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Abstract In this paper, we construct a novel holographic
superconductor from higher derivative (HD) gravity involv-
ing a coupling between the complex scalar field and the
Weyl tensor. This HD coupling term provides a near horizon
effective mass squared, which can violates IR Breitenlohner–
Freedman (BF) bound by tuning the HD coupling and induces
the instability of black brane such that the superconducting
phase transition happens. We also study the properties of
the condensation and the conductivity in the probe limit. We
find that a wider extension of the superconducting energy
gap ranging from 4.6 to 10.5 may provide a novel platform
to model and interpret the phenomena in the real materials
of high temperature superconductor.

1 Introduction

Based on AdS/CFT (Anti-de Sitter/Conformal Field theory)
correspondence [1–5], a holographic superconductor model
is suggested in [6]. In this model, a complex charged scalar
field is introduced in Schwarzschild-AdS (SS-AdS) black
brane to spontaneously break the U(1) symmetry and trans-
form to a charged scalar hair black brane. The charged scalar
field in the bulk is dual to the “Cooper pair” operator at
the boundary and the vacuum expectation value is the order
parameter. The symmetry breaking is introduced by a nega-
tive mass squared of the scalar field, which is allowed due to
the Breitenlohner–Freedman (BF) bound in AdS spacetime
[6,7]. In [8], a positive mass squared situation was studied. It
was shown that asm2 increase the phase space folds due to the
non-linearity of the equations of motion, so the two nearby
points in the phase space can represent symmetry breaking.
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And they show that for a small positive mass squared, the
results is not much different from the negative case which
has been studied in [9–13].

In [14], they discuss the superconductivity instability by
studying the normalisable solution of equations of motion
(EOMs) for the charged scalar field on top of RN-AdS black
brane geometry. In essence, it is that the near horizon effective
mass squared is below the AdS2 BF bound, which induces
the instability. At the same time, we also require that the
mass squared is above the boundary AdS4 BF bound, which
guarantees the stability of scalar field at the boundary. In
this paper, we construct a novel holographic superconductor
model by introducing a higher derivative (HD) term, which
couples the scalar field and Weyl tensor. This HD term pro-
vides a near horizon effective mass squared but doesn’t mod-
ify the boundary AdS4 BF bound.

The superconducting energy gap is an important char-
acteristic of superconductor models. In the weakly coupled
BCS theory, this value is 3.5. In the usual holographic super-
conductor model [6,12,15], this value is approximately 8,
which is more than twice the one in the BCS theory, but
roughly approximates the value measured in high tempera-
ture superconductor materials [16]. The HD term introduced
in holographic superconductor model drives the supercon-
ducting energy gap running, ranging from 5.5 to 16.2 [17–
21].1. In this paper, we also study the properties of the con-
ductivity of our present model and in particular the running
of the superconducting energy gap.

1 The holographic superconductor models from HD theory coupling
Weyl tensor are also constructed in [22–29]. But the study of conductiv-
ity is absent. Also, the extension of superconducting energy gap is also
observed in other holographic superconductor models from the Gauss–
Bonnet gravity [30,31] and the quasi-topological gravity [32,33]. But
the value of the superconducting energy gap is always greater than the
value of the standard version holographic superconductor.
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Our paper is organized as what follows. We will introduce
the framework of holographic superconductivity in Sect. 2.
In Sect. 3, we make a deep analysis for the instabilities. Then
we move on to investigate the condensation in Sect. 4. In
Sect. 5 we give the results of the conductivity. Conclusion
and discussion are given in Sect. 6.

2 Holographic framework

Our starting point is the following actions

S0 = 1

2κ2

∫
d4x

√−g
(
R + 6

L2

)
, (1a)

S� = −
∫

d4x
√−g

(
|Dμ�|2 + m2|�|2 − α1L

2C2|�|2
)
,

(1b)

SA = −
∫

d4x
√−g

L2

8g2
F

FμνX
μνρσ Fρσ . (1c)

F = d A is the Maxwell field strength of gauge field A.
Dμ = ∂μ − iq Aμ is the covariant derivative and � is the
charged complex scalar field with massm and the charge q of
the Maxwell field A. We can write � = ψeiθ with ψ being
a real scalar field and θ a Stückelberg field. And then, for
convenience we choose the gauge θ = 0 in what follows. In
the action S� , a new interaction, which couples the complex
scalar field to the Weyl tensor, is added in S� . Since the pure
AdS geometry is conformally flat, the Weyl tensor vanishes
in the UV boundary. But C2 provides a nontrivial source for
the scalar in the bulk geometry and gives an effective mass of
the scalar. This interaction provides a new mechanism of the
symmetry breaking,2 for which we shall do in-depth studies
in this paper. In the action SA, the tensor X is

X ρσ
μν = I ρσ

μν + α2|�|2 I ρσ
μν − 8γ1,1L

2C ρσ
μν

−4L4γ2,1C
2 I ρσ

μν − 8L4γ2,2C
αβ

μν C ρσ
αβ

−4L6γ3,1C
3 I ρσ

μν − 8L6γ3,2C
2C ρσ

μν

−8L6γ3,3C
α1β1

μν C α2β2
α1β1

C ρσ
α2β2

+ · · · . (2)

I ρσ
μν = δ

ρ
μ δ σ

ν − δ σ
μ δ

ρ
ν is an identity matrix and Cn =

C α1β1
μν C α2β2

α1β1
. . .C μν

αn−1βn−1
withCμνρσ being the Weyl ten-

sor. When X ρσ
μν = I ρσ

μν , the action SA reduces to the stan-
dard Maxwell theory. The second term introduces the inter-
action between the scalar field and the gauge field. Starting
from the third term, they are an infinite family of HD terms
[40]. In this paper, we mainly focus on the top four terms
in X ρσ

μν . For convenience sake, we denote γ1,1 = γ and
γ2,i = γi (i = 1, 2). In SS-AdS black brane background,

2 This interaction for a neutral scalar field has been study in [34–39].

when other parameters are turned off, γ and γ1 are con-
strained in the region −1/12 ≤ γ ≤ 1/12 [41,42] and
γ1 ≤ 1/48 [40], respectively. These constraints come from
the instabilities and causality of the vector modes. However,
for the black brane with scalar hair, we must reexamine the
instabilities and causality of the vector modes and we leave
them for future. In this paper, we shall constraint these cou-
pling parameters in small region, which is safe.

3 Superconducting instability

When � = 0, the system (1) achieves a charged black brane
solution, which corresponds to the normal phase. In this sec-
tion, we shall explore the instability condition for the normal
phase towards the development of a hairy black brane under
small charged scalar field perturbations. This allows one to
determine the superconducting phase structure in the dual
boundary field theory. The condition for the formation of the
hairy black brane depends on the charge and the mass of the
scalar field as well as the background which is specified by
the model parameters. For clarity, we first study the role of
α1 term in the formation of the hairy black brane. And then,
we further explore the joint effect from the α1 term and the
γ term.

3.1 Case I: α1 HD term

In this subsection, we first want to see what role the α1 term
plays in the formation of the hairy black brane. So we only
turn on α1 term and turn off other coupling parameters in this
section. In this case, the background geometry of the normal
phase is RN-AdS black brane,

ds2 = 1

u2

(
− f (u)dt2 + dx2 + dy2

)
+ 1

u2 f (u)
du2 ,

f (u) = (1 − u)p(u) , p(u) = 1 + u + u2 − μ2u3

4
,

At (u) = μ(1 − u). (3)

Here μ is the chemical potential of the field theory. The
Hawking temperature is

T = p(1)

4π
= 1

4π

(μ2

4
− 3

)
. (4)

We can estimate the critical temperature for the formation
of the superconducting phase by finding static normalizable
modes of the scalar field ψ in the above background (3). The
procedure has been used in [43–46]. This problem can be
casted into a positive self-adjoint eigenvalue problem for q2

and so we write the equation of motion for the scalar field as
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Fig. 1 Left plot: Phase diagram
(α1, T̂c) with m2 = −2 for
different q. Right plot: QPT
diagram in (α1, q) space for
m2 = −2. The blue line is the
QPT critical line and the blue
zone is the superconducting
phase at zero temperature

the following form:
[∇2 − m2 + α1L

2C2]ψ = q2A2ψ. (5)

Without loss of generality, we set the mass of the charged
scalar field as m2 = −2 here.3 For this case, its asymptotical
behavior at infinity is

ψ = ψ1u + ψ2u
2. (6)

Here, we will treat ψ1 as the source and ψ2 as the expecta-
tion value in the dual boundary theory. Also we set ψ1 = 0
such that the condensation is not sourced. Now, this sys-
tem is determined by the scaling-invariant Hawking temper-
ature T̂ = T/μ, the charge of complex scalar field q and the
coupling parameter α. When the non-trivial scalar profile is
developed, the superconducting phase forms. Therefore, we
can numerically solve the above Eq. (5) to locate the critical
temperature of the superconducting phase as the function of
α1 for different q, which is shown in the left plot in Fig. 1.
Note that the region above the line is the normal state and
the region below the line is the superconducting phase. This
plot exhibits that when we reduce the temperature for given
parameter q and α, an thermodynamic phase transition hap-
pens. In addition, at zero temperature, we find that for given q
when the coupling parameter α1 increases, the superconduct-
ing phase also appears, which is a quantum phase transition
(QPT). The phase diagram (α1, q) is shown in the right plot
in Fig. 1. There are several characteristics are summarized as
what follows:

• For a given α1, we find that the critical temperature
becomes higher with the increase of the charge (left plot
in Fig. 1), which means that the increase of the charge
make the condensation easier. This tendency is consistent
with our intuition and have been observed in [43,44].

• For a given charge, we find a rise in critical temperature
with the coupling parameter α1 (left plot in Fig. 1), which
means that the higher derivative term α1 plays the role of
driving the superconducting phase transition.

• From the left plot in Fig. 1, we see that for a given charge,
if the coupling parameter α1 is relatively small, the sys-

3 We have set L = 1.

tem would not undergo a superconducting phase transi-
tion no matter how low the temperature. It means that
there is a QPT at zero temperature. We show the QPT
diagram in (α1, q) space in the right plot in Fig. 1. The
blue line is the QPT critical line and the blue zone is
the superconducting phase at zero temperature. The QPT
can be also understood by the BF bound. We shall further
address this problem in what follows.

Now, we shall analyze the superconducting phase tran-
sition at zero temperature by BF bound. To have a super-
conducting phase transition, the near horizon effective mass
squared shall be below the corresponding BF bound, but
the UV boundary effective mass squared shall be above the
boundary AdS4 BF bound, which guarantees the stability of
scalar field at the boundary.

For the RN-AdS black brane, the extremal limit can be
arrived at when μ = 2

√
3. At this limit, the near horizon

geometry and the gauge field are [47]

ds2 = L2
2

ζ 2 (−dτ 2 + dζ 2) + dx2 + dy2, (7a)

Aτ = μL2
2

ζ
, (7b)

where L2 ≡ L/
√

6. In deriving the above equations, we have

made the transformation (1 − u) = ε
L2

2
ζ

and t = ε−1τ in the
limit ε → 0 with finite ζ and τ . It is obvious that at the zero-
temperature limit, the near horizon geometry is AdS2 × R

2

with the AdS2 curvature radius L2.
The effective mass of this system is

m2
e f f = m2 + q2A2 − α1L

2C2. (8)

Since q2A2 = q2gtt A2
t , which contributes with minus sign,

it tends to destabilize the normal state and induces the super-
conductivity. While the role playsα1 term depends on the sign
of α1, which can stabilize or destabilize the normal state. To
have a superconducting phase transition, we require that the
near horizon effective mass squared shall be below the cor-
responding BF bound, but the UV boundary effective mass
squared shall be above the corresponding BF bound. Thus
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Fig. 2 Left plot: The blue zone
is the allowed region for the
superconducting phase
transition at m2 vs q plane at the
zero temperature for α1 = 0.
Right plot: The blue zone is the
allowed region for the
superconducting phase
transition at the zero
temperature for m2 = −2

Fig. 3 The blue zone is the
allowed region for the
superconducting phase
transition at m2 vs q plane at the
zero temperature (left plot is for
α1 = −0.1 and right plot is for
α1 = 0.1)

we have

m2
I R < − 1

4L2
2

, m2
UV ≥ −9

4
, (9)

where m2
I R and m2

UV denote the near horizon effective mass
squared and the bulk mass squared, respectively. Using the
expression of the effective mass squared (8) combining with
the near horizon geometry (7) and the AdS4 geometry, the
above equations can be specifically expressed as

m2 − 2q2 − 8α1 < −3

2
, m2 ≥ −9

4
. (10)

It has been well studied that for the usual holographic
superconductor (α1 = 0 here), the superconducting insta-
bilities are determined by both the bulk mass squared m2

and the charge q, equivalently, the chemical potential, which
can be clearly seen from the above instability condition (10)
and have been explored in [8,14]. Here, we also exhibit the
allowed region (blue zone) for the superconducting phase
transition with α1 = 0 at m2 vs q plane at the zero temper-
ature (left plot in Fig. 2). For small q, the superconducting
phase transition is forbade if the mass squared is positive. But
provided the charge is large, the superconducting phase tran-
sition still happen for m2 = 0 or even positive m2, which is
called the density driven symmetry breaking in holographic
superconductor in [8].

Subsequently, we turn to explore what role α1 plays. We
plot the α1 as the function of q (i.e., QPT diagram) for m2 =
−2 at zero temperature, which is shown in the right plot in
Fig. 2. The result is qualitatively consistent with that above

by finding static normalizable modes of the scalar field (see
the right plot in Fig. 1).

Further, we plot the allowed region for the superconduct-
ing phase transition at m2 vs q plane at the zero temperature
for α1 = −0.1 and α1 = 0.1, respectively (Fig. 3). It is obvi-
ous that for α1 = −0.1, if q is less than some critical value
(q � 0.158), the superconducting phase transition is forbade
regardless of the value of m2 (see the left plot in Fig. 3). For
α1 = 0.1, the allowed range of m2 for the superconducting
phase transition becomes larger than α1 = 0 for the fixed q.
To address this point more clearly, we also plot the relation
between m2 and α1 for q = 1 and q = 2 in Fig. 4 and a 3D
plot for q,m2 and α1 in Fig. 5. It indicates that one can tune α1

to trigger a quantum phase transition. Also, we can infer that
for small q, the superconducting phase transition still happen
for m2 = 0 or even positive m2, provided that α1 is large. It
is just the role α1 plays and we call the HD driven symmetry
breaking in holographic superconductor, which is the focus
of our present paper and we shall thoroughly explore this
issue in next section.

3.2 Case II: γ HD term

In this subsection, we simultaneously turn on α1 and γ . Since
γ term involves the coupling between the Weyl tensor and
gauge field, the background geometry of the normal phase
is no longer a RN-AdS black brane. We need to solve a set
of third order differential equations to obtain the background
solution. It is a hard task. However, we can obtain the per-
turbative solution up to the first order of γ as [48]
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Fig. 4 The blue zone is the
allowed region for the
superconducting phase
transition at m2 vs α1 plane at
the zero temperature (left plot is
for q = 1 and right plot is for
q = 2)

Fig. 5 3D plot of the allowed region for the superconducting phase
transition at the zero temperature

ds2 = f (u)

u2 dt2 + 1

u2 f (u)
du2

+
[

1

u2

(
1 + γ

u2μ2

9

)]
(dx2 + dy2),

f (u) = (1 − u)p(u) ,

p(u) = 1 + u + u2 − μ2u3

4
+ 1

180
u3γμ2

[240 − 28μ2 + 26u4μ2

+(u + u2 + u3)(−100 + μ2)],
At (u) = 1

90
μ{90 + 74u5γμ2 + 45u4γ (−4 − μ2)

−[90 + γ (180 + 29μ2)]}. (11)

For this black brane, we can obtain the dimensionless Hawk-
ing temperature T̂ ≡ T/μ with

T = 12 − μ2

16πμ
+ γ

μ(μ2 − 60)

720π
. (12)

At the zero temperature limit, the chemical potential μ

becomes

μ =
√

3

2

√
20 + 15

γ
−

√
5
√

45 + 72γ + 80γ 2

γ
. (13)

When γ → 0, μ = 2
√

3, which reduces the case of RN-AdS
black brane. At extremal limit, the near horizon geometry
of the perturbative solution (11) is also AdS2 × R

2 as RN-
AdS black brane but with a different AdS2 curvature radius
L2 as

L2
2 = −4000γ 2+5

√
5(40γ +33)

√
80γ 2+72γ +45−4956γ −2475

4γ
,

(14)

which explicitly dependent on the Weyl parameter γ .
Following the same procedure in the above subsection,

in this case, the constraint on the the near horizon effective
mass squared gives

m2 + 4α1

3
− 2475 + 4956γ + 4000γ 2 − 165w − 200w

16γ

+ q2(2355 + 2860γ − 161w)2(−15 − 20γ + w)

600[−4000γ 2 + 165(−15 + w) + 4γ (−1239 + 50w)]
< −3

2
. (15)

For convenience, in the above equation, we have defined w

as

w = √
5
√

45 + 72γ + 80γ 2. (16)

In addition, the bulk mass squared satisfies

m2 > −9

4
. (17)

Equations (15) and (17) give the conditions that the super-
conducting phase happens at zero temperature. We summa-
rize the roles α1 and γ play in the superconducting phase
transition as what follows.

• In previous subsection, we have observed that for γ = 0,
in the phase diagram (m2, q, α1), there is a region in
which the superconducting phase transition is forbade.
When γ = −1/12, such a region still holds (left plot in
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Fig. 6 3D plot of the allowed region for the superconducting phase transition at the zero temperature for a fixed γ (left plot is for γ = −1/12 and
right plot is for γ = 1/12)

Fig. 7 3D plot of the allowed region for the superconducting phase transition at the zero temperature for a fixed α1 (from left to right, α1 =
−0.5, 0, 0.5)

Fig. 6). But when γ = 1/12, such a forbidden region
of superconducting phase transition vanishes (right plot
in Fig. 6). It indicates that we can find a parameter
space, the superconducting phase transition can always
happen.

• Fig. 7 exhibits 3D plot of the allowed region for the super-
conducting phase transition at the zero temperature for a
fixed α1. When α1 is negative, there is a forbidden region
of superconducting phase transition in the phase diagram
(m2, q, γ ). As α1 increases, this region shrinks and α1 is
large, this region vanishes.

In this section, we have made the superconducting insta-
bility analysis, from which we clearly see what roles of
the HD terms α1 and γ play in the superconducting phase
transition. However, we would like to point out that the
instability analysis is implemented in the probe limit and
it only provide a clue of the phase transition. To further
confirm the phase transition, we need numerically solve the
system (1).

4 Condensation

In this section, we shall numerically solve the system (1)
to study the superconducting phase transition. However, it
is hard to solve the system (1) with backreaction because
it involves solving a set of third order differential equations
with high nonlinearity. Therefore, we shall work in the probe
limit, i.e., we don’t consider the backreaction of the gauge
field and the scalar field on the geometry.

In the probe limit, we consider the metric as

ds2 = 1

u2

(
− f (u)dt2 + dx2 + dy2

)
+ L2

u2 f (u)
du2 ,

f (u) = (1 − u)p(u) , p(u) = u2 + u + 1, (18)

which is the SS-AdS black brane. u = 1 denotes the horizon
and u = 0 is the asymptotically AdS boundary. The Hawking
temperature of this system is T = 3/4π . And then, the EOMs
of gauge field and scalar field can be derived as
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Fig. 8 The condensation
√〈O2〉/Tc as a function of the temperature

T/Tc for different α1. Here the mass of scalar field is m2 = −2

∇ν

(
Xμνρσ Fρσ

) − 4q2Aμψ2 = 0,[∇2 − (m2 + q2A2) + α1C
2]ψ = 0. (19)

The ansatz for the scalar field and gauge field is taken as

ψ = ψ(u) , A = φ(u)dt. (20)

Under the above ansatz (Eqs. (18) and (20)), the EOMs for
ψ and φ (Eq. (19)) can be explicitly expressed as follows,

ψ(u)

(
−q2φ(u)2

u3 − 1
+ 12α1u

4 − u

)

−
(
u3 − 1

)
ψ ′′(u) − 3u2ψ ′(u) = 0, (21a)

(u3 − 1)(48u6γ1 + 8u3γ − 1)φ′′(u)

+ 24u2(u3 − 1)(γ + 12u3γ1)φ
′(u)

− 2q2ψ(u)2φ(u) = 0. (21b)

Here, we only consider the HD terms up to 6 order. Regard-
less of any details of the above EOMs, the asymptotical
behaviors of φ and ψ at the conformal boundary are

φ = μ − ρu, ψ = ψ1u
3−� + ψ2u

�. (22)

In the dual boundary field theory, μ and ρ are the chemical
potential and the charge density, respectively, as has been
mentioned above. This system is depicted by a dimensionless
quantity T̂ ≡ T/μ. We take standard quantization and so ψ1

is treated as the source and ψ2 as the expectation value of
the scalar operator, for which we denote 〈O2〉. We expect
that the condensation is not sourced and so we set ψ1 =
0. Subsequently, we numerically solve EOMs (21) by the
shooting method and study the properties of the condensation
〈O2〉 with HD derivative terms.4 We shall firstly study the
condensation by considering the scalar field with negative
mass, m2 = −2, which has been well studied in the usual
holographic superconductor model.

4 In this paper, we only focus on the cases of α1 and γ HD terms.

Figure 8 shows the condensation
√〈O2〉/Tc as a function

of the temperature T/Tc for different α1. We observe that as
α1 decreases, the condensation value becomes much larger.
It indicates that a larger superconducting energy gap ωg/Tc
emerges, which shall be explicitly addressed in the following
study of optical conductivity. Furthermore, we find that with
the increase of the α1, the critical temperature Tc goes up
(see Table 1). The tendency agrees with that shown in the
left plot in Fig. 1. It indicates that the positive α1 term drives
the symmetry breaking and makes the condensation easy.
While for the negative α1, the condensation becomes hard
and when α1 is less than certain value, the condensation is
spoiled. The result is consistent with the instability analysis
in Sect. 3.

In previous works [17,20], we have studied the holo-
graphic superconductor from the coupling between Weyl ten-
sor and gauge field. We find that the condensation value at
low temperature runs and the critical temperature T̂c changes
as the coupling parameters γ or γ1. The tendency is consis-
tent with that from the instability analysis in Sect. 3. Here
we further explore the joint effect from α1 term and γ or
γ1 term. The results are exhibited in Tables 1, 2 and Fig. 9.
We find that the couplings between α1 and γ (or γ1) have
an enhancement or a competitive effect on the formation of
superconducting phase depending on the sign of the coupling
parameters. We summarize the properties as what follows.

• From Table 1 and the panels above in Fig. 9, we see that
both α1 and γ are positive, the critical temperature of the
superconducting phase transition is enhanced. If both α1

and γ are negative, the critical temperature is reduced. It
means that the same sign of α1 and γ enhances or reduces
the formation of the superconducting phase transition.
However, if the signs of α1 and γ are opposite, there is a
competitive effect on the formation of superconducting
phase transition.

• The same analysis from Table 2 and the panels below in
Fig. 9 gives that when the signs of α1 and γ1 are opposite,
the formation of the superconducting phase transition is
enhanced or reduced, while for the same signs of α1 and
γ1, there is a competitive effect on the formation of super-
conducting phase transition.

5 Conductivity

In this section, we study the optical conductivity of our
holographic system with HD terms. For this, we turn on
the perturbation of the gauge field along x direction as
δAx (t, u) = e−iωt Ax (u). And then we can derive the fol-
lowing perturbation equation
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Table 1 The critical
temperature T̂c with different α1
and γ . Here γ1 = 0

T̂c α1 = −0.2 α1 = −0.1 α1 = 0 α1 = 0.1 α1 = 0.2

γ = 1/12 0.0666 0.0694 0.0732 0.0782 0.0855

γ = 0 0.0545 0.0563 0.0587 0.0621 0.0670

γ = −1/12 0.0491 0.0506 0.0525 0.0552 0.0592

Table 2 The critical temperature T̂c with different α1 and γ1. Here
γ = 0

T̂c α1 = −0.2 α1 = −0.1 α1 = 0.1 α1 = 0.2

γ1 = 0.02 0.0825 0.0874 0.1019 0.1137

γ1 = 0 0.0545 0.0563 0.0621 0.0670

γ1 = −0.02 0.0496 0.0511 0.0556 0.0595

(−1 + u3)(−1 − 4u3γ + 48u6γ1)A
′′
x

+ (−1 + u3)(3u2(−1 + 4γ − 8u3γ − 96u3γ1

+ 144u6γ1))A
′
x + ((−1 − 4u3γ + 48u6γ1)ω

2

− 2q2(−2 + u3)ψ2)Ax = 0. (23)

We can numerically solve the above equation with the ingo-
ing boundary condition. Once the solution is at hand, we can
read off the conductivity in terms of

σ(ω) = ∂u Ax

iωAx

∣∣∣
u=0

. (24)

There is no doubt that as the standard version of holo-
graphic superconductor model [12], the imaginary part of
the conductivity (right plots in Figs. 10, 11 and 12) has a
pole at ω = 0, which indicates that there is a delta function
at ω = 0 in the real part of the conductivity according to
the Kramers–Kronig (KK) relation. Such a delta function in
conductivity means the emergence of superconductivity. The
another important property that the superconducting energy
gap is also clearly exhibited in the real part of the conduc-
tivity (see the left plots in Figs. 10, 11 and 12). Near the gap
frequency ωg , the real part of conductivity quickly goes up,
which approximately corresponds to the minimum value in
the imaginary part of the conductivity.

In previous works [17–20], the authors have found that
after introducing the coupling between the Weyl tensor and
the gauge field, the ratio of the superconducting energy gap
frequency over critical temperature ωg/Tc ranges from about
5.5 to 16.2. Here we would also like to explore the run-

Fig. 9 The condensation
√〈O2〉/Tc as a function of the temperature T/Tc for different α1 and γ or γ1. Here the mass of scalar field is m2 = −2
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Fig. 10 Real and imaginary parts of conductivity as a function of the frequency for different α1

Fig. 11 Real and imaginary parts of conductivity as a function of the frequency for different γ

ning of the superconducting energy gap after the coupling
term α1, which is the coupling between the complex scalar
field and the Weyl tensor. From Fig. 10, we clearly see that
the superconducting energy gap runs with the parameter α1.
Quantitatively, it ranges from about 7.9, which is less than
the value of the standard version holographic superconduc-
tor in [12], to 9.5, which is beyond the value of the standard
version holographic superconductor, when α1 ∈ [−0.2, 0.2]
(see Table 3).

Furthermore, we also study the the joint effect on the run-
ning of the superconducting energy gap from α1 term and
γ or γ1 term. The results are exhibited in Figs. 11, 12 and
Tables 3 and 4. The enhancement or competitive effect on the
running of the superconducting energy gap is similar with
that of the formation of the superconducting phase discussed

in the previous section. We present a brief summary as what
follows.

• The same sign of α1 and γ enhances the running of the
superconducting energy gap. However, if the signs of α1

and γ are opposite, there is a competitive effect on the
running of superconducting energy gap.

• When the signs of α1 and γ1 are opposite, the running of
the superconducting energy gap is enhanced, while for
the same signs of α1 and γ1, there is a competitive effect
on the running of superconducting energy gap.

• The enhancement effect leads to the result that the run-
ning range of the superconducting energy gap becomes
larger, from 4.6 to 10.5 (see Figs. 11, 12 and Tables 3, 4).
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Fig. 12 Real and imaginary parts of conductivity as a function of the frequency for different γ1

Table 3 The superconducting
energy gap ωg/Tc with different
α1 and γ

ωg/Tc α1 = −0.2 α1 = −0.1 α1 = 0 α1 = 0.1 α1 = 0.2

γ = 1/12 7.7857 7.5090 7.1291 6.7364 6.6207

γ = 0 9.5446 9.2161 8.8476 8.4135 7.9274

γ = −1/12 10.6011 10.2622 9.9057 9.3502 8.9090

Table 4 The superconducting energy gap ωg/Tc with different α1 and
γ1

ωg/Tc α1 = −0.2 α1 = −0.1 α1 = 0.1 α1 = 0.2

γ1 = 0.02 6.2608 5.9211 5.1523 4.6869

γ1 = 0 9.5446 9.2161 8.4135 7.9274

γ1 = −0.02 10.5032 10.1741 9.4234 8.9416

The extension of the energy gap in our holographic model
maybe provide a novel platform to model the high tempera-
ture superconductor and we pursuit it in future.

6 Conclusion and discussion

In this paper, we construct a novel holographic supercon-
ductor from HD gravity, for which we introduce a coupling
between the complex scalar field and the Weyl tensor. The α1

coupling term provides a near horizon effective mass squared
but doesn’t modify the boundary AdS4 BF bound. The insta-
bility analysis indicates that a quantum phase transition can

be triggered by tuning the coupling parameter α1. In particu-
lar, even for the positive mass squared, the superconducting
phase transition also happens by tuning the α1. Therefore, the
α1 HD term plays the role of driving the symmetry break-
ing and results in the superconducting phase transition. We
also explore the instability from the HD terms α1 and γ ,
which involves the coupling between the Weyl tensor and
gauge field. γ coupling term modifies the near horizon AdS2

curvature and thus the near horizon effective mass squared,
which provides a mechanism to result in the superconducting
phase transition.

The properties of the condensation and the conductivity
in our holographic model are also studied. Although in the
probe limit, we have the same tendency as the instability
analysis. We summarize the main properties of our present
model as what follows:

• For the positive α1, the condensation becomes easy.
While for the negative α1, the result is just opposite.

• A wider extension of the superconducting energy gap,
ranging from 4.6 to 10.5, is observed. We expect that our
model provides a novel platform to model and interpret
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the phenomena in the real materials of high temperature
superconductor.

As a novel mechanism, there are some interesting topics
deserving further pursuit in future.

• We want to explore whether there is the phenomena of
the phase space folding as Ref. [8] due to the introduction
of α1 term.

• The Homes’ law can be observed in the holographic
superconductor model from HD theory [20], which
involves the coupling between Weyl tensor and the gauge
field. It is interesting to explore this issue in our present
model.

• The transports at full momentum and energy spaces can
provide far deeper insights into the holographic system
than that at the zero momentum [49,50]. In future, we
shall study this issue in the framework of our present
model.

• It is also interesting to study the running of the supercon-
ducting energy gap in other HD holographic supercon-
ductor model, for example [51].
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