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Abstract By exploring a spinor space whose elements
carry a spin 1/2 representation of the Lorentz group and sat-
isfy the the Fierz–Pauli–Kofink identities we show that cer-
tain symmetries operations form a Lie group. Moreover, we
discuss the reflex of the Dirac dynamics in the spinor space.
In particular, we show that the usual dynamics for massless
spinors in the spacetime is related to an incompressible fluid
behavior in the spinor space.

1 Introduction

Spinors have constituted a comprehensive mathematical
object of study, with a variety of applications in Physics. In
particular, spinors are the main ingredient in the description
of fermionic particles, that encode ordinary matter in the Uni-
verse. Fundamentally constructed upon the Lorentz group, a
lot have been looked at the spacetime symmetries, underly-
ing the Lounesto classification, rather than the symmetries of
the spinor space itself. The Lounesto classification of spinor
fields allocates classical spinors into six disjoint classes of
regular and singular spinors. Regular spinors encompass
Dirac spinors, and the singular ones, constituting flag-dipole,
flagpole and dipole structures, comprehend the Majorana
and Weyl spinors. References [2,3] constructed a reciprocal
classification for spinors, including gauge field theoretical
aspects. Astonishingly, spinors satisfying the Dirac equation
in several backgrounds have been found into five out of the
six Lounesto’s classes. However, the subclasses of spinors,
in each spinor class, whose equations of motion have been
already established, are not fully determined. In other words,
each spinor class has subclasses with precise dynamics, but
the problem of categorizing the dynamics of all spinors in
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each class is intricate. Several approaches were scrutinized in
Refs. [3–10]. However, for example the fifth class of singular
spinors has at least three subclasses: neutral spinors satisfying
Majorana equation, eigenspinors of the charge conjugation
operator with dual helicity, satisfying Elko coupled first order
equations of motion, and also charged spinors satisfying the
Dirac equation that induce an underlying fluid flow structure
in some background spacetimes [6]. The Lounesto spinor
classification, encompassing classes of charged and neutral
spinors under the U(1) gauge symmetry, was extended in Ref.
[5] to non-Abelian gauge symmetries. A second-quantized
field theoretical approach [4] poses a similar classification in
the framework of second quantization. Unexpected tensorial
objetcs emerging from the spinor dynamics were also found
in Ref. [11]. Therefore, it is clear that the question regard-
ing the dynamics and kinematics of all spinors in Lounesto
classification lacks still.

Within this motivation, a hybrid paradigm, uniting the
symmetries on the spinor space and the spinors as represen-
tatives of the spinor classes in Lounesto classification, was
previously proposed [12]. The ideia was to use this spinor
representation space to envisage physical characteristics as
an output of geometric, algebraic and topological properties
of the constructed space, �, by exploring the point of view of
spinors completely characterized by its bilinear covariants. In
this work we continue exploring such a space, this time fur-
ther exploring symmetries acting upon spinors themselves.
Naturally, these symmetries should preserve each one of the
spinor classes in Lounesto classification. Starting from its
definition we investigate symmetries properties in the spinor
space. It is shown that (invertible) symmetries transforma-
tions are rescaling for every bilinear covariants components
constituting a subgroup of GL(4,C). Also, the possibility of
projective representations is explored, where we highlight an
algebraic parallel of a superselection rule. These results are
presented in Sect. 3 which is preceded by a review about the
Lounesto spinor classification.
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Section 4 is reserved to the investigation of the usual Dirac
dynamics in the spinor space �. Assuming the existence of
a homomorphism between � and an open set of PSpine1,3

×τ

C
4 (see further specifications of this bundle in Sect. 2) it is

shown, under certain general conditions, that for massless
spinors an analog of the Liouville theorem may be set. This
section is finished contrasting such a result for the case of
exotic spinors. In the final section we conclude.

2 Lounesto classification

Let M denote the Minkowski spacetime. Spinors are objects
in the spinor bundle,PSpine1,3

×τ C
4 associated to M , carrying

the so-called τ = (1/2, 0) ⊕ (0, 1/2) representations of the
Lorentz group [13–15]. Due to several applications, arbitrary
bases {γμ} ⊂ �(M) = ⊕4

i=0�
i (M) of the exterior bundle

may be adopted. The bilinear covariants are the following
exterior bundle sections [16],

σ = ψ̄ψ ∈ �0(M), (1a)

J = ψ̄γμψ γμ ∈ �1(M), (1b)

S = i

2
ψ̄[γμ, γν]ψ γμ ∧ γν ∈ �2(M), (1c)

K = ψ̄γμγ5ψ γμ ∈ �3(M), (1d)

ω = iψ̄γ5ψ , ∈ �4(M). (1e)

The generators {γμ} also satisfy the Clifford-Dirac algebra,
γμγν+γνγμ = 2ημν1. Besides, γ5 = iγ0γ1γ2γ3. The spinor
conjugation is denoted by ψ̄ = ψ†γ0.

Lounesto classification [1,10] allocates spinors into classes
according to their bilinear covariants, categorizing and orga-
nizing the physically relevant spinorial space which can,
therefore, be faced as composed by these six distinct pieces.
In fact, the Lounesto classification split off the following:

(1) K �= 0, S �= 0, ω �= 0, σ �= 0, (2a)

(2) K �= 0, S �= 0, ω �= 0, σ = 0, (2b)

(3) K �= 0, S �= 0, ω = 0, σ �= 0, (2c)

(4) K �= 0, S �= 0, ω = 0 = σ, (2d)

(5) K = 0, S �= 0, ω = 0 = σ, (2e)

(6) K �= 0, S = 0, ω = 0 = σ. (2f)

Some physically important observables are interpreted as
usual. For instance, the scalar σ is the mass term in
Lagrangians, the pseudoscalar ω bilinears can reveal CP
violations, whereas the current is given by J. Some regu-
lar spinors and most of the singular ones in the above classes
are not supported by the same physical interpretation given to
the electron. Besides, particular subclasses of the Lounesto’s
classification satisfy the Fierz–Pauli–Kofink (FPK) relations
[1,16]:

− ωSμν − σ

2
εμναβ S

αβ = JμKν − Kμ Jν, (3a)

ηαβ(Jα Jβ + K αK β) = 0 = ηαβ J
αK β, (3b)

ηαβ J
α Jβ = σ2 + ω2. (3c)

We remark, by passing, that spinors not obeying to the FPK
equations, the so-called amorphous spinors [17,18], shall be
treated in what follows as non-physical spinors.

3 Symmetries in the spinorial space

Let us denote a given bilinear by ψ̄
ψ , for which 
 is any
element of the set {I, γ5, γμ, γ5γμ, γμγν}, where I stands for
the identity matrix, and the spinor dual is the usual (Dirac)
one. Lounesto classification depends whether a given subset
of bilinear is null or not, respecting the FPK identities. The
relevant aspect to be emphasized here is that, concerning
classical spinors in physics, the Lounesto classification is
based in the physical observables and, hence, the belonging
to a given type is by itself a physical information. This remark
motivates the following definition.1

Definition A symmetry in the physical spinor space is any
linear or anti-linear operation preserving the spinor type.

Thus any phase multiplying a spinor is also a symme-
try and one is facing a ray representation of spinors, very
much like the use of Hilbert space vectors in quantum
mechanics, representing physical states. Denoting by �i

the part of the spinor space encompassing type-i spinors
(i ∈ {1, 2, . . . , 6}), with � = ∪6

i=1�i , a certain spinor ψ

is better characterized by an equivalence class representing
its ray, denoted by R. Hence ψ ∈ R ⊂ �i ⊂ �.

We shall now explore symmetry transformations. Let S
be a transformation leading rays into symmetry-preserving
rays, that is

Si : R ⊂ �i → R′ ⊂ �i ,∀i ∈ {1, 2, . . . , 6}
[ψ] �→ [ψ ′] = Si [ψ], (4)

where [ψ] denotes the equivalence class to which ψ belongs,
each class composed by spinors differing only by a phase.
Therefore, if ψ ′ is a spinor different of ψ , namely a modified
spinor, a symmetry means Si (�i ) ⊂ �i . More explicitly, a
symmetry should obey

[ψ̄]γ 0S†γ 0
S[ψ] = β
[ψ̄]
[ψ], (5)

where β
 ∈ R is the shift resulting from the transformation
action. This shift will be non null, in general, and different

1 For details in the spinorial space definition, see [12]. Here we just
remark that this space comprises only spinors obeying the FPK identi-
ties.
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from one.2 Depending on the bilinear dealt with, β
 must
be replaced by an array, or disposed into a matrix structure,
albeit this is not important now. In the case of the �6 space,
the representation of a general symmetry S6 can be straight-
forwardly displayed by a block diagonal matrix of one of the
two following forms:3

(
A O

O B

)
or

(
O A
B O

)
, (6)

where A and B are 2 × 2 matrices with only A or B
necessarily non-null. In fact, for a general singular spinor
ψ = (a, b, c, d)ᵀ, the transformation Si , i = 4, 5, 6, must
preserve the algebraic relation a = bcd∗

‖c‖2 . On the other hand,

the opposite relation a �= bcd∗
‖c‖2 , must be preserved for regular

spinors [2].
Being χ a mapping between � and the dual space �̄,

which is defined in a quite similar manner to �, we will
restrict our analysis to the case in which χ is one-to-one. The
reason is simple: being χ not one-to-one, then to an element
of a given R, say eiαψ with α ∈ R, it would correspond
e−iβψ̄ in �̄, with β possibly different of α. Then ψ̄ ′
ψ ′ =
ei(α−β)ψ̄
ψ , breaking the symmetry.

In the following we are interested in symmetries such that,
for every S leading from a ray to another one, there should
exist an inverse mapping, S−1, pulling the transformation
back. Besides, if S1 transforms a ray R into R′ and S2 leads
R′ into R′′, then the acting of S1 followed by S2 should have
the same effect of an unique transformation, say S3, going
directly from R to R′′. Taking all into account, provided asso-
ciativity, symmetries transformations, if allowed, may form
a group. We stress that the existence of symmetry transfor-
mations without inverse for all spinor types is, in principle,
not forbidden. Not invertible symmetry transformations may
also be physically relevant. However, we concentrate in the
invertible case, since we are interested in a possible group
structure.4

Lemma The invertible symmetry transformations allowed
are a simple rescaling, up to a sign, for all bilinear covariants
components.

Proof Being the scalar and pseudo-scalar bilinear covariants
non null, one may write

γ 0S†γ 0S = αI, (7)

γ 0S†γ 0γ 5S = βγ 5. (8)

2 If β
 = 1, for any 
, the inversion theorem [16,19] yields necessarily
S = I.
3 As the apparatus is representation-independent, we are adopting the
Weyl representation for the γ matrices.
4 The particular case of type-6 spinors does not require the whole matrix
S6 being invertible for having the group structure. It is sufficient being
the non-null block invertible.

These equations combine into

αS−1γ 5S = βγ 5. (9)

Taking the determinant of both sides of (9) yields α = ±β.
A similar reasoning may be straightforwardly extended to all
components of the bilinear covariants, covering all the pos-
sible types. Some remarks, nevertheless, are in order before
concluding. First, the proportionality between a transformed
tensorial bilinear may be performed by a tensorial quantity,
as to allow – respecting symmetry – the vanishing of some
given component and the raising of another one. In any case,
the final value of the tensorial quantity components are sub-
ject to the analysis above. Finally, the possible change of
sign must, obviously, respect the constraints coming from
FPK identities. ��

With these results we are able to enunciate the next theo-
rem.

Theorem The symmetry transformations allows the space
of spinors to perform a subgroup of GL(4,C).

Proof Let {X,Y, S, . . .} be a set of symmetry transforma-
tions for type-1 spinors in which every element belongs to
M(4,C). Suppose X and Y both satisfying (5) for, say, β
X

and β
Y , respectively. Hence

γ 0(XY )†γ 0
(XY ), (10)

shall also satisfy (5) for β
 = β
Xβ
Y . Besides, it is
fairly simple to see that the inverse transformation respects
γ 0(S−1)†γ 0
S−1 = β−1


 
. Once again we remark that
when necessary the proportionality, and its inverse, must be
engendered by a tensorial object. ��

We finalize this section by stating some facts about the rep-
resentation of the symmetry group found in the spinor space.
As a matter of fact, while symmetry transformations act upon
rays, the operators representing the above group transform
spinors itself. In this regard, the representation will inherit
most of the group properties. Denoting by O(S) the oper-
ator representing the symmetry action in the spinor space,
the resulting state O(S1)O(S2)ψ differs from O(S1S2)ψ ,
as usual, by a phase at most. This is, of course, the indi-
cation of a possible projective representation. At this point
we have not enough information about the topology of the
subgroup referred in the above theorem, although the elimi-
nation of its central charge seems to be reachable. Hence we
willl postpone the elimination, so to speak, of the projective
representation for the future. Instead we would like to point
out an interesting peculiarity of the representation.

When dealing with representation up to a phase O(S1)

O(S2)ψk = eφk O(S1S2)ψk the usual approach to quan-
tum states yields a phase that does not depend on the state
(here evinced by the label k) upon which the operators act,
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exception made to forbidden states, whose existence is pre-
cluded by means of a superselection rule [20]. The general
picture may be straightforwardly recalled as follows: tak-
ing the sum of two spinors, say ψm and ψn , and represent-
ing the transformation we have O(S1)O(S2)(ψm + ψn) =
eiφmn O(S1S2)(ψm + ψn). After working out the right-hand
side and acting with O−1(S1S2), we are left with

eiφmψm + eiφnψn = eiφmn (ψm + ψn), (11)

where O is assumed unitary, for simplicity. Clearly, a solution
for the above equation is φmn = φm = φn pointing to a phase
independent to the state, but as symmetries transformations
are allowed in this space, ψm and ψn may well be connected,
and therefore it is hard to accept that the independence of the
phases is reached by chance. In this regard, the very exis-
tence of the symmetry may be faced as the analogue of the
superselection rule. As a final comment, we remark that the
reasoning just outlined cannot be applied to type-i spinors as
a whole, as the type is not necessarily preserved by the sum
of spinors [1]. Regarding representations in the sector of �i ,
for which the type is not preserved by the sum, the situation
is quite unclear so far.

4 Dynamics avatar

The group of transformations regarding type-i spinors may
be faced as an additional step towards the continuity of
such a sector of �. However, any spinor in this space may
be endowed of a dynamics inherited from the dynamics in
spacetime. In this section we will investigate the behavior of
spinors as elements in �. Let ϕ̄ be a one-to-one, linear, and
invertible mapping from � to sections of PSpine1,3

×τ C
4, i.

e.

ϕ̄ : � → PSpine1,3
×τ C

4

ψ �→ ϕ̄[ψ] = �(�x, t). (12)

We shall restrict ourselves to the subset U ⊂ PSpine1,3
×τ C

4

such that the spinors �(�x, t) ∈ U are subjected to the usual
dynamics dictated by the Dirac operator D, i. e. D�(�x, t) =
0. In addition, we are going to restrict ϕ̄ to ϕ = ϕ̄ |ϕ̄−1(U ),
namely, the domain of ϕ shall be the preimage of U , denoted
by ϕ̄−1(U ). In analogy to the Dirac operator D, let ∇ be a
“dynamical” operator (an automorphism) in � such that

∇ : � → �

ψ �→ ∇ψ, (13)

whose relation with the dynamical operators be simply given
by D = ϕ ◦ ∇ ◦ ϕ−1. As ϕ−1 ◦ ϕ = I d� one has ∇ =
ϕ−1 ◦ D ◦ ϕ. Notice, in particular, that the algebraic zero
resulting from the action of the Dirac operator is mapped
into the null spinor in �. In fact,

∇ψ = ϕ−1 ◦ D ◦ ϕ[ψ] = ϕ−1 ◦ D�(�x, t), (14)

and D�(�x, t) = 0 yields ∇ψ = 0� . That is the alluded
dynamical avatar which, despite have been straightforwardly
obtained, leads to interesting consequences.

For free fermionic particles in the spacetime, the Dirac
operator is usually expressed as D = iγ μ∂μ −mI, where γ μ

are the Dirac matrices and m the mass parameter. Therefore

∇ψ = ϕ−1 ◦ (iγ μ∂μ − mI)�(�x, t), (15)

which, by means of the map linearity, leads to

iϕ−1 ◦ (γ μ∂μ�(�x, t)) − mψ = 0�. (16)

At first sight, one might speculate that the matrix repre-
sentation of ϕ commutes with gamma matrices. However,
it would imply that ϕ is proportional to the identity [15].
This scenario is too restrictive. Here we will require some-
thing less limiting, by demanding the commutation of ϕ only
with γ0. This requirement will be useful in what follows.
Let us denote, then, the pullback of the spinor ∂t�(�x, t) by
δtψ := ϕ−1 ◦ (∂t�(�x, t)) = ϕ−1 ◦ ∂t ◦ ϕ[ψ], and then write

iγ 0δtψ + iϕ−1 ◦ ( �γ · ∂�x�(�x, t)) − mψ = 0�. (17)

Equation (17) performs a shadow, so to speak, of the space-
time dynamics respected by the physical spinor. It may be
applied to every sector of ϕ−1(U ) ⊂ � and in this space
as a whole. However, it is not completely clear so far which
connections may be reached inside the spinor space, see for
instance [21]. Therefore we will assume, in a first moment, a
conservative approach adopting the physically sound particu-
larization that the spinor type is not changed by the dynamics
and study its consequences for each �i separately.

The spinors belonging to �i are called physical, in the
sense that they satisfy the FPK identities. The attribute “phys-
ical” in dealing with spinors, however, must be used with a
great care. In fact, a spinor alone describing a fermion cannot
be detected. Its dual – and the correspondent theory – must
be taken into account. Despite of these important matters, if
the elements of �i are representatives of physical states, then
they have to be conserved. Consider a macroscopically dense
set of spinors in F ⊂ �i and suppose that the surface ∂F
is orientable. A conservation law will encounter an analogue
within F . Hence, being the density ρ of spinor states in this
region characterized by ρ(ψ, t) one may be able to write

∂ρ

∂t
= −δ(ρδtψ)

δψ
. (18)

Some considerations concerning Eq. (18) are in order. As
to represent a conservation law, δtψ denotes a generalized
velocity inF leading, then, the term ρδtψ to express a current
of states. Therefore, a decreasing [increasing] in the density
of states is taken due to an output [input] current. Besides,
the functional derivative present in Eq. (18) may be taken in
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exact same footing as its counterpart in classical and quantum
field theory. We are now in position to assert the following
result, in close analogy to the Statistical Mechanics Liouville
theorem for physical states in the phase space [22].

Proposition Massless spinors representing conserved states
inF ⊂ �i , with orientable ∂F , behave as an incompressible
fluid.

Proof The time variation of the representative density reads

dρ(ψ, t)

dt
= δρ(ψ, t)

δψ
δtψ + ∂ρ(ψ, t)

∂t
(19)

and taking (18) into account yields

dρ(ψ, t)

dt
= −ρ

δ(δtψ)

δψ
. (20)

The equation governing the behavior in the spinor space,
(17), for massless spinors may be recast into the form

Iδtψ = −γ 0ϕ−1 ◦ ( �γ · ∂�x�(�x, t)). (21)

From Eqs. (20) and (21) it is fairly simple to see that

d(Iρ(ψ, t))

dt
= 0, (22)

culminating in four identical equations satisfied by a constant
density. ��

The massive case is just inconsistent. We are currently
investigating this case, for which, we speculate, none con-
servative equation analogue can be stated, but have not a
satisfactory interpretation for that so far. Before concluding
this section, we would like to contrast our results with the
case concerning exotic spinors.

It is well known that when the base manifold, M , is
not simply connected there is not only one spinorial struc-
ture [23]. This fact is traduced by the non triviality of the
(first) cohomology group H1(M,Z2). The non trivial topol-
ogy is then reflected in the dynamics [24,25], by means of
an additional term in the Dirac operator now reading D̃ =
iγ μ∂μ + iγ μ∂μθ(�x, t) − mI = D + iγ μ∂μθ(�x, t), where
θ(�x, t) is a real scalar function (for mathematical details
see, for instance, [26]). Concerning the topics approached
in Sect. 2, there are very few substantial differences in deal-
ing with exotic spinors instead of usual spinors. As a matter
of fact, it is still possible to define a spinor space for exotic
spinors and, as before, we also will have a categorization
of the spinorial space into types. The unique novelty is that
there are three more possible types of spinors, but the results
of the previous section remain valid. A noteworthy difference
occurs in the appreciation of the proposition above to exotic
spinors. Denoting exotic spinors in the exotic spinorial space
(�̃) by ψ̃ (and its spacetime counterpart by �̃(�x, t)), it is

fairly direct to see that the analogue of Eq. (17) for the case
at hands reads

iγ 0δt ψ̃ − mψ̃ + iγ 0θ̇ (�x, t)ψ̃ + iϕ−1 ◦
(

�γ ·
{
∂�x �̃(�x, t)

+∂�xθ(�x, t)�̃(�x, t)
})

= 0�̃, (23)

where θ̇ = ∂tθ . In this vein, massless exotic spinors shall
obey

Iδt ψ̃ = −Iθ̇ (�x, t)ψ̃ − γ 0ϕ−1 ◦
(

�γ ·
{
∂�x �̃(�x, t)

+∂�xθ(�x, t)�̃(�x, t)
})

. (24)

Though the form of Eq. (24) is not particularly clear from the
physical point of view, the investigation of the exotic spinors
behavior in �̃ leads to the fact that the spinorial density, pro-
vided conservation, is given in terms of the exotic additional
term ρ(ψ, t) = ρ0 exp(θ(�x, t)). Of course, ρ0 is constant in
such a way that if θ = 0 (the usual case of trivial topology)
the proposition result is recovered, as expected.

5 Concluding remarks

In Sect. 3 we show the possibility of symmetries transfor-
mations in the spinor space as elements of a subgroup of
GL(4,C). These symmetries respect the Lounesto classi-
fication and so do not across the spinor type. While rele-
vant results on their own, we would like here to give a com-
prehensive account on results. In Ref. [28] it was proposed
an interpolation between sectors of a given representation,
encompassing spinors satisfying the Heisenberg equation of
motion, which could lead to the neutrino oscillation even in
the massless case. All these spinors was shown to belong to
Lounesto type-1 case [29]. The results here explored may
serve as a first step towards the mathematical investigation
of such an interpolation, in the sense that it was conjectured
to be performed by an unitary operator [28] whose action
preserves the spinor type [29].

In Sect. 4, we explore the interelationship between the
dynamics occurring in the spacetime and its reflex in the
spinor space. The interplay between spinors, bilinear covari-
ants and hydrodynamics was implemented in Refs. [6,27], in
the context of the Lounesto spinor classification. In Ref. [27]
suitable black hole backgrounds were considered, having a
current density that interpolates between a timelike Killing
vector field at the spatial infinity and the null Killing vector
field on the black hole event horizon. This current density
was identified to a spinor fluid flow. In Ref. [6], flag-dipole
spinors, satisfying the Dirac equation in another black hole
background was shown to induce an underlying fluid flow
structure in the background spacetime. These two results are
quite particular, relating fluid mechanics to the Lounesto clas-
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sification. On the other hand, the results in the Proposition
here presented are universal, relating the dynamics of certain
spinors with the equations of motion of incompressible fluids.
The investigation of this result in the context of exotic spinors
was presented. It was shown that unusual topology in the
spacetime leads to a modification in the spinor space dynam-
ics. While some modification is generically expected, since
the connection is changed, we emphasize that the dynamical
interplay was strong enough to reveal that unusual topology
forbids the perfect fluid behavior. We are currently investi-
gating additional developments of this interplay, as well its
limitations.
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