionic dark matter
halo surrounding such a object should have empty zone from
the outer horizon till to the first stable orbit of the rotating
massive particle (see Figs. 2, 3).

The developed formalism also can be applied to the
description of the dark matter filaments; for this purpose we
can use the scalars η (38) and ζ (41). We hope to consider
these cosmological units in the nearest future.
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